Order-enriched solid functors

Lurdes Sousa

IPV / CMUC

on joint work with Walter Tholen

TACL 2019

Nice

Hom-sets are posets with

$$f\left(\begin{array}{c} A \\ \leq \\ B \end{array} \right) g \implies h \cdot f \cdot k \leq h \cdot g \cdot k$$

Hom-sets are posets with

$$f\left(\leq \atop B \right) g \qquad \Longrightarrow \qquad h \cdot f \cdot k \leq h \cdot g \cdot k$$

Functors preserve the order

Hom-sets are posets with

$$f\left(\leq \atop B \right) g \qquad \Longrightarrow \qquad h \cdot f \cdot k \leq h \cdot g \cdot k$$

Functors preserve the order

Examples: Pos, SLat, Frm, ..., ordered varieties, Top₀, ...

Inserter of
$$(f,g)$$
:
 $I \xrightarrow{i} A \xrightarrow{g} B$
(i) $f \cdot i \leq g \cdot i$
(ii) $f \cdot i' \leq g \cdot i' \Rightarrow i'$ factorizes through i
(iii) i is order-monic, i.e. $i \cdot a \leq i \cdot b \Rightarrow a$

 $a \leq b$

Inserter of
$$(f,g)$$
:
 $I \xrightarrow{i} A \xrightarrow{g} B$
(i) $f \cdot i \leq g \cdot i$
(ii) $f \cdot i' \leq g \cdot i' \Rightarrow i'$ factorizes through i
(iii) i is order-monic, i.e. $i \cdot a \leq i \cdot b \Rightarrow a \leq b$
Conical product:
 $\prod A_i \xrightarrow{\pi_i} A_i$

with $(\pi_i)_{i \in I}$ jointly order-monic

Inserter of
$$(f,g)$$
:
 $I \xrightarrow{i} A \xrightarrow{g} B$
(i) $f \cdot i \leq g \cdot i$
(ii) $f \cdot i' \leq g \cdot i' \Rightarrow i'$ factorizes through i
(iii) i is order-monic, i.e. $i \cdot a \leq i \cdot b \Rightarrow a \leq b$
Conical product:
 $\prod_{i \in I} A_i \xrightarrow{\pi_i} A_i$
with $(\pi_i)_{i \in I}$ jointly order-monic

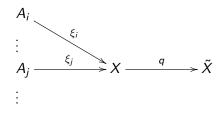
Combining inserters and conical products we can form all weighted limits.

Inserter of
$$(f,g)$$
:
 $I \xrightarrow{i} A \xrightarrow{g} B$
(i) $f \cdot i \leq g \cdot i$
(ii) $f \cdot i' \leq g \cdot i' \Rightarrow i'$ factorizes through i
(iii) i is order-monic, i.e. $i \cdot a \leq i \cdot b \Rightarrow a \leq b$
Conical product:
 $\prod_{i \in I} A_i \xrightarrow{\pi_i} A_i$
with $(\pi_i)_{i \in I}$ jointly order-monic

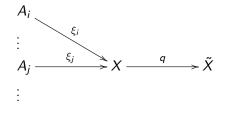
Combining inserters and conical products we can form all weighted limits.

Dually: coinserters, weighted colimits

Construction of weighted colimits in some categories:

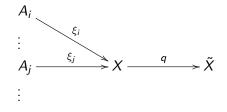


Construction of weighted colimits in some categories:



in SLat w. colim in Pos w. colim in SLat

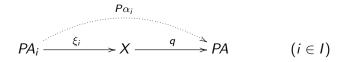
Construction of weighted colimits in some categories:



in Frm w. colim in SLat w. colim in Frm

TACL 2019, Nice, 19.06.19

 $P : A \to X$ is a (strongly) order-solid functor if, for every family $\xi = (\xi_i : PA_i \to X)_{i \in I}$, there is $\alpha = (\alpha_i : A_i \to A)_{i \in I}$, and $q : X \to PA$

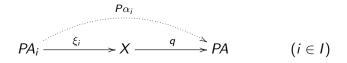


with

(i)
$$P\alpha = q \cdot \xi$$

(ii) (α, A, q) universal with respect to property (i)
(iii) $q: X \to PA$ order-*P*-epic: $Pf \cdot q \leq Pg \cdot q \Longrightarrow f \leq g$
 $X \xrightarrow{q} PA \xrightarrow{Pg}_{Pf} PB$

 $P : A \to X$ is a (strongly) order-solid functor if, for every family $\xi = (\xi_i : PA_i \to X)_{i \in I}$, there is $\alpha = (\alpha_i : A_i \to A)_{i \in I}$, and $q : X \to PA$



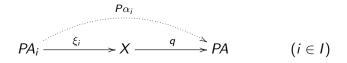
with

(i)
$$P\alpha = q \cdot \xi$$

(ii) (α, A, q) universal with respect to property (i)
(iii) $q: X \to PA$ order-*P*-epic: $Pf \cdot q \leq Pg \cdot q \Longrightarrow f \leq g$
 $X \xrightarrow{q} PA \xrightarrow{Pg}_{Pf} PB$

 (α, A, q) is called a (strongly) order-universal *P*-extension of ξ .

 $P : A \to X$ is a (strongly) order-solid functor if, for every family $\xi = (\xi_i : PA_i \to X)_{i \in I}$, there is $\alpha = (\alpha_i : A_i \to A)_{i \in I}$, and $q : X \to PA$



with

(i) $P\alpha = q \cdot \xi$ (ii) (α, A, q) universal with respect to property (i) (iii) $q: X \to PA$ order-*P*-epic: $Pf \cdot q \leq Pg \cdot q \Longrightarrow f \leq g$ $X \xrightarrow{q} PA \xrightarrow{Pg}_{Pf} PB$

 (α, A, q) is called a (strongly) order-universal *P*-extension of ξ .

Solid functors in the ordinary setting:

Solid functors in the ordinary setting:

R.-E. Hoffmann, PhD thesis, 1972

V. Trnková, Automata in categories, Lecture Notes in CS, 1975

Solid functors in the ordinary setting:

R.-E. Hoffmann, PhD thesis, 1972

V. Trnková, Automata in categories, Lecture Notes in CS, 1975

Walter Tholen, Semi-topological functors I, JPAA, in 1979

Tholen and Wischnewsky, Semi-topological functors II, JPAA, 1979

Street, Tholen, Wischnewsky and Wolff, Semi-topological functors III, JPAA, in 1980

In the book of Adámek, Herrlich and Strecker, and in subsequent papers, they are called <u>solid</u>

Anghel, PhD thesis, 1987

Use of strongly order-solid to distinguish from order-solid in Anghel's sense

Anghel, PhD thesis, 1987

Use of strongly order-solid to distinguish from order-solid in Anghel's sense

Anghel, PhD thesis, 1987

Use of strongly order-solid to distinguish from order-solid in Anghel's sense

 $\begin{array}{c} P: \mathcal{A} \to \mathcal{X} \text{ strongly order-solid} \\ & \Downarrow \\ \text{If } P \text{ is order-faithful, i.e., for every } A \xrightarrow[f]{g} B \text{, } Pf \leq Pg \implies f \leq g, \\ & \text{then} \end{array}$

P strongly order-solid \Leftrightarrow *P* order-solid.

Anghel, PhD thesis, 1987

Use of strongly order-solid to distinguish from order-solid in Anghel's sense

P strongly order-solid \Leftrightarrow *P* order-solid.

Open: Do the two notions agree independently of order-faithfulness ?

Theorem

Every strongly order-solid functor $P:\mathcal{A} \rightarrow \mathcal{X}$

(a) is order-faithful;

(b) is an order-right adjoint (i.e., r.a. and units are order-P-epic)

(c) detects weighted colimits.

Theorem

Let \mathcal{X} have inserters. An ordered functor $P : \mathcal{A} \to \mathcal{X}$ is strongly order-solid if and only if

- (a) P is solid as an ordinary functor;
- (b) A has inserters and P preserves them;
- (c) P is order-faithful.

Theorem

Let \mathcal{X} have inserters. An ordered functor $P : \mathcal{A} \to \mathcal{X}$ is strongly order-solid if and only if

- (a) P is solid as an ordinary functor;
- (b) A has inserters and P preserves them;
- (c) P is order-faithful.

(a) and (c) are not enough for the functor being strongly oder-solid.

Theorem

Let \mathcal{X} have inserters. An ordered functor $P : \mathcal{A} \to \mathcal{X}$ is strongly order-solid if and only if

(a) P is solid as an ordinary functor;

(b) A has inserters and P preserves them;

(c) P is order-faithful.

(a) and (c) are not enough for the functor being strongly oder-solid.

```
Open: ordinary solid + order-right adjoint + order-faithful \psi strongly order-solid ?
```

Theorem

An ordered functor $P : A \to X$ is strongly order-solid iff P is order-right adjoint, and there exists a class \mathcal{E} of order-epimorphisms in A such that:

- (a) All adjunction co-units lie in \mathcal{E} ;
- (b) The pushout of a morphism of E along any morphism exists in A and belongs to E;
- (c) The wide pushout (that is, the cointersection) of any (possibly large) family of morphisms in *E* with common domain exists in *A* and belongs to *E*.

$$\operatorname{Top}_0 \xrightarrow{S} \operatorname{Pos}$$

SX = X with the dual of specialization order

$$\operatorname{Top}_0 \xrightarrow{S} \operatorname{Pos}$$

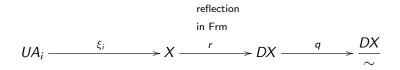
SX = X with the dual of specialization order

$$SA_i \xrightarrow{\xi_i} X \xrightarrow{\operatorname{id}} (X, \tau) \xrightarrow{T_0-\operatorname{reflection}} \overline{X}$$

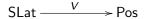
 $\tau =$ down sets U whose pre-image by ξ_i is open in A_i for all $i \in I$

$$\mathsf{Frm} \xrightarrow{U} \mathsf{SLat}$$

$$Frm \longrightarrow SLat$$



~ is the least congruence in *DX* with which we obtain frame homomorphisms $q \cdot r \cdot \xi_i$, for all *i*.



The composition of two strongly order-solid functors is strongly order-solid.

The composition of two strongly order-solid functors is strongly order-solid.

In particular,

Examples of strongly order-solid functors

AbMon(Pos)
$$\xrightarrow{U}$$
 Pos

Examples of strongly order-solid functors

 $Alg(\mathcal{T}, Pos) =$ category of ordered algebras for a given algebraic theory \mathcal{T}

 $Alg(\mathcal{T}, Pos) = category of ordered algebras for a given algebraic theory \mathcal{T}$ \mathcal{T} order-varietal: the forgetful functor $U^{\mathcal{T}} : Alg(\mathcal{T}, Pos) \rightarrow Pos$ is an order-right adjoint $Alg(\mathcal{T}, Pos) = category of ordered algebras for a given algebraic theory \mathcal{T}$ \mathcal{T} order-varietal: the forgetful functor $U^{\mathcal{T}} : Alg(\mathcal{T}, Pos) \rightarrow Pos$ is an order-right adjoint

Theorem

For every order-varietal algebraic theory \mathcal{T} , the functor $U^{\mathcal{T}}$: Alg $(\mathcal{T}, \text{Pos}) \rightarrow \text{Pos}$ is strongly order-solid. $Alg(\mathcal{T}, Pos) = category of ordered algebras for a given algebraic theory <math>\mathcal{T}$ \mathcal{T} order-varietal: the forgetful functor $U^{\mathcal{T}} : Alg(\mathcal{T}, Pos) \rightarrow Pos$ is an order-right adjoint

Theorem

For every order-varietal algebraic theory \mathcal{T} , the functor $U^{\mathcal{T}}$: Alg $(\mathcal{T}, \mathsf{Pos}) \rightarrow \mathsf{Pos}$ is strongly order-solid.

Theorem

The ordered algebraic functor induced by any morphism of order-varietal algebraic theories

$$\mathsf{Alg}(\mathcal{T},\mathsf{Pos}) o \mathsf{Alg}(\mathcal{S},\mathsf{Pos})$$

is strongly order-solid.

 $Alg(\mathcal{T}, Pos) = category of ordered algebras for a given algebraic theory <math>\mathcal{T}$ \mathcal{T} order-varietal: the forgetful functor $U^{\mathcal{T}} : Alg(\mathcal{T}, Pos) \rightarrow Pos$ is an order-right adjoint

Theorem

For every order-varietal algebraic theory \mathcal{T} , the functor $U^{\mathcal{T}}$: Alg $(\mathcal{T}, \mathsf{Pos}) \rightarrow \mathsf{Pos}$ is strongly order-solid.

Theorem

The ordered algebraic functor induced by any morphism of order-varietal algebraic theories

$$\mathsf{Alg}(\mathcal{T},\mathsf{Pos}) o \mathsf{Alg}(\mathcal{S},\mathsf{Pos})$$

is strongly order-solid.

Example: Frm \rightarrow SLat

TACL 2019, Nice, 19.06.19

Strongly preorder-solid functors: analogous to strongly order-solid

Strongly preorder-solid functors: analogous to strongly order-solid

 $\mathsf{Example:} \ \mathsf{Pos} \to \mathsf{PrOrd}$

Strongly preorder-solid functors: analogous to strongly order-solid

Example: $\mathsf{Pos} \to \mathsf{PrOrd}$

Proposition

In the commutative diagram of preordered functors

with H and J full emdeddings and H a preorder-right adjoint

P' strongly preorder-solid $\Rightarrow P$ strongly preorder-solid

 \Rightarrow *P* strongly order-solid, if ordered

Strongly preorder-solid functors: analogous to strongly order-solid

Example: $Pos \rightarrow PrOrd$

Proposition

In the commutative diagram of preordered functors

with H and J full emdeddings and H a preorder-right adjoint

P' strongly preorder-solid $\Rightarrow P$ strongly preorder-solid $\Rightarrow P$ strongly order-solid, if ordered

Example:

$$\begin{array}{ccc}
\operatorname{Fop}_{0} & & \operatorname{Top} \\
s & & & \downarrow s' \\
\operatorname{Pos} & & & \operatorname{PrOrd}
\end{array}$$

Ordered vector space: $+: V \times V$ and $\lambda - : V \rightarrow V$, $\lambda \ge 0$, are monotone

Ordered vector space: $+ : V \times V$ and $\lambda - : V \to V$, $\lambda \ge 0$, are monotone Positive cone: $PV = \{x \mid x \ge 0\}$

Ordered vector space: $+: V \times V$ and $\lambda - : V \to V$, $\lambda \ge 0$, are monotone Positive cone: $PV = \{x \mid x \ge 0\}$

Positive linear map: sends positive vectors to positive vectors

Ordered vector space: $+: V \times V$ and $\lambda - : V \to V$, $\lambda \ge 0$, are monotone Positive cone: $PV = \{x \mid x \ge 0\}$

Positive linear map: sends positive vectors to positive vectors

Generating positive cone: V = PV + (-PV)

Ordered vector space: $+: V \times V$ and $\lambda - : V \to V$, $\lambda \ge 0$, are monotone Positive cone: $PV = \{x \mid x \ge 0\}$

Positive linear map: sends positive vectors to positive vectors

Generating positive cone: V = PV + (-PV)

Two possible orders:

$$f \bigvee_{i \leq V} g$$

11

• if
$$f(x) \le g(x)$$
, for all $x \in PV$

• if $f(x) \le g(x)$, for all $x \in V$ (equivalently, f = g, since $f(x) \le g(x) \Rightarrow f(-x) \ge g(-x)$) OVec := category of ordered vector spaces with a generating cone, and positive linear maps, ordered by $f \le g$ iff $f(v) \le g(v)$ for all $v \in PV$

OVec := category of ordered vector spaces with a generating cone, and positive linear maps, ordered by $f \le g$ iff $f(v) \le g(v)$ for all $v \in PV$

The functor

 $P: \mathcal{OV}ec \longrightarrow \mathsf{Pos}$ $V \mapsto PV = \mathsf{positive cone}$

is strongly order-solid.

$$\mathcal{OVec}_{=} \longrightarrow \mathsf{Pos}$$

$$\mathcal{OVec}_{=} \longrightarrow \mathsf{Pos}$$

is order-faithful

$$\mathcal{OVec}_{=} \longrightarrow \mathsf{Pos}$$

is order-faithful

and it is (ordinary) solid,

$$\mathcal{OVec}_{=} \longrightarrow \mathsf{Pos}$$

is order-faithful

and it is (ordinary) solid,

but it is **not** strongly order-solid.

$$\mathcal{OVec}_{=} \longrightarrow \mathsf{Pos}$$

is <u>order-faithful</u>

and it is (ordinary) solid,

but it is **not** strongly order-solid.

It fails to preserve inserters: for $\mathbb{R} \xrightarrow[id]{2-} \mathbb{R}$, the inserter in Pos is \mathbb{R}_0^+ , but in $\mathcal{OVec}_=$ it is just $\{0\}$.