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Gelfand-Naimark-Stone Duality

KHaus is the category of compact Hausdorff spaces and continuous
maps.

There are several dualities between KHaus and categories of algebras
of continuous functions:

• Gelfand-Naimark duality with (complex) C∗-algebras,

• Stone’s duality with real C∗-algebras,

• Kakutani-Yosida duality involving vector lattices.

Our goal is to extend the duality from compact Hausdorff spaces to
completely regular spaces.
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From Spaces to Algebras

If X ∈ KHaus, then the set C(X ) of all real-valued continuous
functions is an `-algebra (that is, a lattice-ordered ring and a
vector lattice).

All operations are pointwise. Infinite joins and meets do not exist in
general; even if they do they may not be pointwise.

C(X ) is bounded (1 is a strong order-unit) since X is compact.

C(X ) is archmedean since functions are real-valued.

C(X ) is complete with respect to the uniform norm

‖f ‖ = sup{|f (x)| : x ∈ X} = inf{r ∈ R : |f | ≤ r}.
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The Functor C

ba` is the category of bounded archimedean `-algebras and unital
`-algebra homomorphisms.

uba` is the reflective subcategory of uniformly complete objects.

C is a functor from KHaus to uba`.
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From Algebras to Spaces

The Yosida space YA of A ∈ ba` is the set of maximal `-ideals
with the Zariski topology.

Compactness of YA is a standard Zariski topology argument.

Hölder’s theorem and
⋂

YA = 0 yield that YA is Hausdorff and that A
embeds in C(YA).

The Stone-Weierstrass theorem implies that the image of A is dense
in C(YA).

Y is a functor from ba` to KHaus.
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Gelfand-Naimark-Stone Duality

Theorem. The functors C and Y yield a dual adjunction between
KHaus and ba` which restricts to a dual equivalence between
KHaus and uba`.

Our goal is to generalize this to completely regular spaces. These are
spaces which admit a compactification.

Given a compactification e : X → Y , we can associate C(Y ) to Y .
What can we associate to X? If we use C(X ), this is not bounded. If
we use C∗(X ) ∼= C(βX ), we only recover βX and not X .

Our choice is to use the `-algebra B(X ) of all bounded real-valued
functions on X .
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Basic Algebras

In the algebra B(X ) (bounded) joins and meets always exist and are
pointwise. It is then Dedekind complete and so uniformly complete.

Idempotents are precisely characteristic functions, so
Id(B(X )) ∼= ℘(X ) is complete and atomic. Singletons of X
correspond to primitive idempotents (e.g., atoms).

We call B ∈ ba` a basic algebra if it is Dedekind complete and its
boolean algebra of idempotents is atomic.
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A Ring-Theoretic Version of Tarski Duality

Tarski duality between sets and complete and atomic boolean
algebras sends X to ℘(X ) and B to its set of atoms.

If B is a basic algebra and YB is its Yosida space, then primitive
idempotents correspond to isolated points of YB. Let XB be the set
of all isolated points.

Our version of Tarski duality sends X to B(X ) and B to XB.

Theorem. The category of basic algebras is dual to the category of
sets.
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Compactifications

A compactification of a completely regular space X is a pair (Y , e),
where Y is a compact Hausdorff space and e : X → Y is an
embedding such that the image e(X ) is dense in Y .

We define a category Comp whose objects are compactifications
e : X → Y .

Morphisms in Comp are pairs (f , g) of continuous maps such that
the following diagram commutes.

X Y

X ′ Y ′

e

f g

e′
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Basic Extensions

Proposition. Let e : X → Y be a compactification. Then the map
e[ : C(Y )→ B(X ) sending f to f ◦ e is a 1-1 ba` morphism such
that each element of B(X ) is a join of meets from the image.

Definition. A basic extension is a monomorphism α : A→ B in ba`
with B basic such that α[A] is join-meet dense in B. These form a
category basic.

Morphisms in basic are pairs (ρ, σ) making the diagram commute.

A B

A′ B′

α

ρ σ

α′
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Dual Equivalence of Comp and ubasic

A basic extension α : A→ B induces a continuous map YB → YA.

Its restriction to XB is 1-1. We equip XB with the smallest topology
making the map continuous.

Theorem. There is a dual adjunction between Comp and basic,
sending e : X → Y to C(Y )→ B(X ), and α : A→ B to XB → YA.

ubasic is the reflective subcategory basic consisting of basic
extensions α : A→ B with A ∈ uba`.

Theorem. The dual adjunction restricts to a dual equivalence
between Comp and ubasic.
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Stone-Čech Compactifications

SComp is the full subcategory of Comp consisting of Stone-Čech
compactifications.

CReg is the category of completely regular spaces and continuous
maps.

It is well-known that β is a functor from CReg to KHaus.

This yields that there is an equivalence between CReg and SComp.

By our duality theorem, CReg is then dually equivalent to a full
subcategory of basic. This subcategory will consist of “maximal”
extensions.
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Compatible Basic Extensions

Suppose we have a commutative diagram of compactifications of X .

X Y

Y ′

e

e′
f

The topology on X can be described as the smallest topology making
e continuous, or the smallest topology making e′ continuous.

Definition. We call two basic extensions α : A→ B and γ : C → B
compatible if both yield the same topology on XB.
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Maximal Extensions

Definition.

• We say that a basic extension α : A→ B is maximal provided for
every compatible basic extension γ : C → B, there is a ba` morphism
δ : C → A such that α ◦ δ = γ.

A B

C

α

δ γ

• Let mbasic be the full subcategory of basic consisting of maximal
basic extensions.
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Generalization of Gelfand-Naimark-Stone Duality

Theorem. For a compactification e : X → Y the following are
equivalent.

• The basic extension C(Y )→ B(X ) is maximal.

• e is equivalent to the Stone-Čech compactification of X .

Theorem. There is a dual equivalence between mbasic and SComp,
and so there is a dual equivalence between CReg and SComp.

Therefore, mbasic is a category of algebraic objects dually equivalent
to the category of completely regular spaces.

Gelfand Duality for Completely Regular Spaces 15/16



Generalization of Gelfand-Naimark-Stone Duality

Theorem. For a compactification e : X → Y the following are
equivalent.

• The basic extension C(Y )→ B(X ) is maximal.

• e is equivalent to the Stone-Čech compactification of X .
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We have used these results to characterize such topological properties
as normality, Lindelöf, and local compactness in terms of basic
extensions that are subject to additional axioms.

Thanks to the organizers for the invitation to speak at this conference
and thanks for your attention.
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