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De Vries’ Duality

The celebrated Stone Duality Theorem shows that the entire
information about a zero-dimensional compact Hausdorff space
(= Stone space) X is, up to homeomorphism, contained in its
Boolean algebra (CO(X ),⊆) of all clopen (= closed and open)
subsets of X . Likewise, all information about the continuous
maps between two such spaces X and Y is encoded by the
Boolean homomorphisms between the Boolean algebras
(CO(Y ),⊆) and (CO(X ),⊆). It is natural to ask whether a
similar result holds for all compact Hausdorff spaces and
continuous maps between them.
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The first candidate for the role of the Boolean algebra CO(X )
under such an extension seems to be the Boolean algebra
(RC(X ),⊆) of all regular closed subsets of a compact
Hausdorff space X (denoted briefly by RC(X )), but it fails
immediately since, as is well-known, RC(X ) is isomorphic to
RC(EX ), where EX is the absolute of X . However, in 1962, de
Vries showed that, if we regard the Boolean algebra RC(X )
together with the relation�X on RC(X ), defined by

F �X G⇔ F ⊆ intX (G).

then the pair (RC(X ),�X ) determines uniquely (up to
homeomorphism) the compact Hausdorff space X .
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Moreover, with the help of some special maps between
(RC(X ),�X ) and (RC(Y ),�Y ), where X and Y are compact
Hausdorff spaces, one can reconstruct all continuous maps
between Y and X . De Vries gave an algebraic description of
the pairs (RC(X ),�X ) as pairs (A,�), formed by a complete
Boolean algebra A and a relation� on A, satisfying the
following axioms:

(�1) a� b implies a ≤ b.
(�2) 0� 0.
(�3) a ≤ b � c ≤ t implies a� t .
(�4) a� c and b � c implies a ∨ b � c.
(�5) If a� c then a� b � c for some b ∈ B.
(�6) If a 6= 0 then there exists b 6= 0 such that b � a.
(�7) a� b implies b∗ � a∗.

These abstract pairs (A,�) are now called de Vries’ algebras.
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De Vries also described algebraically the needed special maps
ϕ between such pairs (A,�) (they are now called de Vries
morphisms); they satisfy the following axioms:

(DV1) ϕ(0) = 0;
(DV2) ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b), for all a,b ∈ A;
(DV3) If a,b ∈ A and a� b, then (ϕ(a∗))∗ � ϕ(b);
(DV4) ϕ(a) =

∨
{ϕ(b) | b � a}, for every a ∈ A.

The composition “�” of two such maps
ϕ1 : (A1,�1) −→ (A2,�2) and ϕ2 : (A2,�2) −→ (A3,�3) is
defined by

(ϕ2 � ϕ1)(a)
df
=

∨
{(ϕ2 ◦ ϕ1)(b) | b �1 a}.
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In this way de Vries obtained a category DeV and proved that it
is dually equivalent with the category CHaus of compact
Hausdorff spaces and continuous maps. It is easy to see that:

Fact 1. (de Vries) If ϕ : (A,�) −→ (A′,�′) is a de Vries
morphism, then:
(a) ϕ(1A) = 1A′ ;
(b) for every a ∈ A, ϕ(a∗) ≤ (ϕ(a))∗.

De Vries noticed that his duality extends the restriction of the
Stone Duality to the category CBoole of complete Boolean
algebras and Boolean homomorphisms (i.e., the duality

T df
= Sa �CBoole: CBoole −→ EDCHaus

where EDCHaus is the category of extremally disconnected
compact Hausdorff spaces and continuous maps).
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The main goal of this talk is to present a general categorical
theorem for extension of dualities and to obtain with its help a
completely new proof of de Vries’ Duality extending the above
duality T . In the process of doing this, we will also construct a
new category StoneDeV, isomorphic to the category DeV,
such that

|StoneDeV| = |DeV|
but its morphisms are:
(1) sets of Boolean homomorphisms preserving the relation�,
and
(2) their composition is a natural one.
As well, the recent Bezhanishvili-Morandi-Olberding Duality
Theorem which extends the de Vries duality to the category
Tych of Tychonoff spaces and continuous maps will be derived
from our general Extension Theorem for Dualities.
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Extensions of dualities

As it was explained in the talk of Tholen, for obtaining an
extension of the above dual equivalence T to a dual
equivalence T̃ : D −→ CHaus, we cannot use the Extension
Theorem for Dualities presented there because the concrete
class P of all irreducible CHaus-morphisms whose domain is
an EDCHaus-object does not satisfy the general condition (P5)
of that theorem. We will prove, however, a new Extension
Theorem for Dualities and will obtain, with its help, such an
extension T̃ .
Let us recall the general problem: given a dual equivalence
T : A −→ B and an embedding I of B as a full subcategory of a
category C, find a natural construction for a category D into
which A may be fully embedded via J, such that T extends to a
dual equivalence T̃ : D −→ C.
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Our construction depends on a class P of morphisms of C
satisfying certain conditions, which are closely related to
certain properties of the full embedding I.

We call a class P of morphisms in C a weak (B,C)-covering
class if it satisfies the following conditions:

(P1) ∀ (p : B −→ C) ∈ P : B ∈ |B|;

(P2) ∀B ∈ |B| : 1B ∈ P;

(P3) P ◦ Iso(B) ⊆ P;

(P4) ∀C ∈ |C| ∃ (p : B −→ C) ∈ P;
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(P5◦) for morphisms in C, there is an assignment
((p : B→C)∈P, v : C → C′, (p′ : B′→C′)∈P) 7→
(v̂ : B → B′ with v ◦ p = p′ ◦ v̂).

Note that in the given assignment, v̂ depends not only on v , but
also on p and p′.

Later on we will see that, when B is projective in C, such a
class P always exists.
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As a precursor to the category D, we consider the comma
category (IT ↓P C), defined as follows:

objects in (IT ↓P C) are pairs (A,p) with A ∈ |A| and
p : TA −→ C in the class P;
morphisms (ϕ, f ) : (A,p) −→ (A′,p′) in (IT ↓P C) are given
by morphisms ϕ : A −→ A′ in A and f : C′ −→ C in C, such
that p ◦ Tϕ = f ◦ p′;
composition is as in A and C; that is, (ϕ, f ) as above gets
composed with (ϕ′, f ′) : (A′,p′) −→ (A ′′,p ′′) by the
horizontal pasting of diagrams, that is,

(ϕ′, f ′) ◦ (ϕ, f )
df
= (ϕ′ ◦ ϕ, f ◦ f ′).

the identity morphism of a (IT ↓P C)-object (A,p) is the
(IT ↓P C)-morphism (1A,1cod(p)).
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On the hom-sets of (IT ↓P C) we define a compatible
equivalence relation by

(ϕ, f ) ∼ (ψ,g)⇐⇒ f = g,

for all (ϕ, f ), (ψ,g) : (A,p) −→ (A′,p′). We denote the
equivalence class of (ϕ, f ) by [ϕ, f ] (or [ϕ, f ](A,p),(A′,p′), if clarity
demands it), and let D be the quotient category

(IT ↓P C)/ ∼ .

Thanks to (P2), we have the functor J : A −→ D, defined by

(ϕ : A −→ A′) 7→ ( Jϕ df
= [ϕ,Tϕ] : (A,1TA) −→ (A′,1TA′) ),

which is easily seen to be a full embedding.
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Given a dual equivalence (S,T , η, ε) with contravariant functors

T : A −→ B and S : B −→ A

and natural isomorphisms η : IdB −→ T ◦ S and
ε : IdA −→ S ◦ T , it is now straightforward to establish a dual
equivalence of D with C, as follows:

Theorem 1. There is a dual equivalence T̃ : D←→ C : S̃
extending the given dual equivalence T : A←→ B : S, in the
sense that that T̃ J = IT and S̃I ∼= JS.
The unit η̃ : IdC −→ T̃ S̃ and the counit ε̃ : IdD −→ S̃T̃ of the
extended adjunction and the natural isomorphism γ : JS −→ S̃I
may be chosen to satisfy the identities
η̃ = 1IdC

, T̃ ε̃ = 1T̃ , ε̃S̃ = 1S̃, and T̃γ = Iη, γT ◦ Jε = ε̃J.
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The construction of T̃ and S̃

The contravariant functor T̃ : D −→ C is given by

T̃ (A,p)
df
= cod(p) and T̃ ([ϕ, f ])

df
= f .

To define the contravariant functor S̃ on objects, one chooses
for every C ∈ |C| a morphism πC : EC −→ C in P, with πB = 1B
for all B ∈ |B| (according to (P2)), and then puts

S̃C df
= (SEC, πC ◦ η−1

EC).
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The construction of T̃ and S̃

For a morphism f : C′ −→ C in C, (P5◦) and the fullness of T
allow one to choose a morphism ϕf : SEC −→ SEC′ in A with
πC ◦ η−1

EC ◦ Tϕf = f ◦ πC′ ◦ η−1
EC′ ; then we put

S̃f df
= [ϕf , f ].
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It is easy to see that:

Proposition 1. B is a coreflective subcategory of C if, and only
if, there exists a class P of C-morphisms satisfying properties
(P1-4) and the following strengthening of (P5◦):

(P5∗) for all v : C −→ C′ in C and p : B −→ C, p′ : B′ −→ C′ in
P, there is precisely one morphism v̂ : B −→ B′ with
v ◦ p = p′ ◦ v̂ .
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If the class P satisfies conditions (P1-4) and (P5∗), then the
equivalence relation ∼ is just the equality relation. Thus, in this
case, the category D coincides with the category (IT ↓P C). In
the sequel, we will also use the dualization of this special form
of Theorem 1.
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Recall that, for a class Q of morphisms in C, an object B ∈ |C| is
Q-projective if, for all (q : C −→ D) ∈ Q, the map

C(B,q) : C(B,C) −→ C(B,D), h 7→ q ◦ h,

is surjective. Since this map is trivially bijective when q is an
isomorphism, without loss of generality we may assume that Q
contain all isomorphisms and be closed under composition with
them. We call a full subcategory B in C projective if there is a
such a class Q satisfying

(Q1) ∀C ∈ |C| ∃ (q : B −→ C) ∈ Q with B ∈ |B|;
(Q2) ∀B ∈ |B| : B is Q-projective.

Proposition 1. A full subcategory B of a category C is
projective if, and only if, there is a weak (B,C)-covering class P.
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A new approach to the de Vries duality

In view of the previous section, throughout this section we use
the following notation:

A
df
= CBoole, B

df
= EDCHaus, C

df
= CHaus,

with I : B ↪→ C denoting the inclusion functor;
P denotes the class of all irreducible continuous maps between
compact Hausdorff spaces with domain in |B|.

Trivially, B is a full subcategory of C that is closed under
C-isomorphisms. By the results of Gleason, the class P

satisfies conditions (P1-4), (P5◦) of the previous Section (and B

is a projective subcategory of C).
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With the restrictions

T df
= Sa �A and S df

= St �B

of the functors furnishing the Stone Duality, using the
well-known Stone’s result, we obtain the contravariant functors
T : A −→ B and S : B −→ A. They realize a dual equivalence
between the categories A and B.
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Defining the category D as in Theorem 1, we obtain the full
embedding J : A −→ D and the dual equivalence T̃ : D −→ C

which extends the dual equivalence T : A −→ B, so that
I ◦ T = T̃ ◦ J, as given by Theorem 1. We now prove that the
categories DeV and D are equivalent, thus completing our
alternative proof of de Vries Duality Theorem. This will be done
in several steps. In one of them, we will obtain a new category
dual to the category CHaus.
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Definition.
Let (A,�), (A′,�′) be two de Vries’ algebras. Then a Boolean
homomorphism ϕ : A −→ A′ will be called a Fedorchuk
homomorphism (briefly, F-homomorphism) if a� b implies
ϕ(a)�′ ϕ(b), for all a,b ∈ A.

Definition.
Let (A,�) be a de Vries algebra, B be a complete Boolean
algebra and ϕ : A −→ B be a function. Then the function
V (ϕ) : A −→ B, defined by

(V (ϕ))(a)
df
=

∨
{ϕ(b) | b � a},

for every a ∈ A, will be called a de Vries transformation of the
function ϕ.
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The definition of the category StoneDeV.

We set
|StoneDeV| df

= |DeV|.

Further, for every (A,�), (A′,�′) ∈ |StoneDeV|, we define

StoneDeV((A,�), (A′,�′))
df
=

{〈ϕ〉 | ϕ : (A,�) −→ (A′,�′) is an F-homomorphism},

where 〈ϕ〉 is the equivalence class of ϕ under the equivalence
relation ' in the set of all Fedorchuk homomorphisms between
(A,�) and (A′,�′) defined by

ϕ ' ψ ⇔ V (ϕ) = V (ψ).
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The definition of the category StoneDeV.

The StoneDeV-composition between two
StoneDeV-morphisms 〈ϕ〉 : (A,�) −→ (A′,�′) and
〈ψ〉 : (A′,�′) −→ (A ′′,� ′′) is defined as follows:

〈ψ〉 ◦ 〈ϕ〉 df
= 〈ψ ◦ ϕ〉.

Finally, for every StoneDeV-object (A,�), its
StoneDeV-identity is

1(A,�)
df
= 〈1A〉.
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Theorem 2.
The categories CHaus and StoneDeV are dually equivalent.

Lemma 1.
Let (A,�) and (A′,�′) be two complete normal contact
algebras and ϕ : (A,�) −→ (A′,�′) be a Fedorchuk
homomorphism. Then V (ϕ) is a de Vries morphism.

Theorem 3.
The categories StoneDeV and DeV are isomorphic.

Corollary. (de Vries)
The categories CHaus and DeV are dually equivalent.
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A new approach to the Bezhanishvili-Morandi-Olberding
duality

Recently, G. Bezhanishvili, P.J. Morandi and B. Olberding
described a category BMO and a dual equivalence of BMO
with the category Tych of Tychonoff spaces and continuous
maps which extends de Vries’ dual equivalence
Ψa : DeV −→ CHaus. In this section we will derive the
Bezhanishvili-Morandi-Olberding Duality Theorem from the
dualization of the very particular case of our Theorem 1 when
the class P satisfies the axioms (P1-4) and (P5∗). We will first
formulate this dualization explicitly.
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Let A be a full subcategory of a category D with inclusion
functor J. We call a class J of morphisms in D a strong (A,D)-
insertion class if it satisfies the following conditions (J1-4) and
(J5∗):
(J1) ∀ (j : D −→ A) ∈ J : A ∈ |A|;
(J2) ∀A ∈ |A| : 1A ∈ J;
(J3) Iso(A) ◦ J ⊆ J;
(J4) ∀D ∈ |D| ∃ (j : D −→ A) ∈ J;
(J5∗) for all v : D −→ D′ in D and j : D −→ A, j ′ : D′ −→ A′ in J,
there is precisely one morphism v : A −→ A′ with j ′ ◦ v = v ◦ j .
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Again, we point out that, in the given assignment, v depends
not only on v , but also on j and j ′. Next, we note that, in the
presence of (J3), condition (J2) means equivalently
(J2′) Iso(A) ⊆ J.
In condition (J4) we tacitly assume that, for every D ∈ |D|, we
have a chosen morphism j ∈ J with domain D. In the presence
of (J2), that morphism may be taken to be an identity morphism
whenever D ∈ |A|. To emphasize the choice, we may
reformulate (J4), as follows:
(J4′) ∀D ∈ |D| ∃ (ρD : D −→ FD) ∈ J (with ρD = 1D when
D ∈ |A|).
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It is now clear that (J5∗) enables us to make F a functor
D −→ A and ρ a natural transformation IdC −→ JF .
Dualizing Proposition 1, we obtain the following assertion:
Proposition 2. The full subcategory A of D is reflective in D if,
and only if, there is a strong (A,D)-insertion class J of
morphisms in D.
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In addition to the full subcategory A of D with inclusion functor
J and a strong (A,D)-insertion class J we consider again a
dual equivalence (S,T , η, ε) with contravariant functors

T : A −→ B and S : B −→ A

and natural isomorphisms
η : IdB −→ T ◦ S and ε : IdA −→ S ◦ T .
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We then construct the category C, as follows:

objects in C are pairs (B, j) with B ∈ |B| and j : D −→ SB in
the class J;
morphisms (ϕ, f ) : (B, j) −→ (B′, j ′) in C are given by
morphisms ϕ : B −→ B′ in B and f : D′ −→ D in D, such
that, in the notation of (J5∗), Sϕ = f ;
composition is as in B and D; that is, (ϕ, f ) as above gets
composed with (ϕ′, f ′) : (B′, j ′) −→ (B ′′, j ′′) by the
horizontal pasting of diagrams, that is,

(ϕ′, f ′) ◦ (ϕ, f )
df
= (ϕ′ ◦ ϕ, f ◦ f ′).

the identity morphism of a C-object (B, j) is the
C-morphism (1B,1dom(j)).
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With (J2) one obtains the full embedding I : B −→ C, defined by

(ϕ : B −→ B′) 7→ ( Iϕ df
= (ϕ,Sϕ) : (B,1SB) −→ (B′,1SB′) ).

A dual equivalence
S : C←→ D : T

may now be established, as follows:

S : ((ϕ, f ) : (B, j) −→ (B′, j)) 7→ (f : dom(j ′) −→ dom(j));

T : (f : D′ −→ D) 7→ ((ϕf , f ) : (TFD, εFD ◦ ρD) −→
(TFD′, εFD′ ◦ ρD′)),
where ϕf : TFD −→ TFD′ is the unique B-morphism such
that Sϕf = f (j ′, j) with j = εFD ◦ ρD and j ′ = εFD′ ◦ ρD′ .
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The dualization of the particular case of Theorem 1 now reads
as follows:

Theorem 4. (T ,S, ε, η) is a dual equivalence with S T = IdD,
extending the given dual equivalence (T ,S, ε, η), so that
SI = JS and TJ ∼= IT .
We note that, as A is reflective in D, B is coreflective in C.
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We set (and we will keep this notation throughout this section)

A
df
= CHaus, B

df
= DeV, D

df
= Tych, S df

= Ψa,

J
df
= {j : X → Y | X ∈ |Tych|,Y ∈ |CHaus|,

j is a dense embedding, j(X ) ⊆
C∗

Y},

where j(X ) ⊆
C∗

Y means that j(X ) is C∗-embedded in Y , and we

denote by
J : A ↪→ D

the inclusion functor. Note that we regard as elements of the
class J all representatives of the Stone-Čech compactifications
of Tychonoff spaces. Obviously, the class J satisfies conditions
(J1-4) and (J5∗) (and A is a reflective subcategory of D).

G. Dimov (Sofia University) Extensions of dualities & a new approach to de Vries’ duality



De Vries’ Duality
Extensions of dualities

A new approach to the de Vries duality
A new approach to the Bezhanishvili-Morandi-Olberding duality

Therefore, we can apply Theorem 4. It gives us a category C, a
dual equivalence

S : C −→ D

and a full embedding I : B −→ C such that

S ◦ I = J ◦ S.

Then we prove the following theorem:

Theorem 5. The categories BMO and C are equivalent.

This obviously implies that:

Theorem 5. (BMO) There exists a dual equivalence between
the categories BMO and Tych which extend the de Vries dual
equivalence between the categories DeV and CHaus.
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Thank You!
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