Semi-Reflective Extensions of Dualities: A New Approach to the Fedorchuk Duality

Walter Tholen Joint work with G. Dimov and E. Ivanova-Dimova

York University, Toronto, Canada

Topology, Algebra, and Categories in Logic 2019 Nice (France), 17-21 June 2019

Standard: (dual) adjunctions give (dual) equivalences

$$T : \mathcal{A}^{(\mathrm{op})} \rightleftharpoons \mathcal{B} : S$$

$$\varepsilon_{\mathcal{A}} : \mathcal{A} \longrightarrow ST\mathcal{A} \qquad \eta_{\mathcal{B}} : \mathcal{B} \longrightarrow TS\mathcal{B}$$

$$T \varepsilon_{\mathcal{A}} \cdot \eta_{\mathcal{T}\mathcal{A}} = \mathbf{1}_{\mathcal{T}\mathcal{A}} \qquad S\eta_{\mathcal{B}} \cdot \varepsilon_{S\mathcal{B}} = \mathbf{1}_{S\mathcal{B}}$$

$$\begin{aligned} \operatorname{Fix}(\varepsilon) &= \{ A \,|\, \varepsilon_A \text{ iso } \} \\ T' &: \operatorname{Fix}(\varepsilon)^{(\operatorname{op})} \rightleftharpoons \operatorname{Fix}(\eta) : S' \end{aligned}$$

Note: In what follows, we will suppress "op" throughout this talk.

• • • • • • • • • • • • •

Standard: (dual) adjunctions give (dual) equivalences

$$T : \mathcal{A}^{(\mathrm{op})} \rightleftharpoons \mathcal{B} : S$$

$$\varepsilon_{A} : A \longrightarrow STA \qquad \eta_{B} : B \longrightarrow TSB$$

$$T\varepsilon_{A} \cdot \eta_{TA} = \mathbf{1}_{TA} \qquad S\eta_{B} \cdot \varepsilon_{SB} = \mathbf{1}_{SB}$$

$$\begin{aligned} \operatorname{Fix}(\varepsilon) &= \{ \boldsymbol{A} \,|\, \varepsilon_{\boldsymbol{A}} \, \operatorname{iso} \, \} \\ \boldsymbol{T}' : \operatorname{Fix}(\varepsilon)^{(\operatorname{op})} &\rightleftharpoons \operatorname{Fix}(\eta) : \, \boldsymbol{S}' \end{aligned}$$

Note: In what follows, we will suppress "op" throughout this talk.

Conversely: How to extend a given duality naturally?

Given a dual equivalence

$$T: \mathcal{A}
ightarrow \mathcal{B}: S$$

with \mathcal{B} a full subcategory of a category \mathcal{C} : Find a natural description of a full extension category \mathcal{D} of \mathcal{A} and a dual equivalence

$$ilde{\mathcal{T}}:\mathcal{D}
ightrightarrow\mathcal{C}: ilde{\mathcal{S}}$$

extending the given one:

Challenge: describe such ${\cal D}$ and the extended duality ${\sf naturally}!$

Walter Tholen (York University)

Extensions of Dualities & Fedorchuk Duality

TACL 2019 3 / 19

Conversely: How to extend a given duality naturally?

Given a dual equivalence

$$T: \mathcal{A}
ightarrow \mathcal{B}: S$$

with \mathcal{B} a full subcategory of a category \mathcal{C} : Find a natural description of a full extension category \mathcal{D} of \mathcal{A} and a dual equivalence

$$ilde{\mathcal{T}}:\mathcal{D}
ightleftarrow\mathcal{C}: ilde{\mathcal{S}}$$

extending the given one:

$$\begin{array}{cccc} \mathcal{D} & \stackrel{\tilde{T}}{\longrightarrow} \mathcal{C} & \mathcal{D} \prec \stackrel{\tilde{S}}{\longleftarrow} \mathcal{C} \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \mathcal{A} & \stackrel{T}{\longrightarrow} \mathcal{B} & \mathcal{A} \prec \stackrel{S}{\longleftarrow} \mathcal{B} \end{array}$$

Challenge: describe such \mathcal{D} and the extended duality naturally!

Warm-up: Stone, via [Porst-T 1991, Richard Garner]

$$hom(-,2)$$
 : **Boole** \rightleftharpoons **Set** : $hom(-,2) = P$

induces the ultrafilter monad

Ult(X) = Boole(PX, 2)

on **Set** whose Eilenberg-Moore category is **CHaus** (Manes 1967). Get the (dual) comparison adjunction

Stone : **Boole** \rightleftharpoons **Set**^{Ult} \cong **CHaus** : CO

By inspection:

```
\operatorname{Fix}(\varepsilon) = \operatorname{Boole} \rightleftharpoons \operatorname{Stone} = \operatorname{ZDCHaus} = \operatorname{Fix}(\eta)
```

Voila! [ZD = zero-dimensional: the clopens form a base]

向下 イヨト イヨト

Warm-up: Stone, via [Porst-T 1991, Richard Garner]

$$hom(-, 2) : Boole \rightleftharpoons Set : hom(-, 2) = P$$

induces the ultrafilter monad

$$\operatorname{Ult}(X) = \operatorname{Boole}(\operatorname{P} X, 2)$$

on **Set** whose Eilenberg-Moore category is **CHaus** (Manes 1967). Get the (dual) comparison adjunction

Stone : **Boole**
$$\rightleftharpoons$$
 Set^{Ult} \cong **CHaus** : CO

By inspection:

$$\operatorname{Fix}(\varepsilon) = \operatorname{Boole} \rightleftharpoons \operatorname{Stone} = \operatorname{ZDCHaus} = \operatorname{Fix}(\eta)$$

通 ト イ ヨ ト イ ヨ ト

TACL 2019

4/19

Voila! [ZD = zero-dimensional: the clopens form a base]

Warm-up: Stone, via [Porst-T 1991, Richard Garner]

$$hom(-, 2) : Boole \rightleftharpoons Set : hom(-, 2) = P$$

induces the ultrafilter monad

$$\operatorname{Ult}(X) = \operatorname{Boole}(\operatorname{P} X, 2)$$

on **Set** whose Eilenberg-Moore category is **CHaus** (Manes 1967). Get the (dual) comparison adjunction

Stone : **Boole**
$$\rightleftharpoons$$
 Set^{Ult} \cong **CHaus** : CO

By inspection:

$$\operatorname{Fix}(\varepsilon) = \operatorname{Boole} \rightleftharpoons \operatorname{Stone} = \operatorname{ZDCHaus} = \operatorname{Fix}(\eta)$$

Voila! [ZD = zero-dimensional: the clopens form a base]

de Vries 1962:

Objects in **deVries** are Boolean algebras with structure $\sqrt{}$ and morphisms are maps that behave well w.r.t. the structure $\sqrt{}$

But: morphism composition in **deVries** does NOT proceed as in **Set**, which makes the category a bit cumbersome to deal with!

[extremally disconnected: closure of an open is open]

Fedorchuk 1973:

|Fedor| = |deVries|, but take fewer morphisms to obtain a duality

 $\textbf{Fedor} \rightleftarrows \textbf{CHaus}_{qop}$

$[f: X \longrightarrow Y \text{ quasi-open} :\iff \forall U \subseteq X \text{ open: } (\text{int } f(U) = \emptyset \Longrightarrow U = \emptyset)]$

Dimov 2009:

Stone restricts to $\mathbf{Boole}_{sup} \simeq \mathbf{Stone}_{qop}$, and further:

A (1) > A (2) > A

Fedorchuk 1973:

|Fedor| = |deVries|, but take fewer morphisms to obtain a duality

 $\textbf{Fedor} \rightleftarrows \textbf{CHaus}_{qop}$

 $[f: X \longrightarrow Y \text{ quasi-open} :\iff \forall U \subseteq X \text{ open: } (\operatorname{int} f(U) = \emptyset \Longrightarrow U = \emptyset)]$

Dimov 2009:

Stone restricts to $\textbf{Boole}_{sup} \simeq \textbf{Stone}_{qop}$, and further:

- **→ → →**

Viewing deVries and Fedorchuk as Stone extensions

Let's understand the top as a categorical extension of the bottom! Front face: now! Back face: next talk!

- a compact Hausdorff space X is determined by (RC(X), ≪), with (RC = regular closed) and (F ≪ G ⇔ F ⊆ int G)
- these pairs are algebraically described as *de Vries algebras* (A, ≪): A complete Boolean algebra, axioms for the relation ≪
- (Bezhanishvili 2010) equivalently as (A, p : Stone(A) → X) where p is a projective cover of a compact Hausdorff space X *i.e.* Stone(A) is the Gleason cover / the absolute of X
- *p*: Y → X projective cover: Y extremally disconnected and *p* is *irreducible*: ∀F ⊆ X closed (*p*(F) = Y ⇒ F = X); these maps are quasi-open!

Our strategy: Isolate the needed categorical properties of the class of irreducible maps in **CHaus**_{gop} and build **Fedor** abstractly from them!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- a compact Hausdorff space X is determined by (RC(X), ≪), with (RC = regular closed) and (F ≪ G ⇔ F ⊆ int G)
- these pairs are algebraically described as *de Vries algebras* (A, ≪): A complete Boolean algebra, axioms for the relation ≪
- (Bezhanishvili 2010) equivalently as (A, p : Stone(A) → X) where p is a projective cover of a compact Hausdorff space X *i.e.* Stone(A) is the Gleason cover / the absolute of X
- *p*: Y → X projective cover: Y extremally disconnected and *p* is *irreducible*: ∀F ⊆ X closed (*p*(F) = Y ⇒ F = X); these maps are quasi-open!

Our strategy: Isolate the needed categorical properties of the class of irreducible maps in **CHaus**_{gop} and build **Fedor** abstractly from them!

(日)

- a compact Hausdorff space X is determined by (RC(X), ≪), with (RC = regular closed) and (F ≪ G ⇔ F ⊆ int G)
- these pairs are algebraically described as *de Vries algebras* (A, ≪): A complete Boolean algebra, axioms for the relation ≪
- (Bezhanishvili 2010) equivalently as (A, p : Stone(A) → X) where p is a projective cover of a compact Hausdorff space X *i.e.* Stone(A) is the Gleason cover / the absolute of X

p: Y → X projective cover: Y extremally disconnected and *p* is *irreducible*: ∀F ⊆ X closed (*p*(F) = Y ⇒ F = X); these maps are quasi-open!

Our strategy: Isolate the needed categorical properties of the class of irreducible maps in **CHaus**_{gop} and build **Fedor** abstractly from them!

< 日 > < 同 > < 回 > < 回 > < 回 > <

- a compact Hausdorff space X is determined by (RC(X), ≪), with (RC = regular closed) and (F ≪ G ⇔ F ⊆ int G)
- these pairs are algebraically described as *de Vries algebras* (A, ≪): A complete Boolean algebra, axioms for the relation ≪
- (Bezhanishvili 2010) equivalently as (A, p : Stone(A) → X) where p is a projective cover of a compact Hausdorff space X *i.e.* Stone(A) is the Gleason cover / the absolute of X
- *p* : *Y* → *X* projective cover: *Y* extremally disconnected and *p* is *irreducible*: ∀*F* ⊆ *X* closed (*p*(*F*) = *Y* ⇒ *F* = *X*); these maps are quasi-open!

Our strategy: Isolate the needed categorical properties of the class of irreducible maps in **CHaus**_{qop} and build **Fedor** abstractly from them!

・ロト ・ 四ト ・ ヨト ・ ヨト …

- a compact Hausdorff space X is determined by (RC(X), ≪), with (RC = regular closed) and (F ≪ G ⇔ F ⊆ int G)
- these pairs are algebraically described as *de Vries algebras* (A, ≪): A complete Boolean algebra, axioms for the relation ≪
- (Bezhanishvili 2010) equivalently as (A, p : Stone(A) → X) where p is a projective cover of a compact Hausdorff space X *i.e.* Stone(A) is the Gleason cover / the absolute of X
- *p*: Y → X projective cover: Y extremally disconnected and p is *irreducible*: ∀F ⊆ X closed (p(F) = Y ⇒ F = X); these maps are quasi-open!

Our strategy: Isolate the needed categorical properties of the class of irreducible maps in **CHaus**_{qop} and build **Fedor** abstractly from them!

While for a projective cover $p : \text{Stone}(A) \longrightarrow X$, Stone(A), and therefore A, is determined by X in **CHaus** (up to isom.), there can be no functorial dependency of the domain on the codomain:

[Adámek, Herrlich, Rosický, T 2002]

In a category with projective covers (injective hulls) and a generator (cogenerator), the covering maps (injective embeddings) can **never** form a natural transformation, unless all objects of the category are projective (injective).

Applications: MacNeille compl., Gleason cover, algebraic closure, ...

Fedorchuk was forced to consider special morphisms in **CHaus** and build a new category!

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

While for a projective cover $p : \text{Stone}(A) \longrightarrow X$, Stone(A), and therefore A, is determined by X in **CHaus** (up to isom.), there can be no functorial dependency of the domain on the codomain:

[Adámek, Herrlich, Rosický, T 2002]

In a category with projective covers (injective hulls) and a generator (cogenerator), the covering maps (injective embeddings) can never form a natural transformation, unless all objects of the category are projective (injective).

Applications: MacNeille compl., Gleason cover, algebraic closure, ...

Fedorchuk was forced to consider special morphisms in **CHaus** and build a new category!

・ロト ・ 四ト ・ ヨト ・ ヨト …

While for a projective cover $p : \text{Stone}(A) \longrightarrow X$, Stone(A), and therefore A, is determined by X in **CHaus** (up to isom.), there can be no functorial dependency of the domain on the codomain:

[Adámek, Herrlich, Rosický, T 2002]

In a category with projective covers (injective hulls) and a generator (cogenerator), the covering maps (injective embeddings) can never form a natural transformation, unless all objects of the category are projective (injective).

Applications: MacNeille compl., Gleason cover, algebraic closure, ...

Fedorchuk was forced to consider special morphisms in **CHaus** and build a new category!

Given a dual equivalence

 $T : \mathcal{A} \rightleftharpoons \mathcal{B} : S$ $\varepsilon_{\mathcal{A}} : \mathcal{A} \longrightarrow STA \qquad \eta_{\mathcal{B}} : \mathcal{B} \longrightarrow TSB$ $T \varepsilon_{\mathcal{A}} \cdot \eta_{T\mathcal{A}} = \mathbf{1}_{T\mathcal{A}} \qquad S \eta_{\mathcal{B}} \cdot \varepsilon_{S\mathcal{B}} = \mathbf{1}_{S\mathcal{B}}$

such that ${\cal B}$ is a full subactegory of ${\cal C},$ and a morphism class ${\cal P}$ in ${\cal C}$ such that

(P1) \forall ($p: B \longrightarrow C$) $\in \mathcal{P} : B \in |\mathcal{B}|$; (P2) $\forall B \in |\mathcal{B}| : 1_B \in \mathcal{P}$; (P3) $\mathcal{P} \cdot \operatorname{Iso}(\mathcal{B}) \subseteq \mathcal{P}$; (P4) $\forall C \in |\mathcal{C}| \exists (p: B \longrightarrow C) \in \mathcal{P}$.

Given a dual equivalence

 $T : \mathcal{A} \rightleftharpoons \mathcal{B} : S$ $\varepsilon_{\mathcal{A}} : \mathcal{A} \longrightarrow STA \qquad \eta_{\mathcal{B}} : \mathcal{B} \longrightarrow TSB$ $T \varepsilon_{\mathcal{A}} \cdot \eta_{T\mathcal{A}} = \mathbf{1}_{T\mathcal{A}} \qquad S \eta_{\mathcal{B}} \cdot \varepsilon_{S\mathcal{B}} = \mathbf{1}_{S\mathcal{B}}$

such that ${\cal B}$ is a full subactegory of ${\cal C},$ and a morphism class ${\cal P}$ in ${\cal C}$ such that

```
(P1) \forall (p: B \longrightarrow C) \in \mathcal{P} : B \in |\mathcal{B}|;
(P2) \forall B \in |\mathcal{B}| : 1_B \in \mathcal{P};
(P3) \mathcal{P} \cdot \operatorname{Iso}(\mathcal{B}) \subseteq \mathcal{P};
(P4) \forall C \in |\mathcal{C}| \exists (p: B \longrightarrow C) \in \mathcal{P};
```

(4) (5) (4) (5)

(P5) for morphisms in C, there is a functorial assignment

Walter Tholen (York University)

Extensions of Dualities & Fedorchuk Duality

TACL 2019 11 / 19

In the presence of (P2), reformulate (P4) as (P4') $\forall C \in |C| \exists (\pi_C : EC \longrightarrow C) \in \mathcal{P} \text{ (with } \pi_C = \mathbf{1}_C \text{ when } C \in |\mathcal{B}|\text{)}.$ PROPOSITION:

For $I : \mathcal{B} \hookrightarrow \mathcal{C}$ full and faithful, the following are equivalent:

• \mathcal{B} admits a $(\mathcal{B}, \mathcal{C})$ -covering class;

 there are a functor *E* : *C* → *B* and a natural transformation *π* : *IE* → ld_C, such that *πI* : *IEI* → *I* is an isomorphism; *E* and *π* may actually be chosen to satisfy *EI* = ld_B and *πI* = 1

• *I* is *fully left semi-adjoint* (Medvedev 1974): there are $E: \mathcal{C} \longrightarrow \mathcal{B}, \ \pi: IE \longrightarrow Id_{\mathcal{C}}, \ \sigma: Id_{\mathcal{B}} \longrightarrow EI$ with $\pi I \cdot I\sigma = 1_I$ and σ iso.

Then: I left adjoint $\iff IE\pi = \pi IE \iff E\pi \cdot \sigma E = 1_E \iff$

(P5^{*}) In (P5), the morphism \hat{v} is uniquely determined by p, v, p'.

イロト 不得 トイヨト イヨト

In the presence of (P2), reformulate (P4) as (P4') $\forall C \in |C| \exists (\pi_C : EC \longrightarrow C) \in \mathcal{P} \text{ (with } \pi_C = \mathbf{1}_C \text{ when } C \in |\mathcal{B}| \text{).}$ PROPOSITION:

For $I: \mathcal{B} \hookrightarrow \mathcal{C}$ full and faithful, the following are equivalent:

- *B* admits a (*B*, *C*)-covering class;
- there are a functor *E* : *C* → *B* and a natural transformation *π* : *IE* → ld_C, such that *πI* : *IEI* → *I* is an isomorphism;
 E and *π* may actually be chosen to satisfy *EI* = ld_B and *πI* = 1
- *I* is *fully left semi-adjoint* (Medvedev 1974): there are $E : \mathcal{C} \longrightarrow \mathcal{B}, \ \pi : IE \longrightarrow Id_{\mathcal{C}}, \ \sigma : Id_{\mathcal{B}} \longrightarrow EI$ with $\pi I \cdot I\sigma = \mathbf{1}_{I}$ and σ iso.

Then: I left adjoint $\iff IE\pi = \pi IE \iff E\pi \cdot \sigma E = \mathbf{1}_E \iff$

(P5^{*}) In (P5), the morphism \hat{v} is uniquely determined by p, v, p'.

In the presence of (P2), reformulate (P4) as (P4') $\forall C \in |C| \exists (\pi_C : EC \longrightarrow C) \in \mathcal{P} \text{ (with } \pi_C = \mathbf{1}_C \text{ when } C \in |\mathcal{B}|\text{)}.$ PROPOSITION:

For $I : \mathcal{B} \hookrightarrow \mathcal{C}$ full and faithful, the following are equivalent:

- *B* admits a (*B*,*C*)-covering class;
- there are a functor $E : C \longrightarrow B$ and a natural transformation $\pi : IE \longrightarrow Id_C$, such that $\pi I : IEI \longrightarrow I$ is an isomorphism; *E* and π may actually be chosen to satisfy $EI = Id_B$ and $\pi I = 1_I$;
- *I* is *fully left semi-adjoint* (Medvedev 1974): there are $E: \mathcal{C} \longrightarrow \mathcal{B}, \ \pi: IE \longrightarrow Id_{\mathcal{C}}, \ \sigma: Id_{\mathcal{B}} \longrightarrow EI$ with $\pi I \cdot I\sigma = 1_I$ and σ iso.

TACL 2019

11/19

Then: I left adjoint $\iff IE\pi = \pi IE \iff E\pi \cdot \sigma E = 1_E \iff$

(P5^{*}) In (P5), the morphism \hat{v} is uniquely determined by p, v, p'.

In the presence of (P2), reformulate (P4) as (P4') $\forall C \in |C| \exists (\pi_C : EC \longrightarrow C) \in \mathcal{P} \text{ (with } \pi_C = \mathbf{1}_C \text{ when } C \in |\mathcal{B}|\text{)}.$ PROPOSITION:

For $I : \mathcal{B} \hookrightarrow \mathcal{C}$ full and faithful, the following are equivalent:

- *B* admits a (*B*,*C*)-covering class;
- there are a functor *E* : *C* → *B* and a natural transformation *π* : *IE* → ld_C, such that *πI* : *IEI* → *I* is an isomorphism; *E* and *π* may actually be chosen to satisfy *EI* = ld_B and *πI* = 1_{*I*};
- *I* is *fully left semi-adjoint* (Medvedev 1974): there are $E : \mathcal{C} \longrightarrow \mathcal{B}, \ \pi : IE \longrightarrow Id_{\mathcal{C}}, \ \sigma : Id_{\mathcal{B}} \longrightarrow EI$ with $\pi I \cdot I\sigma = 1_I$ and σ iso.

Then: I left adjoint $\iff IE\pi = \pi IE \iff E\pi \cdot \sigma E = 1_E \iff$

(P5^{*}) In (P5), the morphism \hat{v} is uniquely determined by p, v, p'.

In the presence of (P2), reformulate (P4) as (P4') $\forall C \in |C| \exists (\pi_C : EC \longrightarrow C) \in \mathcal{P} \text{ (with } \pi_C = \mathbf{1}_C \text{ when } C \in |\mathcal{B}|\text{)}.$ PROPOSITION:

For $I : \mathcal{B} \hookrightarrow \mathcal{C}$ full and faithful, the following are equivalent:

- *B* admits a (*B*,*C*)-covering class;
- there are a functor *E* : *C* → *B* and a natural transformation *π* : *IE* → ld_C, such that *πI* : *IEI* → *I* is an isomorphism; *E* and *π* may actually be chosen to satisfy *EI* = ld_B and *πI* = 1_{*I*};
- *I* is *fully left semi-adjoint* (Medvedev 1974): there are $E : \mathcal{C} \longrightarrow \mathcal{B}, \ \pi : IE \longrightarrow Id_{\mathcal{C}}, \ \sigma : Id_{\mathcal{B}} \longrightarrow EI$ with $\pi I \cdot I\sigma = 1_I$ and σ iso.

Then: I left adjoint $\iff IE\pi = \pi IE \iff E\pi \cdot \sigma E = \mathbf{1}_E \iff$

(P5^{*}) In (P5), the morphism \hat{v} is uniquely determined by p, v, p'.

Building the category $\mathcal D$ from the class $\mathcal P$...

- objects (A, p): $A \in |\mathcal{A}|$ and $p : TA \longrightarrow C$ in \mathcal{P} ;
- morphisms $(\varphi, f) : (A, p) \longrightarrow (A', p'): \varphi : A \longrightarrow A'$ in \mathcal{A} and $f : C' \longrightarrow C$ in \mathcal{C} , with $T\varphi = \hat{f}$:

- composition = horizontal pasting of diagrams: $(\varphi', f') \cdot (\varphi, f) = (\varphi' \cdot \varphi, f \cdot f')$
- identity morphisms: $1_{(A,p:TA \rightarrow C)} = (1_A, 1_C)$.

...containing \mathcal{A} as a full semi-reflective subcategory ...

$$J: \mathcal{A} \hookrightarrow \mathcal{D}$$
$$(\varphi: \mathcal{A} \to \mathcal{A}') \longmapsto ((\varphi, T\varphi): (\mathcal{A}, \mathbf{1}_{T\mathcal{A}}) \to (\mathcal{A}', \mathbf{1}_{T\mathcal{A}'}))$$

$$\mathcal{A} \longleftarrow \mathcal{D} : \mathcal{F}$$
$$\varphi \longleftrightarrow ((\varphi, f) : (\mathcal{A}, \mathcal{p}) \to (\mathcal{A}', \mathcal{p}'))$$

$$\rho_{(A,p)} : (A,p) \longrightarrow JF(A,p)$$

$$TA \stackrel{\hat{\rho}=T\iota_{\rho}}{\longleftarrow} TA$$

$$\downarrow^{\rho} \qquad \qquad \downarrow^{1_{TA}}$$

$$C \longleftarrow TA$$

Walter Tholen (York University)

Extensions of Dualities & Fedorchuk Duality

TACL 2019 13 / 19

...containing \mathcal{A} as a full semi-reflective subcategory ...

$$J: \mathcal{A} \hookrightarrow \mathcal{D}$$
$$(\varphi: \mathcal{A} \to \mathcal{A}') \longmapsto ((\varphi, T\varphi): (\mathcal{A}, \mathbf{1}_{T\!\mathcal{A}}) \to (\mathcal{A}', \mathbf{1}_{T\!\mathcal{A}'}))$$

$$\mathcal{A} \longleftarrow \mathcal{D} : \mathcal{F}$$

 $\varphi \longleftarrow ((\varphi, f) : (\mathcal{A}, \mathcal{p}) \to (\mathcal{A}', \mathcal{p}'))$

Walter Tholen (York University)

Extensions of Dualities & Fedorchuk Duality

TACL 2019 13 / 19

...containing \mathcal{A} as a full semi-reflective subcategory ...

$$J: \mathcal{A} \hookrightarrow \mathcal{D}$$
$$(\varphi: \mathcal{A} \to \mathcal{A}') \longmapsto ((\varphi, T\varphi): (\mathcal{A}, \mathbf{1}_{T\mathcal{A}}) \to (\mathcal{A}', \mathbf{1}_{T\mathcal{A}'}))$$

$$\mathcal{A} \longleftarrow \mathcal{D}: \mathcal{F}$$

 $\varphi \longleftarrow ((\varphi, f): (\mathcal{A}, \mathcal{p}) \rightarrow (\mathcal{A}', \mathcal{p}'))$

$$\rho_{(A,p)} : (A,p) \longrightarrow JF(A,p)$$

$$TA \stackrel{\hat{p}=T\iota_{p}}{\longleftarrow} TA$$

$$p \downarrow \qquad \qquad \downarrow_{1_{TA}}$$

$$C \stackrel{q}{\longleftarrow} TA$$

Walter Tholen (York University) Extensi

Extensions of Dualities & Fedorchuk Duality

TACL 2019 13 / 19

イロト イヨト イヨト イヨ

... and allowing for the extension of the given duality

But what about the adjoint $\tilde{S} : C \longrightarrow D$, does it "commute" with S? Same questions for the units and counits of the dual equivalences!

... and allowing for the extension of the given duality

But what about the adjoint $\tilde{S} : C \longrightarrow D$, does it "commute" with S? Same questions for the units and counits of the dual equivalences!

14/19

The augmented Extension Theorem

If (P4) may be strengthened to

(P4*) $\forall C \in |C| \exists (\pi_C : EC \longrightarrow C) \in \mathcal{P}$ rigid: $(\forall \alpha \text{ iso: } \pi \cdot \alpha = \pi \Rightarrow \alpha = 1)$, then there are

- a dual equivalence *T*: D ↔ C: S, with natural isomorphisms *η* : Id_C → *T*S and *ε* : Id_D → *ST* satisfying the triangular identities
- and natural isomorphisms $\beta : TF \longrightarrow E\tilde{T}$ and $\gamma : JS \longrightarrow \tilde{S}I$

satisfying the following identities:

(1)
$$\tilde{T}J = IT$$
 and $F\tilde{S} = SE$;
(2) $\tilde{T}\tilde{S} = Id_{\mathcal{C}}, \ \tilde{\eta} = 1_{Id_{\mathcal{C}}}, \text{ and } \tilde{T}\tilde{\varepsilon} = 1_{\tilde{T}}, \ \tilde{\varepsilon}\tilde{S} = 1_{\tilde{S}};$
(3) $\pi \tilde{T} \cdot I\beta = \tilde{T}\rho \text{ and } \gamma E \cdot \rho \tilde{S} = \tilde{S}\pi;$
(4) $\tilde{T}\gamma = I\eta \text{ and } S\beta \cdot F\tilde{\varepsilon} = \varepsilon F.$

The augmented Extension Theorem

If (P4) may be strengthened to

(P4*) $\forall C \in |C| \exists (\pi_C : EC \longrightarrow C) \in \mathcal{P} \text{ rigid: } (\forall \alpha \text{ iso: } \pi \cdot \alpha = \pi \Rightarrow \alpha = 1),$ then there are

- a dual equivalence *T*: D ↔ C :*Š*, with natural isomorphisms *η* : Id_C → *T̃Š* and *ε̃* : Id_D → *Š̃T̃* satisfying the triangular identities
- and natural isomorphisms $\beta : TF \longrightarrow E\tilde{T}$ and $\gamma : JS \longrightarrow \tilde{S}I$

satisfying the following identities:

(1) $\tilde{T}J = IT$ and $F\tilde{S} = SE$; (2) $\tilde{T}\tilde{S} = Id_{\mathcal{C}}, \, \tilde{\eta} = 1_{Id_{\mathcal{C}}}, \, \text{and} \, \tilde{T}\tilde{\varepsilon} = 1_{\tilde{T}}, \, \tilde{\varepsilon}\tilde{S} = 1_{\tilde{S}};$ (3) $\pi \tilde{T} \cdot I\beta = \tilde{T}\rho \text{ and} \, \gamma E \cdot \rho \tilde{S} = \tilde{S}\pi;$ (4) $\tilde{T}\gamma = I\eta \text{ and} \, S\beta \cdot F\tilde{\varepsilon} = \varepsilon F.$

A B F A B F

The augmented Extension Theorem

If (P4) may be strengthened to

(P4*) $\forall C \in |C| \exists (\pi_C : EC \longrightarrow C) \in \mathcal{P}$ rigid: $(\forall \alpha \text{ iso: } \pi \cdot \alpha = \pi \Rightarrow \alpha = 1)$, then there are

- a dual equivalence *T*: D ↔ C : Š, with natural isomorphisms *η* : Id_C → *T*Š and *ε* : Id_D → *ŠT* satisfying the triangular identities
- and natural isomorphisms $\beta : TF \longrightarrow E\tilde{T}$ and $\gamma : JS \longrightarrow \tilde{S}I$

satisfying the following identities:

(1)
$$\tilde{T}J = IT$$
 and $F\tilde{S} = SE$;
(2) $\tilde{T}\tilde{S} = Id_{\mathcal{C}}, \, \tilde{\eta} = \mathbf{1}_{Id_{\mathcal{C}}}, \, \text{and} \, \tilde{T}\tilde{\varepsilon} = \mathbf{1}_{\tilde{T}}, \, \tilde{\varepsilon}\tilde{S} = \mathbf{1}_{\tilde{S}};$
(3) $\pi \tilde{T} \cdot I\beta = \tilde{T}\rho \text{ and } \gamma E \cdot \rho \tilde{S} = \tilde{S}\pi;$
(4) $\tilde{T}\gamma = I\eta \text{ and } S\beta \cdot F\tilde{\varepsilon} = \varepsilon F.$

Back to Fedorchuk: get his duality without de Vries!

 $\mathcal{P} = \{\text{irreducible maps with domain in } \mathcal{B}\}.$ Must confirm (P1–5)!

• Henriksen-Jerison 1965: f surj. and qop $\implies \hat{f}$ unique

- Uljanov 1975, Šapiro 1976: f qop $\Longrightarrow \hat{f}$ unique
- Bereznitsky (< 1976): f surj. ⇒ (f qop ⇔ f open), but we proved: surjectivity is not needed here either!

Back to Fedorchuk: get his duality without de Vries!

 $\mathcal{P} = \{\text{irreducible maps with domain in } \mathcal{B}\}. \text{ Must confirm (P1-5)}$ One actually has (P5*): $\begin{array}{c} EX \xrightarrow{\exists ! \hat{f}} EX' \\ \pi_X \\ \downarrow \end{array} \quad \begin{array}{c} \forall \pi_{X'} \\ \downarrow \\ \hline \end{array} \quad \begin{array}{c} \forall \pi_{X'} \\ \downarrow \\ \hline \end{array}$

 $X' \longrightarrow X'$

• Henriksen-Jerison 1965: f surj. and qop $\implies \hat{f}$ unique

• Uljanov 1975, Šapiro 1976: f qop $\Longrightarrow \hat{f}$ unique

• Bereznitsky (< 1976): f surj. \implies (f qop $\iff \hat{f}$ open), but we proved: surjectivity is not needed here either!

Back to Fedorchuk: get his duality without de Vries!

$$\mathsf{CHaus}_{qop} = \mathcal{C} \supseteq \mathcal{P}$$

$$\bigwedge^{}_{\mathcal{A}} = \mathsf{CBoole}_{sup} \xrightarrow{\simeq} \mathsf{EDCHaus}_{(q)op} = \mathcal{B}$$

- Henriksen-Jerison 1965: f surj. and qop $\implies \hat{f}$ unique
- Uljanov 1975, Šapiro 1976: $f \operatorname{qop} \Longrightarrow \hat{f}$ unique
- Bereznitsky (< 1976): f surj. \implies (f qop $\iff \hat{f}$ open), but we proved: surjectivity is not needed here either!

Better late than never: define Fedor

 $|\mathbf{Fedor}| = |\mathbf{deVries}| \ni (A, \ll) : A \text{ compl. Boolean alg., relation } \ll \text{ s.th.}$

- $a \ll b \Longrightarrow a \le b$.
- 0 ≪ 0
- $a \le b \ll c \le d \Longrightarrow a \ll d$
- $a \ll c, b \ll c \Longrightarrow a \lor b \ll c$
- $a \ll c \Longrightarrow \exists b \ (a \ll b \ll c)$
- $a \neq 0 \Longrightarrow \exists b \neq 0 \ (b \ll a)$
- $a \ll b \Longrightarrow b^* \ll a^*$

Morphisms in **Fedor**: Boolean homs preserving sups and \ll Role model: RC(X) with ($F \ll G \iff F \subseteq intG$) Equivalent axiomatization as normal contact algebras ($A \preccurlyeq$)

$$a \times b \iff a \not\ll b^*,$$

with morphisms now reflecting the relation imes

Better late than never: define Fedor

 $|\mathbf{Fedor}| = |\mathbf{deVries}| \ni (A, \ll) : A \text{ compl. Boolean alg., relation } \ll \text{ s.th.}$

- $a \ll b \Longrightarrow a \le b$.
- 0 ≪ 0
- $a \le b \ll c \le d \Longrightarrow a \ll d$
- $a \ll c, b \ll c \Longrightarrow a \lor b \ll c$
- $a \ll c \Longrightarrow \exists b (a \ll b \ll c)$
- $a \neq 0 \Longrightarrow \exists b \neq 0 \ (b \ll a)$
- $a \ll b \Longrightarrow b^* \ll a^*$

Morphisms in **Fedor**: Boolean homs preserving sups and \ll Role model: RC(X) with ($F \ll G \iff F \subseteq intG$) Equivalent axiomatization as *normal contact algebras* (A, \asymp)

$$a \asymp b \iff a \not\ll b^*,$$

with morphisms now reflecting the relation \asymp

Remaining labour: Fedor is equivalent to $\ensuremath{\mathcal{D}}$

Wanted: (covariant) equivalence

Fedor $\xrightarrow{\simeq} \mathcal{D}$

Key step:

For a complete Boolean algebra A, define a bijective correspondence

{norm. contact rel. \asymp on A} \rightleftharpoons { closed irred. equ. rel. \approx on Stone(A)}

 $u \approx v : \iff \forall a \in u, b \in v : a \times b$

Finally consider

Fedor
$$\xrightarrow{\simeq} \mathcal{D} \xrightarrow{\tilde{\tau}} \mathcal{C}$$
Haus

to obtain Fedorchuk's dual equivalence.

Remaining labour: Fedor is equivalent to $\ensuremath{\mathcal{D}}$

Wanted: (covariant) equivalence

Fedor
$$\xrightarrow{\simeq} \mathcal{D}$$

Key step:

For a complete Boolean algebra *A*, define a bijective correspondence

{norm. contact rel. \asymp on A} \rightleftharpoons { closed irred. equ. rel. \approx on Stone(A)}

$$u \approx v : \iff \forall a \in u, b \in v : a \asymp b$$

Finally consider

Fedor
$$\xrightarrow{\simeq} \mathcal{D} \xrightarrow{\tilde{\mathcal{T}}} \mathcal{C}$$
 Haus

to obtain Fedorchuk's dual equivalence.

Remaining labour: Fedor is equivalent to $\ensuremath{\mathcal{D}}$

Wanted: (covariant) equivalence

Fedor
$$\xrightarrow{\simeq} \mathcal{D}$$

Key step:

For a complete Boolean algebra *A*, define a bijective correspondence

{norm. contact rel. \asymp on A} \rightleftharpoons { closed irred. equ. rel. \approx on Stone(A)}

$$u \approx v : \iff \forall a \in u, b \in v : a \asymp b$$

Finally consider

Fedor
$$\xrightarrow{\simeq} \mathcal{D} \xrightarrow{\tilde{\mathcal{T}}} \mathcal{D}$$
 CHaus

to obtain Fedorchuk's dual equivalence.

MERCI!

イロト イヨト イヨト イヨト