Axiomatising categories of spaces: the case of compact Hausdorff spaces

Luca Reggio Joint work with Vincenzo Marra

Institute of Computer Science, Czech Academy of Sciences

Topology, Algebra, and Categories in Logic Nice, June 2019

What is the logic of compact Hausdorff spaces?

- Lawvere's Elementary Theory of the Category of Sets (1964)
- Hu's Primal Algebra Theorem (1969)
- Lindström's Theorem for First Order Logic (1969)

Can we capture the fundamental structure of KH as a category?

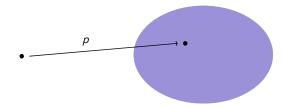
Can we capture the fundamental structure of KH as a category?

• Yes: Richter's Theorems (1991-1992) [More on this later]

Can we capture the fundamental structure of KH as a category?

- Yes: Richter's Theorems (1991-1992) [More on this later]
- In this talk: a different solution to this "axiomatisation problem" (intuitions from universal algebra, duality, etc...)

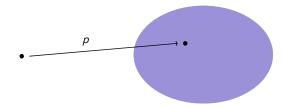
Given $X \in KH$, there is a bijection $X \cong \hom_{KH}(\mathbf{1}, X)$.



 KH has enough points: any two distinct maps f, g: X ⇒ Y must differ on (at least) one point.

The category KH is well-pointed

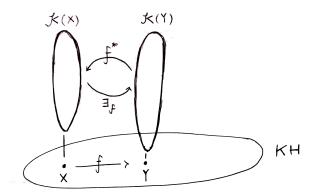
Given $X \in KH$, there is a bijection $X \cong \hom_{KH}(\mathbf{1}, X)$.

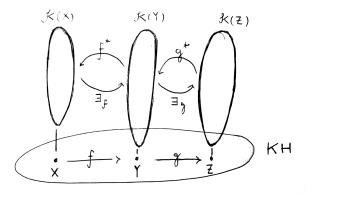


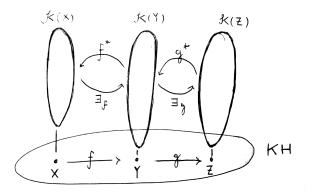
 KH has enough points: any two distinct maps f, g: X ⇒ Y must differ on (at least) one point.

The category KH is well-pointed

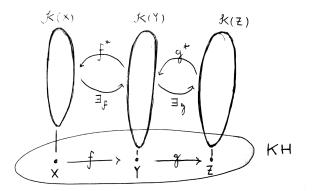
• BA^{op} is well-pointed ↔ **Maximal Ideal Theorem**







• The functor \mathcal{K} : $KH^{op} \to DL$ describes the structure of **coherent category** of KH



- The functor $\mathcal{K}: KH^{op} \to DL$ describes the structure of **coherent category** of KH
- KH is also **positive**: the coproduct of two spaces is disjoint

Filtrality

Let L be a distributive lattice,

- $\mathcal{F}(L)$ the lattice of non-empty **filters**, ordered by \supseteq ,
- C(L) the **Boolean center** of *L*.

Let L be a distributive lattice,

- $\mathcal{F}(L)$ the lattice of non-empty **filters**, ordered by \supseteq ,
- C(L) the **Boolean center** of *L*.

L is a **filtral lattice** if the following is a lattice isomorphism:

$$L \to \mathcal{F}(\mathcal{C}(L)), \ a \mapsto \uparrow a \cap \mathcal{C}(L).$$

A space $X \in KH$ is filtral if $\mathcal{K}(X)$ is a filtral lattice.

Let L be a distributive lattice,

- $\mathcal{F}(L)$ the lattice of non-empty **filters**, ordered by \supseteq ,
- C(L) the **Boolean center** of *L*.

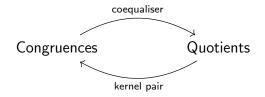
L is a **filtral lattice** if the following is a lattice isomorphism:

$$L \to \mathcal{F}(\mathcal{C}(L)), \ a \mapsto \uparrow a \cap \mathcal{C}(L).$$

A space $X \in KH$ is filtral if $\mathcal{K}(X)$ is a filtral lattice.

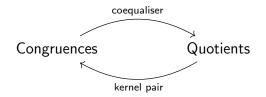
- In KH: X filtral \Leftrightarrow X is a Boolean space
- Each KH space is covered by a filtral one \rightarrow filtral category

Exact categories: congruences \leftrightarrow quotients



Every coherent category has an **exact completion**, obtained by adding all the missing quotients.

Exact categories: congruences \leftrightarrow quotients



Every coherent category has an **exact completion**, obtained by adding all the missing quotients.

- KH is an exact category: Manes' Theorem (1967)
- KH is a **pretopos** = coherent + positive + exact

Theorem (Marra, R.)

Suppose C is a non-trivial category which is a

- 1. well-pointed
- 2. filtral
- 3. pretopos,

Theorem (Marra, R.)

Suppose C is a non-trivial category which is a

- 1. well-pointed
- 2. filtral
- 3. pretopos,
- 4. and for every set J, $\coprod_J \mathbf{1} \in \mathbf{C}$.

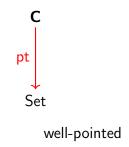
Theorem (Marra, R.)

Suppose C is a non-trivial category which is a

- 1. well-pointed
- 2. filtral
- 3. pretopos,
- 4. and for every set J, $\coprod_J \mathbf{1} \in \mathbf{C}$.

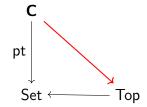
Then C is equivalent to KH.

 $\mathsf{pt} = \mathsf{hom}_{\mathsf{C}}(1, -) : \mathsf{C} \to \mathsf{Set} \text{ faithful functor}$



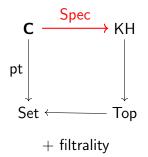
Axiomatising categories of spaces: the case of compact Hausdorff spaces

 $\mathsf{pt} = \mathsf{hom}_{\mathsf{C}}(1, -) : \mathsf{C} \to \mathsf{Set} \text{ faithful functor}$



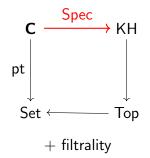
+ coherent + positive (+ mono-complete)

 $\mathsf{pt} = \mathsf{hom}_{\mathsf{C}}(1,-) {:}\, \mathsf{C} \to \mathsf{Set} \mathsf{ faithful functor}$



Axiomatising categories of spaces: the case of compact Hausdorff spaces

 $\mathsf{pt} = \mathsf{hom}_{\mathsf{C}}(\mathbf{1}, -) : \mathbf{C} \to \mathsf{Set} \text{ faithful functor}$



Spec: $\mathbf{C} \to \mathsf{KH}$ is an **equivalence** iff \mathbf{C} is exact and contains $\coprod_{I} \mathbf{1}$ for every set J.

Final remarks:

- **Boolean spaces** (=zero-dimensional KH spaces) can be characterised in a similar manner, dropping exactness and requiring that every object be filtral
- The "axiomatisation" of KH can be exploited to show that the **exact completion** of Boolean spaces coincides with KH
- Logic/Algebraic meaning of filtrality? Cf. the works of Magari (1969), and Raftery (2013)
- Order-topological context? Point-free approach? And more...

Final remarks:

- **Boolean spaces** (=zero-dimensional KH spaces) can be characterised in a similar manner, dropping exactness and requiring that every object be filtral
- The "axiomatisation" of KH can be exploited to show that the **exact completion** of Boolean spaces coincides with KH
- Logic/Algebraic meaning of filtrality? Cf. the works of Magari (1969), and Raftery (2013)
- Order-topological context? Point-free approach? And more...

<u>For more details</u>: Marra, R., A characterisation of the category of compact Hausdorff spaces, arXiv:1808.09738, submitted.

Thank you for your attention!

Theorem (Richter, 1992)

Suppose ${\bf C}$ is a category admitting an object ${\bf 1}$ such that:

- 1. **C** has all set-indexed copowers of **1**;
- 2. 1 is a regular generator in C;
- 3. C admits all coequalisers and it is exact;
- 4. a hom_C(1,2) = { $\bot \neq \top },$ where 2 = 1 + 1;
 - b for every set I, the co-diagonal morphisms

$$\sum_{I} \mathbf{1} \longleftarrow \sum_{I} \mathbf{1} + \sum_{I} \mathbf{1} \cong \sum_{I} \mathbf{2} \longrightarrow \mathbf{2}$$

are jointly monic;

- c **2** is a coseparator for the full subcategory of **C** on the set-indexed copowers of **1**;
- 5. there is $o \in hom_{C}(1, 2)$ such that, for every set I, $\sum_{I} 1$ is (1, o)-compact.

Then C is equivalent to KH.