Extensions of dualities and a new approach to de Vries' duality

G. Dimov Joint work with E. Ivanova-Dimova and W. Tholen

Faculty of Math. and Informatics, University of Sofia, Bulgaria

Topology, Algebra, and Categories in Logic 2019, Nice (France), 17-21 June 2019

The first author acknowledges the support by Bulgarian National Science Fund, contract no. DN02/15/19.12.2016.

イロト イヨト イヨト・

De Vries' Duality Extensions of dualities A new approach to the de Vries duality A new approach to the Bezhanishvili-Morandi-Olberding duali

De Vries' Duality

The celebrated Stone Duality Theorem shows that the entire information about a zero-dimensional compact Hausdorff space (= *Stone space*) *X* is, up to homeomorphism, contained in its Boolean algebra (CO(X), \subseteq) of all clopen (= closed and open) subsets of *X*. Likewise, all information about the continuous maps between two such spaces *X* and *Y* is encoded by the Boolean homomorphisms between the Boolean algebras (CO(Y), \subseteq) and (CO(X), \subseteq). It is natural to ask whether a similar result holds for all compact Hausdorff spaces and continuous maps between them.

・ロト ・四ト ・ヨト ・ ヨト

The first candidate for the role of the Boolean algebra CO(X)under such an extension seems to be the Boolean algebra $(RC(X), \subseteq)$ of all regular closed subsets of a compact Hausdorff space *X* (denoted briefly by RC(X)), but it fails immediately since, as is well-known, RC(X) is isomorphic to RC(EX), where EX is the absolute of *X*. However, in 1962, de Vries showed that, if we regard the Boolean algebra RC(X)together with the relation \ll_X on RC(X), defined by

$$F \ll_X G \Leftrightarrow F \subseteq \operatorname{int}_X(G).$$

then the pair $(\text{RC}(X), \ll_X)$ determines uniquely (up to homeomorphism) the compact Hausdorff space *X*.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

De Vries' Duality Extensions of dualities A new approach to the de Vries duality A new approach to the Bezhanishvili-Morandi-Olberding duali

Moreover, with the help of some special maps between $(\text{RC}(X), \ll_X)$ and $(\text{RC}(Y), \ll_Y)$, where *X* and *Y* are compact Hausdorff spaces, one can reconstruct all continuous maps between *Y* and *X*. De Vries gave an algebraic description of the pairs $(\text{RC}(X), \ll_X)$ as pairs (A, \ll) , formed by a complete Boolean algebra *A* and a relation \ll on *A*, satisfying the following axioms:

- $a \ll b$ implies $a \le b$.
- $a \le b \ll c \le t$ implies $a \ll t$.
- $\mathbf{G} a \ll c$ and $b \ll c$ implies $a \lor b \ll c$.
- Solution If $a \ll c$ then $a \ll b \ll c$ for some $b \in B$.
- Solution If $a \neq 0$ then there exists $b \neq 0$ such that $b \ll a$.
- $4 \ll b$ implies $b^* \ll a^*$.

These abstract pairs (A, \ll) are now called *de Vries' algebras*.

De Vries also described algebraically the needed special maps φ between such pairs (A, \ll) (they are now called *de Vries morphisms*); they satisfy the following axioms:

$$\begin{array}{l} (\mathsf{DV1}) \ \varphi(0) = 0; \\ (\mathsf{DV2}) \ \varphi(a \wedge b) = \varphi(a) \wedge \varphi(b), \ \text{for all } a, b \in A; \\ (\mathsf{DV3}) \ \text{If } a, b \in A \ \text{and } a \ll b, \ \text{then } (\varphi(a^*))^* \ll \varphi(b); \\ (\mathsf{DV4}) \ \varphi(a) = \bigvee \{\varphi(b) \mid b \ll a\}, \ \text{for every } a \in A. \end{array}$$

The composition " \diamond " of two such maps $\varphi_1 : (A_1, \ll_1) \longrightarrow (A_2, \ll_2)$ and $\varphi_2 : (A_2, \ll_2) \longrightarrow (A_3, \ll_3)$ is defined by

$$(\varphi_2 \diamond \varphi_1)(a) \stackrel{\mathrm{df}}{=} \bigvee \{(\varphi_2 \circ \varphi_1)(b) \mid b \ll_1 a\}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

In this way de Vries obtained a category **DeV** and proved that it is dually equivalent with the category **CHaus** of compact Hausdorff spaces and continuous maps. It is easy to see that:

Fact 1. (de Vries) If $\varphi : (A, \ll) \longrightarrow (A', \ll')$ is a de Vries morphism, then: (a) $\varphi(1_A) = 1_{A'}$; (b) for every $a \in A$, $\varphi(a^*) \leq (\varphi(a))^*$.

De Vries noticed that his duality extends the restriction of the Stone Duality to the category **CBoole** of complete Boolean algebras and Boolean homomorphisms (i.e., the duality

$$T \stackrel{\mathrm{df}}{=} S^{a} \upharpoonright_{\mathsf{CBoole}} : \mathsf{CBoole} \longrightarrow \mathsf{EDCHaus}$$

where **EDCHaus** is the category of extremally disconnected compact Hausdorff spaces and continuous maps).

The main goal of this talk is to present a general categorical theorem for extension of dualities and to obtain with its help a completely new proof of de Vries' Duality extending the above duality T. In the process of doing this, we will also construct a new category **StoneDeV**, isomorphic to the category **DeV**, such that

|StoneDeV| = |DeV|

but its morphisms are:

(1) sets of Boolean homomorphisms preserving the relation $\ll,$ and

(2) their composition is a natural one.

As well, the recent Bezhanishvili-Morandi-Olberding Duality Theorem which extends the de Vries duality to the category **Tych** of Tychonoff spaces and continuous maps will be derived from our general Extension Theorem for Dualities.

Extensions of dualities

As it was explained in the talk of Tholen, for obtaining an extension of the above dual equivalence T to a dual equivalence $\tilde{T} : \mathcal{D} \longrightarrow$ **CHaus**, we cannot use the Extension Theorem for Dualities presented there because the concrete class \mathcal{P} of all irreducible **CHaus**-morphisms whose domain is an **EDCHaus**-object does not satisfy the general condition (P5) of that theorem. We will prove, however, a new Extension Theorem for Dualities and will obtain, with its help, such an extension \tilde{T} .

Let us recall *the general problem*: given a dual equivalence $T : \mathcal{A} \longrightarrow \mathcal{B}$ and an embedding *I* of \mathcal{B} as a full subcategory of a category \mathcal{C} , find a *natural construction* for a category \mathcal{D} into which \mathcal{A} may be fully embedded via *J*, such that *T* extends to a dual equivalence $\tilde{T} : \mathcal{D} \longrightarrow \mathcal{C}$.

Our construction depends on a class \mathcal{P} of morphisms of \mathcal{C} satisfying certain conditions, which are closely related to certain properties of the full embedding *I*.

We call a class \mathcal{P} of morphisms in \mathcal{C} a *weak* $(\mathcal{B}, \mathcal{C})$ -covering class if it satisfies the following conditions:

```
(P1) \forall (\boldsymbol{p}: \boldsymbol{B} \longrightarrow \boldsymbol{C}) \in \mathcal{P}: \boldsymbol{B} \in |\mathcal{B}|;
```

```
(P2) \forall B \in |\mathcal{B}| : \mathbf{1}_B \in \mathcal{P};
```

```
(P3) \mathcal{P} \circ \operatorname{Iso}(\mathcal{B}) \subseteq \mathcal{P};
```

```
(P4) \forall C \in |\mathcal{C}| \exists (p : B \longrightarrow C) \in \mathcal{P};
```

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

(P5°) for morphisms in \mathbb{C} , there is an assignment (($p: B \rightarrow C$) $\in \mathbb{P}$, $v: C \rightarrow C'$, ($p': B' \rightarrow C'$) $\in \mathbb{P}$) \mapsto ($\hat{v}: B \rightarrow B'$ with $v \circ p = p' \circ \hat{v}$).

Note that in the given assignment, \hat{v} depends not only on v, but also on p and p'.

Later on we will see that, when ${\mathcal B}$ is projective in ${\mathcal C},$ such a class ${\mathcal P}$ always exists.

イロト 不得 トイラト イラト 一支

As a precursor to the category \mathcal{D} , we consider the comma category ($IT \downarrow_{\mathcal{P}} \mathbb{C}$), defined as follows:

- objects in $(IT \downarrow_{\mathcal{P}} \mathbb{C})$ are pairs (A, p) with $A \in |\mathcal{A}|$ and $p : TA \longrightarrow C$ in the class \mathcal{P} ;
- morphisms (φ, f) : (A, p) → (A', p') in (IT ↓_P C) are given by morphisms φ : A → A' in A and f : C' → C in C, such that p ∘ Tφ = f ∘ p';
- composition is as in A and C; that is, (φ, f) as above gets composed with (φ', f') : (A', p') → (A'', p'') by the horizontal pasting of diagrams, that is,

$$(\varphi', f') \circ (\varphi, f) \stackrel{\mathrm{df}}{=} (\varphi' \circ \varphi, f \circ f').$$

the identity morphism of a (*IT* ↓_P C)-object (*A*, *p*) is the (*IT* ↓_P C)-morphism (1_A, 1_{cod(p)}).

On the hom-sets of $(IT \downarrow_{\mathcal{P}} \mathbb{C})$ we define a compatible equivalence relation by

$$(\varphi, f) \sim (\psi, g) \Longleftrightarrow f = g,$$

for all $(\varphi, f), (\psi, g) : (A, p) \longrightarrow (A', p')$. We denote the equivalence class of (φ, f) by $[\varphi, f]$ (or $[\varphi, f]_{(A,p), (A',p')}$, if clarity demands it), and let \mathcal{D} be the quotient category

$$(IT\downarrow_{\mathcal{P}} \mathfrak{C})/\sim .$$

Thanks to (P2), we have the functor $J : \mathcal{A} \longrightarrow \mathcal{D}$, defined by

$$(\varphi: A \longrightarrow A') \mapsto (J \varphi \stackrel{\mathrm{df}}{=} [\varphi, T \varphi] : (A, 1_{TA}) \longrightarrow (A', 1_{TA'})),$$

which is easily seen to be a full embedding.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Given a dual equivalence $(S, T, \eta, \varepsilon)$ with contravariant functors

 $T: \mathcal{A} \longrightarrow \mathcal{B} \quad \text{and} \quad S: \mathcal{B} \longrightarrow \mathcal{A}$

and natural isomorphisms $\eta : \mathrm{Id}_{\mathcal{B}} \longrightarrow T \circ S$ and $\varepsilon : \mathrm{Id}_{\mathcal{A}} \longrightarrow S \circ T$, it is now straightforward to establish a dual equivalence of \mathcal{D} with \mathcal{C} , as follows:

Theorem 1. There is a dual equivalence $\tilde{T} : \mathfrak{D} \longleftrightarrow \mathfrak{C} : \tilde{S}$ extending the given dual equivalence $T : \mathcal{A} \longleftrightarrow \mathfrak{B} : S$, in the sense that that $\tilde{T}J = IT$ and $\tilde{S}I \cong JS$.

The unit $\tilde{\eta} : \mathrm{Id}_{\mathbb{C}} \longrightarrow \tilde{T}\tilde{S}$ and the counit $\tilde{\varepsilon} : \mathrm{Id}_{\mathbb{D}} \longrightarrow \tilde{S}\tilde{T}$ of the extended adjunction and the natural isomorphism $\gamma : JS \longrightarrow \tilde{S}I$ may be chosen to satisfy the identities $\tilde{\eta} = \mathbf{1}_{\mathrm{Id}_{\mathfrak{C}}}, \tilde{T}\tilde{\varepsilon} = \mathbf{1}_{\tilde{\tau}}, \tilde{\varepsilon}\tilde{S} = \mathbf{1}_{\tilde{s}}, \text{ and } \tilde{T}\gamma = I\eta, \gamma T \circ J\varepsilon = \tilde{\varepsilon}J.$

De Vries' Duality Extensions of dualities A new approach to the de Vries duality A new approach to the Bezhanishvili-Morandi-Olberding dualit

The construction of \tilde{T} and \tilde{S}

The contravariant functor $\tilde{\mathcal{T}} : \mathcal{D} \longrightarrow \mathcal{C}$ is given by

$$\widetilde{T}(\mathcal{A}, \mathcal{p}) \stackrel{\mathrm{df}}{=} \operatorname{cod}(\mathcal{p}) \text{ and } \widetilde{T}([\varphi, f]) \stackrel{\mathrm{df}}{=} f.$$

To define the contravariant functor \tilde{S} on objects, one chooses for every $C \in |C|$ a morphism $\pi_C : EC \longrightarrow C$ in \mathcal{P} , with $\pi_B = \mathbf{1}_B$ for all $B \in |\mathcal{B}|$ (according to (P2)), and then puts

$$\tilde{S}C \stackrel{\mathrm{df}}{=} (SEC, \pi_C \circ \eta_{EC}^{-1}).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

De Vries' Duality Extensions of dualities A new approach to the de Vries duality A new approach to the Bezhanishvili-Morandi-Olberding duali

The construction of \tilde{T} and \tilde{S}

For a morphism $f : C' \longrightarrow C$ in \mathcal{C} , (P5°) and the fullness of T allow one to choose a morphism $\varphi_f : SEC \longrightarrow SEC'$ in \mathcal{A} with $\pi_C \circ \eta_{EC}^{-1} \circ T\varphi_f = f \circ \pi_{C'} \circ \eta_{EC'}^{-1}$; then we put

 $\tilde{S}f \stackrel{\mathrm{df}}{=} [\varphi_f, f].$

(日) (部) (E) (E) (E)

It is easy to see that:

Proposition 1. \mathcal{B} is a coreflective subcategory of \mathcal{C} if, and only if, there exists a class \mathcal{P} of \mathcal{C} -morphisms satisfying properties (P1-4) and the following strengthening of (P5°):

(P5*) for all $v : C \longrightarrow C'$ in \mathbb{C} and $p : B \longrightarrow C$, $p' : B' \longrightarrow C'$ in \mathbb{P} , there is precisely one morphism $\hat{v} : B \longrightarrow B'$ with $v \circ p = p' \circ \hat{v}$.

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

If the class \mathcal{P} satisfies conditions (P1-4) and (P5^{*}), then the equivalence relation \sim is just the equality relation. Thus, in this case, the category \mathcal{D} coincides with the category ($IT \downarrow_{\mathcal{P}} \mathcal{C}$). In the sequel, we will also use the dualization of this special form of Theorem 1.

イロト 不得 トイヨト イヨト

Recall that, for a class Ω of morphisms in \mathbb{C} , an object $B \in |\mathbb{C}|$ is Ω -projective if, for all $(q : C \longrightarrow D) \in \Omega$, the map

 $\mathbb{C}(B,q):\mathbb{C}(B,C)\longrightarrow\mathbb{C}(B,D),\quad h\mapsto q\circ h,$

is surjective. Since this map is trivially bijective when q is an isomorphism, without loss of generality we may assume that Ω contain all isomorphisms and be closed under composition with them. We call a full subcategory \mathcal{B} in \mathcal{C} *projective* if there is a such a class Ω satisfying

(Q1) $\forall C \in |\mathcal{C}| \exists (q : B \longrightarrow C) \in \Omega \text{ with } B \in |\mathcal{B}|;$ (Q2) $\forall B \in |\mathcal{B}| : B \text{ is } \Omega\text{-projective.}$

Proposition 1. A full subcategory \mathcal{B} of a category \mathcal{C} is projective if, and only if, there is a weak $(\mathcal{B}, \mathcal{C})$ -covering class \mathcal{P} .

A new approach to the de Vries duality

In view of the previous section, *throughout this section we use the following notation:*

 $\mathcal{A} \stackrel{\mathrm{df}}{=} \textbf{CBoole}, \ \mathcal{B} \stackrel{\mathrm{df}}{=} \textbf{EDCHaus}, \ \mathcal{C} \stackrel{\mathrm{df}}{=} \textbf{CHaus},$

with $I : \mathfrak{B} \hookrightarrow \mathfrak{C}$ denoting the inclusion functor;

 \mathcal{P} denotes the class of all irreducible continuous maps between compact Hausdorff spaces with domain in $|\mathcal{B}|$.

Trivially, \mathcal{B} is a full subcategory of \mathbb{C} that is closed under \mathbb{C} -isomorphisms. By the results of Gleason, the class \mathcal{P} satisfies conditions (P1-4), (P5°) of the previous Section (and \mathcal{B} is a projective subcategory of \mathbb{C}).

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

With the restrictions

$$T \stackrel{\mathrm{df}}{=} S^a \upharpoonright_{\mathcal{A}}$$
 and $S \stackrel{\mathrm{df}}{=} S^t \upharpoonright_{\mathcal{B}}$

of the functors furnishing the Stone Duality, using the well-known Stone's result, we obtain the contravariant functors $T : \mathcal{A} \longrightarrow \mathcal{B}$ and $S : \mathcal{B} \longrightarrow \mathcal{A}$. They realize a dual equivalence between the categories \mathcal{A} and \mathcal{B} .

イロト イヨト イヨト・

Defining the category \mathcal{D} as in Theorem 1, we obtain the full embedding $J : \mathcal{A} \longrightarrow \mathcal{D}$ and the dual equivalence $\tilde{T} : \mathcal{D} \longrightarrow \mathcal{C}$ which extends the dual equivalence $T : \mathcal{A} \longrightarrow \mathcal{B}$, so that $I \circ T = \tilde{T} \circ J$, as given by Theorem 1. We now prove that the categories **DeV** and \mathcal{D} are equivalent, thus completing our alternative proof of de Vries Duality Theorem. This will be done in several steps. In one of them, we will obtain a new category dual to the category **CHaus**.

イロト 不得 トイヨト イヨト 三日

De Vries' Duality Extensions of dualities A new approach to the de Vries duality

A new approach to the Bezhanishvili-Morandi-Olberding duali

Definition.

Let $(A, \ll), (A', \ll')$ be two de Vries' algebras. Then a Boolean homomorphism $\varphi : A \longrightarrow A'$ will be called a *Fedorchuk homomorphism* (briefly, *F-homomorphism*) if $a \ll b$ implies $\varphi(a) \ll' \varphi(b)$, for all $a, b \in A$.

Definition.

Let (A, \ll) be a de Vries algebra, *B* be a complete Boolean algebra and $\varphi : A \longrightarrow B$ be a function. Then the function $V(\varphi) : A \longrightarrow B$, defined by

$$(V(\varphi))(a) \stackrel{\mathrm{df}}{=} \bigvee \{\varphi(b) \mid b \ll a\},$$

for every $a \in A$, will be called a *de Vries transformation of the function* φ .

De Vries' Duality Extensions of dualities A new approach to the de Vries duality A new approach to the Bezhanishvili-Morandi-Olberding duali

The definition of the category StoneDeV.

We set

 $|\textbf{StoneDeV}| \stackrel{df}{=} |\textbf{DeV}|.$

Further, for every $(A, \ll), (A', \ll') \in |StoneDeV|$, we define

StoneDeV $((A, \ll), (A', \ll')) \stackrel{\text{df}}{=}$

 $\{\langle \varphi \rangle \mid \varphi : (\textit{A}, \ll) \longrightarrow (\textit{A}', \ll') \text{ is an F-homomorphism}\},\$

where $\langle \varphi \rangle$ is the equivalence class of φ under the equivalence relation \simeq in the set of all Fedorchuk homomorphisms between (A, \ll) and (A', \ll') defined by

$$\varphi \simeq \psi \Leftrightarrow V(\varphi) = V(\psi).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

De Vries' Duality Extensions of dualities A new approach to the de Vries duality A new approach to the Bezhanishvili-Morandi-Olberding duali

The definition of the category StoneDeV.

The **StoneDeV**-composition between two **StoneDeV**-morphisms $\langle \varphi \rangle : (A, \ll) \longrightarrow (A', \ll')$ and $\langle \psi \rangle : (A', \ll') \longrightarrow (A'', \ll'')$ is defined as follows:

$$\langle \psi \rangle \circ \langle \varphi \rangle \stackrel{\mathrm{df}}{=} \langle \psi \circ \varphi \rangle.$$

Finally, for every **StoneDeV**-object (A, \ll) , its **StoneDeV**-identity is

$$\mathbf{1}_{(A,\ll)} \stackrel{\mathrm{df}}{=} \langle \mathbf{1}_A \rangle.$$

De Vries' Duality Extensions of dualities A new approach to the de Vries duality

A new approach to the Bezhanishvili-Morandi-Olberding duali

Theorem 2.

The categories CHaus and StoneDeV are dually equivalent.

Lemma 1.

Let (A, \ll) and (A', \ll') be two complete normal contact algebras and $\varphi : (A, \ll) \longrightarrow (A', \ll')$ be a Fedorchuk homomorphism. Then $V(\varphi)$ is a de Vries morphism.

Theorem 3.

The categories **StoneDeV** and **DeV** are isomorphic.

Corollary. (de Vries)

The categories CHaus and DeV are dually equivalent.

イロト イポト イヨト イヨト

A new approach to the Bezhanishvili-Morandi-Olberding duality

Recently, G. Bezhanishvili, P.J. Morandi and B. Olberding described a category **BMO** and a dual equivalence of **BMO** with the category **Tych** of Tychonoff spaces and continuous maps which extends de Vries' dual equivalence $\Psi^a : \mathbf{DeV} \longrightarrow \mathbf{CHaus}$. In this section we will derive the Bezhanishvili-Morandi-Olberding Duality Theorem from the dualization of the very particular case of our Theorem 1 when the class \mathcal{P} satisfies the axioms (P1-4) and (P5*). We will first formulate this dualization explicitly.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Let \mathcal{A} be a full subcategory of a category \mathcal{D} with inclusion functor J. We call a class \mathcal{J} of morphisms in \mathcal{D} a *strong* $(\mathcal{A}, \mathcal{D})$ *insertion class* if it satisfies the following conditions (J1-4) and (J5*):

 $\begin{array}{l} (J1) \ \forall \ (j: D \longrightarrow A) \ \in \ \mathcal{J}: \ A \in |\mathcal{A}|; \\ (J2) \ \forall A \in |\mathcal{A}|: 1_A \in \ \mathcal{J}; \\ (J3) \ Iso(\mathcal{A}) \circ \ \mathcal{J} \subseteq \ \mathcal{J}; \\ (J4) \ \forall D \in |\mathcal{D}| \ \exists \ (j: D \longrightarrow A) \in \ \mathcal{J}; \\ (J5^*) \ for \ all \ v: D \longrightarrow D' \ in \ \mathcal{D} \ and \ j: D \longrightarrow A, \ j': D' \longrightarrow A' \ in \ \mathcal{J}, \\ there \ is \ precisely \ one \ morphism \ \overline{v}: A \longrightarrow A' \ with \ j' \circ v = \ \overline{v} \circ j. \end{array}$

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Again, we point out that, in the given assignment, \overline{v} depends not only on v, but also on j and j'. Next, we note that, in the presence of (J3), condition (J2) means equivalently (J2') Iso(A) $\subseteq J$.

In condition (J4) we tacitly assume that, for every $D \in |\mathcal{D}|$, we have a *chosen* morphism $j \in \mathcal{J}$ with domain D. In the presence of (J2), that morphism may be taken to be an identity morphism whenever $D \in |\mathcal{A}|$. To emphasize the choice, we may reformulate (J4), as follows:

 $(J4') \forall D \in |\mathcal{D}| \exists (\rho_D : D \longrightarrow FD) \in \mathcal{J} \text{ (with } \rho_D = \mathbf{1}_D \text{ when } D \in |\mathcal{A}|).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

It is now clear that (J5^{*}) enables us to make *F* a functor $\mathcal{D} \longrightarrow \mathcal{A}$ and ρ a natural transformation $Id_{\mathcal{C}} \longrightarrow JF$. Dualizing Proposition 1, we obtain the following assertion: **Proposition 2.** The full subcategory \mathcal{A} of \mathcal{D} is reflective in \mathcal{D} if, and only if, there is a strong $(\mathcal{A}, \mathcal{D})$ -insertion class \mathcal{J} of morphisms in \mathcal{D} .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

In addition to the full subcategory \mathcal{A} of \mathcal{D} with inclusion functor J and a strong $(\mathcal{A}, \mathcal{D})$ -insertion class \mathcal{J} we consider again a dual equivalence $(S, T, \eta, \varepsilon)$ with contravariant functors

$$T: \mathcal{A} \longrightarrow \mathcal{B} \quad \text{and} \quad S: \mathcal{B} \longrightarrow \mathcal{A}$$

and natural isomorphisms

 $\eta: \mathrm{Id}_{\mathcal{B}} \longrightarrow \mathcal{T} \circ \mathcal{S} \text{ and } \varepsilon: \mathrm{Id}_{\mathcal{A}} \longrightarrow \mathcal{S} \circ \mathcal{T}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

We then construct the category \mathcal{C} , as follows:

- objects in C are pairs (B, j) with B ∈ |B| and j : D → SB in the class J;
- morphisms $(\varphi, f) : (B, j) \longrightarrow (B', j')$ in \mathbb{C} are given by morphisms $\varphi : B \longrightarrow B'$ in \mathbb{B} and $f : D' \longrightarrow D$ in \mathbb{D} , such that, in the notation of $(J5^*), S\varphi = \overline{f};$
- composition is as in B and D; that is, (φ, f) as above gets composed with (φ', f') : (B', j') → (B'', j'') by the horizontal pasting of diagrams, that is,

$$(\varphi', f') \circ (\varphi, f) \stackrel{\mathrm{df}}{=} (\varphi' \circ \varphi, f \circ f').$$

• the identity morphism of a C-object (*B*, *j*) is the C-morphism (1_{*B*}, 1_{dom(*j*)}).

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

With (J2) one obtains the full embedding $I : \mathcal{B} \longrightarrow \mathcal{C}$, defined by

$$(\varphi: B \longrightarrow B') \mapsto (I\varphi \stackrel{\mathrm{df}}{=} (\varphi, S\varphi) : (B, 1_{SB}) \longrightarrow (B', 1_{SB'})).$$

A dual equivalence

$$\overline{S}: \mathfrak{C} \longleftrightarrow \mathfrak{D}: \overline{T}$$

may now be established, as follows:

•
$$\overline{S}$$
 : $((\varphi, f) : (B, j) \longrightarrow (B', j)) \mapsto (f : \operatorname{dom}(j') \longrightarrow \operatorname{dom}(j));$

• \overline{T} : $(f : D' \longrightarrow D) \mapsto ((\varphi_f, f) : (TFD, \varepsilon_{FD} \circ \rho_D) \longrightarrow (TFD', \varepsilon_{FD'} \circ \rho_{D'})),$ where $\varphi_f : TFD \longrightarrow TFD'$ is the unique \mathcal{B} -morphism such that $S\varphi_f = \overline{f}(j', j)$ with $j = \varepsilon_{FD} \circ \rho_D$ and $j' = \varepsilon_{FD'} \circ \rho_{D'}.$

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ● の Q @

The dualization of the particular case of Theorem 1 now reads as follows:

Theorem 4. $(\overline{T}, \overline{S}, \overline{\varepsilon}, \overline{\eta})$ is a dual equivalence with $\overline{ST} = \mathrm{Id}_{\mathcal{D}}$, extending the given dual equivalence $(T, S, \varepsilon, \eta)$, so that $\overline{SI} = JS$ and $\overline{TJ} \cong IT$. We note that, as \mathcal{A} is reflective in \mathcal{D} , \mathcal{B} is coreflective in \mathcal{C} .

イロト イポト イヨト イヨト

We set (and we will keep this notation throughout this section)

 $\mathcal{A} \stackrel{\mathrm{df}}{=} \textbf{CHaus}, \ \mathcal{B} \stackrel{\mathrm{df}}{=} \textbf{DeV}, \ \mathcal{D} \stackrel{\mathrm{df}}{=} \textbf{Tych}, \ \boldsymbol{S} \stackrel{\mathrm{df}}{=} \boldsymbol{\Psi}^{\boldsymbol{a}},$

 $\mathcal{J} \stackrel{\mathrm{df}}{=} \{ j : X \to Y \mid X \in |\mathsf{Tych}|, Y \in |\mathsf{CHaus}|,$

j is a dense embedding, $j(X) \subseteq Y$ },

where $j(X) \subseteq_{C^*} Y$ means that j(X) is C^* -embedded in Y, and we denote by

$$J: \mathcal{A} \hookrightarrow \mathcal{D}$$

the inclusion functor. Note that we regard as elements of the class \mathcal{J} all representatives of the Stone-Čech compactifications of Tychonoff spaces. Obviously, the class \mathcal{J} satisfies conditions (J1-4) and (J5^{*}) (and \mathcal{A} is a reflective subcategory of \mathcal{D}).

De Vries' Duality Extensions of dualities A new approach to the de Vries duality A new approach to the Bezhanishvili-Morandi-Olberding duali

Therefore, we can apply Theorem 4. It gives us a category $\ensuremath{\mathfrak{C}},$ a dual equivalence

 $\overline{S}: \mathcal{C} \longrightarrow \mathcal{D}$

and a full embedding $I : \mathcal{B} \longrightarrow \mathcal{C}$ such that

 $\overline{S} \circ I = J \circ S.$

Then we prove the following theorem:

Theorem 5. The categories **BMO** and C are equivalent.

This obviously implies that:

Theorem 5. (BMO) There exists a dual equivalence between the categories **BMO** and **Tych** which extend the de Vries dual equivalence between the categories **DeV** and **CHaus**. De Vries' Duality Extensions of dualities A new approach to the de Vries duality A new approach to the Bezhanishvili-Morandi-Olberding dualit

Thank You!

G. Dimov (Sofia University) Extensions of dualities & a new approach to de Vries' duality

イロト イロト イヨト イヨト