Semi-Reflective Extensions of Dualities: A New Approach to the Fedorchuk Duality

Walter Tholen
Joint work with G. Dimov and E. Ivanova-Dimova
York University, Toronto, Canada
Topology, Algebra, and Categories in Logic 2019
Nice (France), 17-21 June 2019

Standard: (dual) adjunctions give (dual) equivalences

$$
\begin{gathered}
T: \mathcal{A}^{(\mathrm{op})} \rightleftarrows \mathcal{B}: S \\
\varepsilon_{A}: A \longrightarrow S T A \\
T \varepsilon_{A} \cdot \eta_{T A}=1_{T A} \quad
\end{gathered} \quad \eta_{B}: B \longrightarrow T S B
$$

Note: In what follows, we will suppress "op" throughout this talk.

Standard: (dual) adjunctions give (dual) equivalences

$$
\begin{gathered}
T: \mathcal{A}^{(\mathrm{op})} \rightleftarrows \mathcal{B}: S \\
\varepsilon_{A}: A \longrightarrow S T A \quad \\
T \varepsilon_{A} \cdot \eta_{T A}=1_{T A} \quad \\
\eta_{B}: B \longrightarrow T S B \\
\\
S \eta_{B} \cdot \varepsilon_{S B}=1_{S B}
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{Fix}(\varepsilon)=\left\{A \mid \varepsilon_{A} \text { iso }\right\} \quad \operatorname{Fix}(\eta)=\left\{B \mid \eta_{B} \text { iso }\right\} \\
T^{\prime}: \operatorname{Fix}(\varepsilon)^{(\mathrm{op})} \rightleftarrows \operatorname{Fix}(\eta): S^{\prime}
\end{gathered}
$$

Note: In what follows, we will suppress "op" throughout this talk.

Conversely: How to extend a given duality naturally?

Given a dual equivalence

$$
T: \mathcal{A} \rightleftarrows \mathcal{B}: S
$$

with \mathcal{B} a full subcategory of a category \mathcal{C} :
Find a natural description of a full extension category \mathcal{D} of \mathcal{A} and a dual equivalence

$$
\tilde{T}: \mathcal{D} \rightleftarrows \mathcal{C}: \tilde{S}
$$

extending the given one:

Challenge: describe such \mathcal{D} and the extended duality naturally!

Conversely: How to extend a given duality naturally?

Given a dual equivalence

$$
T: \mathcal{A} \rightleftarrows \mathcal{B}: S
$$

with \mathcal{B} a full subcategory of a category \mathcal{C} :
Find a natural description of a full extension category \mathcal{D} of \mathcal{A} and a dual equivalence

$$
\tilde{T}: \mathcal{D} \rightleftarrows \mathcal{C}: \tilde{S}
$$

extending the given one:

Challenge: describe such \mathcal{D} and the extended duality naturally!

Warm-up: Stone, via [Porst-T 1991, Richard Garner]

$$
\text { hom }(-, 2): \text { Boole } \rightleftarrows \text { Set }: \operatorname{hom}(-, 2)=\mathrm{P}
$$

induces the ultrafilter monad

$$
\operatorname{Ult}(X)=\operatorname{Boole}(\mathrm{P} X, 2)
$$

on Set whose Eilenberg-Moore category is CHaus (Manes 1967). Get the (dual) comparison adjunction
\square

Warm-up: Stone, via [Porst-T 1991, Richard Garner]

$$
\text { hom }(-, 2): \text { Boole } \rightleftarrows \text { Set }: \operatorname{hom}(-, 2)=\mathrm{P}
$$

induces the ultrafilter monad

$$
\operatorname{Ult}(X)=\operatorname{Boole}(\mathrm{P} X, 2)
$$

on Set whose Eilenberg-Moore category is CHaus (Manes 1967). Get the (dual) comparison adjunction

$$
\text { Stone : Boole } \rightleftarrows \text { Set }{ }^{\mathrm{Ult}} \cong \text { CHaus : CO }
$$

By inspection:
Fix $(\varepsilon)=$ Boole \rightleftarrows Stone $=$ ZDCHaus $=\operatorname{Fix}(\eta)$

Warm-up: Stone, via [Porst-T 1991, Richard Garner]

$$
\text { hom }(-, 2): \text { Boole } \rightleftarrows \text { Set }: \operatorname{hom}(-, 2)=\mathrm{P}
$$

induces the ultrafilter monad

$$
\operatorname{Ult}(X)=\operatorname{Boole}(\mathrm{P} X, 2)
$$

on Set whose Eilenberg-Moore category is CHaus (Manes 1967). Get the (dual) comparison adjunction

$$
\text { Stone : Boole } \rightleftarrows \text { Set }^{\mathrm{Ult}} \cong \text { CHaus : } \mathrm{CO}
$$

By inspection:

$$
\operatorname{Fix}(\varepsilon)=\text { Boole } \rightleftarrows \text { Stone }=\text { ZDCHaus }=\operatorname{Fix}(\eta)
$$

Voila! [ZD = zero-dimensional: the clopens form a base]

de Vries extends a restricted Stone: next talk, Dimov!

de Vries 1962:

Objects in deVries are Boolean algebras with structure $\sqrt{ }$ and morphisms are maps that behave well w.r.t. the structure $\sqrt{ }$

But: morphism composition in deVries does NOT proceed as in Set, which makes the category a bit cumbersome to deal with!
[extremally disconnected: closure of an open is open]

The Fedorchuk extension of the restricted Stone

Fedorchuk 1973:
\mid Fedor $|=|$ deVries \mid, but take fewer morphisms to obtain a duality

Fedor \rightleftarrows CHaus $_{\text {qop }}$

[$f: X \longrightarrow Y$ quasi-open $: \Longleftrightarrow \forall U \subseteq X$ open: $(\operatorname{int} f(U)=\emptyset \Longrightarrow U=\emptyset)$]
Dimov 2009:
Stone restricts to Boole $_{\text {sup }} \simeq$ Stone $_{\text {qop }}$, and further:

The Fedorchuk extension of the restricted Stone

Fedorchuk 1973:
\mid Fedor $|=|$ deVries \mid, but take fewer morphisms to obtain a duality

Fedor \rightleftarrows CHaus $_{\text {qop }}$

[$f: X \longrightarrow Y$ quasi-open $: \Longleftrightarrow \forall U \subseteq X$ open: $(\operatorname{int} f(U)=\emptyset \Longrightarrow U=\emptyset)$]
Dimov 2009:
Stone restricts to Boole $_{\text {sup }} \simeq$ Stone $_{\text {qop }}$, and further:

Viewing deVries and Fedorchuk as Stone extensions

Let's understand the top as a categorical extension of the bottom! Front face: now! Back face: next talk!

de Vries representation of compact Hausdorff spaces

- a compact Hausdorff space X is determined by $(\mathrm{RC}(X), \ll)$, with ($\mathrm{RC}=$ regular closed) and ($F \ll G \Leftrightarrow F \subseteq$ int G)
- these pairs are algebraically described as de Vries algebras (A, \ll) : A complete Boolean algebra, axioms for the relation
- (Bezhanishvili 2010) equivalently as $(A, p: \operatorname{Stone}(A) \longrightarrow X)$ where p is a projective cover of a compact Hausdorff space X i.e. Stone (A) is the Gleason cover / the absolute of X
- $p: Y \longrightarrow X$ projective cover: Y extremally disconnected and p is irreducible: $\forall F \subseteq X$ closed $(p(F)=Y \Longrightarrow F=X)$; these maps are quasi-open!

Our strategy: Isolate the needed categorical properties of the class of irreducible maps in $\mathrm{CHaus}_{\text {qop }}$ and build Fedor abstractly from them!

de Vries representation of compact Hausdorff spaces

- a compact Hausdorff space X is determined by $(\mathrm{RC}(X), \ll)$, with ($\mathrm{RC}=$ regular closed) and ($F \ll G \Leftrightarrow F \subseteq$ int G)
- these pairs are algebraically described as de Vries algebras (A, \ll) : A complete Boolean algebra, axioms for the relation \ll
 i.e. Stone (A) is the Gleason cover / the absolute of X
 p is irreducible: $\forall F \subseteq X$ closed $(p(F)$ these maps are quasi-open!

Our strategy: Isolate the needed categorical properties of the class of irreducible maps in $\mathrm{CHaus}_{q \text { op }}$ and build Fedor abstractly from them!

de Vries representation of compact Hausdorff spaces

- a compact Hausdorff space X is determined by $(\mathrm{RC}(X), \ll)$, with ($\mathrm{RC}=$ regular closed) and ($F \ll G \Leftrightarrow F \subseteq$ int G)
- these pairs are algebraically described as de Vries algebras (A, \ll) : A complete Boolean algebra, axioms for the relation \ll
- (Bezhanishvili 2010) equivalently as $(A, p: \operatorname{Stone}(A) \longrightarrow X)$ where p is a projective cover of a compact Hausdorff space X i.e. Stone (A) is the Gleason cover / the absolute of X
these maps are quasi-open!
Our strategy: Isolate the needed categorical properties of the class of irreducible maps in $\mathrm{CHaus}_{\mathrm{qop}}$ and build Fedor abstractly from them!

de Vries representation of compact Hausdorff spaces

- a compact Hausdorff space X is determined by $(\mathrm{RC}(X), \ll)$, with ($\mathrm{RC}=$ regular closed) and ($F \ll G \Leftrightarrow F \subseteq$ int G)
- these pairs are algebraically described as de Vries algebras (A, \ll) : A complete Boolean algebra, axioms for the relation \ll
- (Bezhanishvili 2010) equivalently as $(A, p: \operatorname{Stone}(A) \longrightarrow X)$ where p is a projective cover of a compact Hausdorff space X i.e. Stone (A) is the Gleason cover / the absolute of X
- $p: Y \longrightarrow X$ projective cover: Y extremally disconnected and p is irreducible: $\forall F \subseteq X$ closed $(p(F)=Y \Longrightarrow F=X)$; these maps are quasi-open!

Our strategy: Isolate the needed categorical properties of the class of irreducible maps in $\mathrm{CHaus}_{\text {qop }}$ and build Fedor abstractly from them!

de Vries representation of compact Hausdorff spaces

- a compact Hausdorff space X is determined by $(\mathrm{RC}(X), \ll)$, with ($\mathrm{RC}=$ regular closed) and ($F \ll G \Leftrightarrow F \subseteq$ int G)
- these pairs are algebraically described as de Vries algebras (A, \ll) : A complete Boolean algebra, axioms for the relation \ll
- (Bezhanishvili 2010) equivalently as $(A, p: \operatorname{Stone}(A) \longrightarrow X)$ where p is a projective cover of a compact Hausdorff space X i.e. Stone (A) is the Gleason cover / the absolute of X
- $p: Y \longrightarrow X$ projective cover: Y extremally disconnected and p is irreducible: $\forall F \subseteq X$ closed $(p(F)=Y \Longrightarrow F=X)$; these maps are quasi-open!
Our strategy: Isolate the needed categorical properties of the class of irreducible maps in $\mathbf{C H a u s}_{\mathrm{qop}}$ and build Fedor abstractly from them!

A note of caution

While for a projective cover $p: \operatorname{Stone}(A) \longrightarrow X$, Stone (A), and therefore A, is determined by X in CHaus (up to isom.), there can be no functorial dependency of the domain on the codomain:
> [Adámek, Herrlich, Rosický, T 2002]
> In a category with projective covers (injective hulls) and a generator (cogenerator), the covering maps (injective embeddings) can never form a natural transformation, unless all objects of the category are projective (injective).

> Applications: MacNeille compl., Gleason cover, algebraic closure,

> Fedorchuk was forced to consider special morphisms in CHaus and build a new category!

A note of caution

While for a projective cover $p: \operatorname{Stone}(A) \longrightarrow X$, Stone (A), and therefore A, is determined by X in CHaus (up to isom.), there can be no functorial dependency of the domain on the codomain:
[Adámek, Herrlich, Rosický, T 2002]
In a category with projective covers (injective hulls) and a generator (cogenerator), the covering maps (injective embeddings) can never form a natural transformation, unless all objects of the category are projective (injective).

Applications: MacNeille compl., Gleason cover, algebraic closure, ...
Fedorchuk was forced to consider special morphisms in CHaus and build a new category!

A note of caution

While for a projective cover $p: \operatorname{Stone}(A) \longrightarrow X$,
Stone (A), and therefore A, is determined by X in CHaus (up to isom.), there can be no functorial dependency of the domain on the codomain:
[Adámek, Herrlich, Rosický, T 2002]
In a category with projective covers (injective hulls) and a generator (cogenerator), the covering maps (injective embeddings) can never form a natural transformation, unless all objects of the category are projective (injective).

Applications: MacNeille compl., Gleason cover, algebraic closure, ...
Fedorchuk was forced to consider special morphisms in CHaus and build a new category!

Categorical setting

Given a dual equivalence

$$
\begin{gathered}
T: \mathcal{A} \rightleftarrows \mathcal{B}: S \\
\varepsilon_{A}: A \longrightarrow S T A \quad \\
T \varepsilon_{A} \cdot \eta_{T A}=1_{T A} \quad \eta_{B}: B \longrightarrow T S B \\
\eta_{B} \cdot \varepsilon_{S B}=1_{S B}
\end{gathered}
$$

such that \mathcal{B} is a full subactegory of \mathcal{C}, and a morphism class \mathcal{P} in \mathcal{C}

(P2) $\forall B \in|\mathcal{B}|: 1_{B} \in \mathcal{P}$;
(P3) $\mathcal{P} \cdot \mathrm{Iso}(\mathcal{B}) \subseteq \mathcal{P}$;
(P4) $\forall C \in|\mathcal{C}| \exists(p: B \longrightarrow C) \in \mathcal{P}$;

Categorical setting

Given a dual equivalence

$$
T: \mathcal{A} \rightleftarrows \mathcal{B}: S
$$

$$
\begin{array}{ll}
\varepsilon_{A}: A \longrightarrow S T A & \eta_{B}: B \longrightarrow T S B \\
T \varepsilon_{A} \cdot \eta_{T A}=1_{T A} & S \eta_{B} \cdot \varepsilon_{S B}=1_{S B}
\end{array}
$$

such that \mathcal{B} is a full subactegory of \mathcal{C}, and a morphism class \mathcal{P} in \mathcal{C} such that
(P1) $\forall(p: B \longrightarrow C) \in \mathcal{P}: B \in|\mathcal{B}|$;
(P2) $\forall B \in|\mathcal{B}|: 1_{B} \in \mathcal{P}$;
(P 3) $\mathcal{P} \cdot \operatorname{Iso}(\mathcal{B}) \subseteq \mathcal{P}$;
(P4) $\forall C \in|\mathcal{C}| \exists(p: B \longrightarrow C) \in \mathcal{P}$;
(P5) for morphisms in \mathcal{C}, there is a functorial assignment

Characterization of (P1-5): \mathcal{P} is a $(\mathcal{B}, \mathcal{C})$-covering class

In the presence of (P2), reformulate (P 4) as
$\left(\mathrm{P} 4^{\prime}\right) \forall C \in|\mathcal{C}| \exists\left(\pi_{C}: E C \longrightarrow C\right) \in \mathcal{P}$ (with $\pi_{C}=1_{C}$ when $\left.C \in|\mathcal{B}|\right)$.
Proposition:
For $I: \mathcal{B} \hookrightarrow \mathcal{C}$ full and faithful, the following are equivalent:

- \mathcal{B} admits a (B.C)-covering class;
- there are a functor $E: \mathcal{C} \longrightarrow \mathcal{B}$ and a natural transformation $\pi: I E \longrightarrow I d_{\mathcal{C}}$, such that $\pi I: I E I \longrightarrow I$ is an isomorphism;
E and π may actually be chosen to satisfy $E I=\operatorname{ld}_{\mathcal{B}}$ and $\pi I=1 /$
- I is fully left semi-adjoint (Medvedev 1974): there are $E: \mathcal{C} \longrightarrow \mathcal{B}, \pi: I E \longrightarrow \operatorname{Id}_{\mathcal{C}}, \sigma: \operatorname{Id}_{\mathcal{B}} \longrightarrow E I$ with $\pi I \cdot I \sigma=1$, and σ iso. Then: I left adjoint $\Longleftrightarrow I E \pi=\pi I E \Longleftrightarrow E \pi \cdot \sigma E=1_{E} \Longleftrightarrow$ (P5*) In (P5), the morphism \hat{v} is uniquely determined by p, v, p^{\prime}.

Characterization of (P1-5): \mathcal{P} is a $(\mathcal{B}, \mathcal{C})$-covering class

In the presence of (P2), reformulate (P 4) as
$\left(\mathrm{P} 4^{\prime}\right) \forall C \in|\mathcal{C}| \exists\left(\pi_{C}: E C \longrightarrow C\right) \in \mathcal{P}$ (with $\pi_{C}=1_{C}$ when $\left.C \in|\mathcal{B}|\right)$. Proposition:

For $I: \mathcal{B} \hookrightarrow \mathcal{C}$ full and faithful, the following are equivalent:

- \mathcal{B} admits a $(\mathcal{B}, \mathcal{C})$-covering class;
- there are a functor $E: \mathcal{C} \longrightarrow \mathcal{B}$ and a natural transformation $\pi: I E \longrightarrow \operatorname{Id}_{\mathcal{C}}$, such that $\pi I: I E I \longrightarrow I$ is an isomorphism; E and π may actually be chosen to satisfy $E I=\operatorname{ld}_{\mathcal{B}}$ and $\pi I=1 /$ - I is fully left semi-adjoint (Medvedev 1974): there are $E: \mathcal{C} \longrightarrow \mathcal{B}, \pi: I E \longrightarrow \operatorname{Id}_{\mathcal{C}}, \sigma: \operatorname{Id}_{\mathcal{B}} \longrightarrow E I$ with $\pi I \cdot I \sigma=1$, and σ iso. Then: I left adjoint $\Longleftrightarrow I E \pi=\pi I E \Longleftrightarrow E \pi \cdot \sigma E=1_{F} \Longleftrightarrow$ (P5*) In (P5), the morphism \hat{v} is uniquely determined by p, v, p^{\prime}.

Characterization of (P1-5): \mathcal{P} is a $(\mathcal{B}, \mathcal{C})$-covering class

In the presence of (P2), reformulate (P4) as
$\left(\mathrm{P} 4^{\prime}\right) \forall C \in|\mathcal{C}| \exists\left(\pi_{C}: E C \longrightarrow C\right) \in \mathcal{P}$ (with $\pi_{C}=1_{C}$ when $\left.C \in|\mathcal{B}|\right)$.
Proposition:
For $I: \mathcal{B} \hookrightarrow \mathcal{C}$ full and faithful, the following are equivalent:

- \mathcal{B} admits a $(\mathcal{B}, \mathcal{C})$-covering class;
- there are a functor $E: \mathcal{C} \longrightarrow \mathcal{B}$ and a natural transformation $\pi: I E \longrightarrow \operatorname{ld}_{\mathcal{C}}$, such that $\pi I: I E I \longrightarrow I$ is an isomorphism; E and π may actually be chosen to satisfy $E I=\operatorname{ld}_{\mathcal{B}}$ and $\pi I=1_{l}$;

\square

Characterization of (P1-5): \mathcal{P} is a $(\mathcal{B}, \mathcal{C})$-covering class

In the presence of (P2), reformulate (P4) as
$\left(\mathrm{P} 4^{\prime}\right) \forall C \in|\mathcal{C}| \exists\left(\pi_{C}: E C \longrightarrow C\right) \in \mathcal{P}$ (with $\pi_{C}=1_{C}$ when $\left.C \in|\mathcal{B}|\right)$.
Proposition:
For $I: \mathcal{B} \hookrightarrow \mathcal{C}$ full and faithful, the following are equivalent:

- \mathcal{B} admits a $(\mathcal{B}, \mathcal{C})$-covering class;
- there are a functor $E: \mathcal{C} \longrightarrow \mathcal{B}$ and a natural transformation $\pi: I E \longrightarrow \mathrm{Id}_{\mathcal{C}}$, such that $\pi I: I E I \longrightarrow I$ is an isomorphism;
E and π may actually be chosen to satisfy $E I=\operatorname{Id}_{\mathcal{B}}$ and $\pi I=1_{l}$;
- I is fully left semi-adjoint (Medvedev 1974): there are $E: \mathcal{C} \longrightarrow \mathcal{B}, \pi: I E \longrightarrow \operatorname{Id}_{\mathcal{C}}, \sigma: \operatorname{Id}_{\mathcal{B}} \longrightarrow E I$ with $\pi I \cdot I \sigma=1_{l}$ and σ iso.
\square

Characterization of (P1-5): \mathcal{P} is a $(\mathcal{B}, \mathcal{C})$-covering class

In the presence of (P2), reformulate (P 4) as
$\left(\mathrm{P} 4^{\prime}\right) \forall C \in|\mathcal{C}| \exists\left(\pi_{C}: E C \longrightarrow C\right) \in \mathcal{P}$ (with $\pi_{C}=1_{C}$ when $\left.C \in|\mathcal{B}|\right)$.
Proposition:
For $I: \mathcal{B} \hookrightarrow \mathcal{C}$ full and faithful, the following are equivalent:

- \mathcal{B} admits a $(\mathcal{B}, \mathcal{C})$-covering class;
- there are a functor $E: \mathcal{C} \longrightarrow \mathcal{B}$ and a natural transformation $\pi: I E \longrightarrow \mathrm{Id}_{\mathcal{C}}$, such that $\pi I: I E I \longrightarrow I$ is an isomorphism; E and π may actually be chosen to satisfy $E I=\operatorname{Id}_{\mathcal{B}}$ and $\pi I=1_{/}$;
- I is fully left semi-adjoint (Medvedev 1974): there are $E: \mathcal{C} \longrightarrow \mathcal{B}, \pi: I E \longrightarrow \operatorname{Id}_{\mathcal{C}}, \sigma: \operatorname{Id}_{\mathcal{B}} \longrightarrow E I$ with $\pi I \cdot I \sigma=1_{l}$ and σ iso.
Then: I left adjoint $\Longleftrightarrow I E \pi=\pi I E \Longleftrightarrow E \pi \cdot \sigma E=1_{E} \Longleftrightarrow$
$\left(\mathrm{P} 5^{*}\right) \ln (\mathrm{P} 5)$, the morphism \hat{v} is uniquely determined by p, v, p^{\prime}.

Building the category \mathcal{D} from the class \mathcal{P}...

- objects $(A, p): A \in|\mathcal{A}|$ and $p: T A \longrightarrow C$ in \mathcal{P};
- morphisms $(\varphi, f):(A, p) \longrightarrow\left(A^{\prime}, p^{\prime}\right): \varphi: A \longrightarrow A^{\prime}$ in \mathcal{A} and $f: C^{\prime} \longrightarrow C$ in \mathcal{C}, with $T \varphi=\hat{f}$:

- composition $=$ horizontal pasting of diagrams: $\left(\varphi^{\prime}, f^{\prime}\right) \cdot(\varphi, f)=\left(\varphi^{\prime} \cdot \varphi, f \cdot f^{\prime}\right)$
- identity morphisms: $1_{(A, p: T A \rightarrow C)}=\left(1_{A}, 1_{C}\right)$.

...containing \mathcal{A} as a full semi-reflective subcategory ...

$$
\begin{gathered}
J: \mathcal{A} \hookrightarrow \mathcal{D} \\
\left(\varphi: A \rightarrow A^{\prime}\right) \longmapsto\left((\varphi, T \varphi):\left(A, 1_{T A}\right) \rightarrow\left(A^{\prime}, 1_{T A^{\prime}}\right)\right)
\end{gathered}
$$

...containing \mathcal{A} as a full semi-reflective subcategory ...

$$
\begin{gathered}
J: \mathcal{A} \hookrightarrow \mathcal{D} \\
\left(\varphi: A \rightarrow A^{\prime}\right) \longmapsto\left((\varphi, T \varphi):\left(A, 1_{T A}\right) \rightarrow\left(A^{\prime}, 1_{T A^{\prime}}\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{A} \longleftarrow \mathcal{D}: F \\
& \varphi \longleftarrow\left((\varphi, f):(A, p) \rightarrow\left(A^{\prime}, p^{\prime}\right)\right)
\end{aligned}
$$

...containing \mathcal{A} as a full semi-reflective subcategory ...

$$
\begin{gathered}
J: \mathcal{A} \hookrightarrow \mathcal{D} \\
\left(\varphi: A \rightarrow A^{\prime}\right) \longmapsto\left((\varphi, T \varphi):\left(A, 1_{T A}\right) \rightarrow\left(A^{\prime}, 1_{T A^{\prime}}\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{A} \longleftarrow \mathcal{D}: F \\
& \varphi \longleftarrow\left((\varphi, f):(A, p) \rightarrow\left(A^{\prime}, p^{\prime}\right)\right)
\end{aligned}
$$

$$
\rho_{(A, p)}:(A, p) \longrightarrow J F(A, p)
$$

$$
T A \stackrel{\hat{p}=\iota_{\iota p}}{\leftarrow} T A
$$

... and allowing for the extension of the given duality

$$
\begin{aligned}
& \tilde{T}: \mathcal{D} \longrightarrow \mathcal{C} \\
& \left((\varphi, f):(A, p) \rightarrow\left(A^{\prime}, p^{\prime}\right)\right) \longmapsto\left(C \leftarrow C^{\prime}: f\right)
\end{aligned}
$$

But what about the adjoint $\tilde{S}: \mathcal{C} \longrightarrow \mathcal{D}$, does it "commute" with S ? Same questions for the units and counits of the dual equivalences!

... and allowing for the extension of the given duality

$$
\begin{aligned}
& \tilde{T}: \mathcal{D} \longrightarrow \mathcal{C} \\
& \left((\varphi, f):(A, p) \rightarrow\left(A^{\prime}, p^{\prime}\right)\right) \longmapsto\left(C \leftarrow C^{\prime}: f\right)
\end{aligned}
$$

But what about the adjoint $\tilde{S}: \mathcal{C} \longrightarrow \mathcal{D}$, does it "commute" with S ?
Same questions for the units and counits of the dual equivalences!

The augmented Extension Theorem

If (P4) may be strengthened to
$\left(\mathrm{P}^{*}\right) \forall C \in|\mathcal{C}| \exists\left(\pi_{C}: E C \longrightarrow C\right) \in \mathcal{P}$ rigid: $(\forall \alpha$ iso: $\pi \cdot \alpha=\pi \Rightarrow \alpha=1)$, then there are

- a dual equivalence $\tilde{T}: \mathcal{D} \longleftrightarrow \mathcal{C}: \tilde{S}$, with natural isomorphisms $\tilde{\eta}: \operatorname{Id}_{\mathcal{C}} \longrightarrow \tilde{T} \tilde{S}$ and $\tilde{\varepsilon}: \operatorname{Id}_{\mathcal{D}} \longrightarrow \tilde{S} \tilde{T}$ satisfying the triangular identities
- and natural isomorphisms $\beta: T F-E \tilde{T}$ and $\gamma: J S \cdots \tilde{S} /$

satisfying the following identities:

(1) $\tilde{T} J=I T$ and $F \tilde{S}=S E$;
(2) $\tilde{T} \tilde{S}=\mid d_{\mathcal{C}}, \tilde{\eta}=1_{\mathrm{Id}_{C}}$, and $\tilde{T} \tilde{\varepsilon}=1_{\tilde{T}}, \tilde{\varepsilon} \tilde{S}=1_{\tilde{S}}$;
(3) $\pi \tilde{T} \cdot 1 \beta=\tilde{T}_{\rho}$ and $\gamma E \cdot \rho \tilde{S}=\tilde{S} \pi$;
(4) $\tilde{T} \gamma=I \eta$ and $S \beta \cdot F \tilde{\varepsilon}=\varepsilon F$.

The augmented Extension Theorem

If (P4) may be strengthened to
$\left(\mathrm{P}^{*}\right) \forall C \in|\mathcal{C}| \exists\left(\pi_{C}: E C \longrightarrow C\right) \in \mathcal{P}$ rigid: $(\forall \alpha$ iso: $\pi \cdot \alpha=\pi \Rightarrow \alpha=1)$, then there are

- a dual equivalence $\tilde{T}: \mathcal{D} \longleftrightarrow \mathcal{C}: \tilde{S}$, with natural isomorphisms $\tilde{\eta}: \operatorname{Id}_{\mathcal{C}} \longrightarrow \tilde{T} \tilde{S}$ and $\tilde{\varepsilon}: \operatorname{Id}_{\mathcal{D}} \longrightarrow \tilde{S} \tilde{T}$ satisfying the triangular identities
- and natural isomorphisms $\beta: T F \longrightarrow E \tilde{T}$ and $\gamma: J S \longrightarrow \tilde{S} /$ satisfying the following identities:
(1) $\tilde{T} J=I T$ and $F \tilde{S}=S E$;

The augmented Extension Theorem

If (P4) may be strengthened to
$\left(\mathrm{P}^{*}\right) \forall C \in|\mathcal{C}| \exists\left(\pi_{C}: E C \longrightarrow C\right) \in \mathcal{P}$ rigid: $(\forall \alpha$ iso: $\pi \cdot \alpha=\pi \Rightarrow \alpha=1)$, then there are

- a dual equivalence $\tilde{T}: \mathcal{D} \longleftrightarrow \mathcal{C}: \tilde{S}$, with natural isomorphisms $\tilde{\eta}: \operatorname{Id}_{\mathcal{C}} \longrightarrow \tilde{T} \tilde{S}$ and $\tilde{\varepsilon}: \operatorname{Id}_{\mathcal{D}} \longrightarrow \tilde{S} \tilde{T}$ satisfying the triangular identities
- and natural isomorphisms $\beta: T F \longrightarrow E \tilde{T}$ and $\gamma: J S \longrightarrow \tilde{S} I$ satisfying the following identities:
(1) $\tilde{T} J=I T$ and $F \tilde{S}=S E$;
(2) $\tilde{T} \tilde{S}=\operatorname{ld}_{\mathcal{C}}, \tilde{\eta}=1_{\mathrm{ld}}^{\mathcal{C}} \mid ~, ~ a n d ~ \tilde{T} \tilde{\varepsilon}=1_{\tilde{T}}, \tilde{\varepsilon} \tilde{S}=1_{\tilde{S}}$;
(3) $\pi \tilde{T} \cdot I \beta=\tilde{T} \rho$ and $\gamma E \cdot \rho \tilde{S}=\tilde{S} \pi$;
(4) $\tilde{T}_{\gamma}=I \eta$ and $S \beta \cdot F \tilde{\varepsilon}=\varepsilon F$.

Back to Fedorchuk: get his duality without de Vries!

$\mathcal{P}=\{$ irreducible maps with domain in $\mathcal{B}\}$. Must confirm (P1-5)!
One actually has (P5*): EX $\xrightarrow{=!!} E X^{\prime}$ Reason:

- Henriksen-Jerison 1965: f surj. and qop $\Longrightarrow \hat{f}$ unique
- Uljanov 1975, Šapiro 1976: f qop $\Longrightarrow \hat{f}$ unique
- Bereznitsky (<1976): f surj. $\Longrightarrow(f$ qop $\Longleftrightarrow \hat{f}$ open),
but we proved: surjectivity is not needed here either!

Back to Fedorchuk: get his duality without de Vries!

$\mathbf{C H a u s}_{\text {qop }}=\mathcal{C} \supseteq \mathcal{P}$

$$
\mathcal{A}=\text { CBoole }_{\text {sup }} \xrightarrow{\simeq} \text { EDCHaus }_{(\mathrm{q}) \mathrm{op}}=\mathcal{B}
$$

$\mathcal{P}=\{$ irreducible maps with domain in $\mathcal{B}\}$. Must confirm (P1-5)!
One actually has (P5*): EX $\xrightarrow{\exists!\hat{f}} E X^{\prime}$
Reason:

- Henriksen-Jerison 1965: f surj. and qop $\Longrightarrow \hat{f}$ unique
- Uljanov 1975, Šapiro 1976: f qop $\Longrightarrow \hat{f}$ unique
- Bereznitsky (<1976) : f surj. $\Longrightarrow(f$ qop $\Longleftrightarrow \hat{f}$ open $)$,
but we proved: surjectivity is not needed here either!

Back to Fedorchuk: get his duality without de Vries!

CHaus $_{\text {qop }}=\mathcal{C} \supseteq \mathcal{P}$

$$
\mathcal{A}=\text { CBoole }_{\text {sup }} \xrightarrow{\simeq} \text { EDCHaus }_{(\mathrm{q}) \mathrm{op}}=\mathcal{B}
$$

$\mathcal{P}=\{$ irreducible maps with domain in $\mathcal{B}\}$. Must confirm (P1-5)!
One actually has ($\mathrm{P} 5^{*}$):

- Henriksen-Jerison 1965: f surj. and qop $\Longrightarrow \hat{f}$ unique
- Uljanov 1975, Šapiro 1976: f qop $\Longrightarrow \hat{f}$ unique
- Bereznitsky (<1976): f surj. $\Longrightarrow(f$ qop $\Longleftrightarrow \hat{f}$ open $)$, but we proved: surjectivity is not needed here either!

Better late than never: define Fedor

\mid Fedor $|=|$ deVries $\mid \ni(A, \ll): A$ compl. Boolean alg., relation \ll s.th.

- $a \ll b \Longrightarrow a \leq b$.
- $0 \ll 0$
- $a \leq b \ll c \leq d \Longrightarrow a \ll d$
- $a \ll c, b \ll c \Longrightarrow a \vee b \ll c$
- $a \ll c \Longrightarrow \exists b(a \ll b \ll c)$
- $a \neq 0 \Longrightarrow \exists b \neq 0(b \ll a)$
- $a \ll b \Longrightarrow b^{*} \ll a^{*}$

Morphisms in Fedor: Boolean homs preserving sups and \ll Role model: $\mathrm{RC}(X)$ with $(F \ll G \Longleftrightarrow F \subseteq \operatorname{int} G)$
Equivalent axiomatization as normal contact algebras (A, \asymp)
with morphisms now reflecting the relation \nearrow

Better late than never: define Fedor

\mid Fedor $|=|$ deVries $\mid \ni(A, \ll): A$ compl. Boolean alg., relation \ll s.th.

- $a \ll b \Longrightarrow a \leq b$.
- $0 \ll 0$
- $a \leq b \ll c \leq d \Longrightarrow a \ll d$
- $a \ll c, b \ll c \Longrightarrow a \vee b \ll c$
- $a \ll c \Longrightarrow \exists b(a \ll b \ll c)$
- $a \neq 0 \Longrightarrow \exists b \neq 0(b \ll a)$
- $a \ll b \Longrightarrow b^{*} \ll a^{*}$

Morphisms in Fedor: Boolean homs preserving sups and \ll
Role model: $\mathrm{RC}(X)$ with $(F \ll G \Longleftrightarrow F \subseteq \operatorname{int} G)$
Equivalent axiomatization as normal contact algebras (A, \asymp)

$$
a \asymp b \Longleftrightarrow a k b^{*}
$$

with morphisms now reflecting the relation \asymp

Remaining labour: Fedor is equivalent to \mathcal{D}

Wanted: (covariant) equivalence

Fedor $\simeq \mathcal{D}$

Key step:

For a complete Boolean algebra A, define a bijective correspondence
$\{$ norm. contact rel. \asymp on $A\} \rightleftarrows\{$ closed irred. equ. rel. \approx on Stone $(A)\}$

Finally consider

to obtain Fedorchuk's dual equivalence.

Remaining labour: Fedor is equivalent to \mathcal{D}

Wanted: (covariant) equivalence

$$
\text { Fedor } \simeq \mathcal{D}
$$

Key step:
For a complete Boolean algebra A, define a bijective correspondence
$\{$ norm. contact rel. \asymp on $A\} \rightleftarrows\{$ closed irred. equ. rel. \approx on Stone $(A)\}$

$$
u \approx v: \Longleftrightarrow \forall a \in u, b \in v: a \asymp b
$$

Finally consider
Fedor $\simeq \mathcal{D} \xrightarrow{\tilde{T}}$ CHaus
to obtain Fedorchuk's dual equivalence.

Remaining labour: Fedor is equivalent to \mathcal{D}

Wanted: (covariant) equivalence

$$
\text { Fedor } \simeq \mathcal{D}
$$

Key step:
For a complete Boolean algebra A, define a bijective correspondence
$\{$ norm. contact rel. \asymp on $A\} \rightleftarrows\{$ closed irred. equ. rel. \approx on Stone $(A)\}$

$$
u \approx v: \Longleftrightarrow \forall a \in u, b \in v: a \asymp b
$$

Finally consider
Fedor $\simeq \mathcal{D} \xrightarrow{\tilde{T}}$ CHaus
to obtain Fedorchuk's dual equivalence.

MERCI!

