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What is the logic of compact Hausdorff spaces?
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• Lawvere’s Elementary Theory of the Category of Sets (1964)

• Hu’s Primal Algebra Theorem (1969)

• Lindström’s Theorem for First Order Logic (1969)
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Can we capture the fundamental structure of KH as a category?

• Yes: Richter’s Theorems (1991-1992) [More on this later]

• In this talk: a different solution to this “axiomatisation
problem” (intuitions from universal algebra, duality, etc. . . )
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Given X ∈ KH, there is a bijection X ∼= homKH(1,X ).

• KH has enough points: any two distinct maps f , g :X ⇒ Y
must differ on (at least) one point.

The category KH is well-pointed

• BAop is well-pointed ↔ Maximal Ideal Theorem
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K(X ) = lattice of closed subsets of X , f ∗ = f −1, ∃f = f (−)

• The functor K: KHop → DL describes the structure of
coherent category of KH

• KH is also positive: the coproduct of two spaces is disjoint



Filtrality

Let L be a distributive lattice,

• F(L) the lattice of non-empty filters, ordered by ⊇,

• C(L) the Boolean center of L.

L is a filtral lattice if the following is a lattice isomorphism:

L→ F(C(L)), a 7→ ↑a ∩ C(L).

A space X ∈ KH is filtral if K(X ) is a filtral lattice.

• In KH: X filtral ⇔ X is a Boolean space

• Each KH space is covered by a filtral one → filtral category
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Exactness, or “Maximality”

Exact categories: congruences ↔ quotients

Congruences Quotients

coequaliser

kernel pair

Every coherent category has an exact completion, obtained by
adding all the missing quotients.

• KH is an exact category: Manes’ Theorem (1967)

• KH is a pretopos = coherent + positive + exact
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The main result

Theorem (Marra, R.)
Suppose C is a non-trivial category which is a

1. well-pointed

2. filtral

3. pretopos,

4. and for every set J ,
∐

J 1 ∈ C.

Then C is equivalent to KH.

Luca Reggio Axiomatising categories of spaces: the case of compact Hausdorff spaces



The main result

Theorem (Marra, R.)
Suppose C is a non-trivial category which is a

1. well-pointed

2. filtral

3. pretopos,

4. and for every set J ,
∐

J 1 ∈ C.

Then C is equivalent to KH.

Luca Reggio Axiomatising categories of spaces: the case of compact Hausdorff spaces



The main result

Theorem (Marra, R.)
Suppose C is a non-trivial category which is a

1. well-pointed

2. filtral

3. pretopos,

4. and for every set J ,
∐

J 1 ∈ C.

Then C is equivalent to KH.

Luca Reggio Axiomatising categories of spaces: the case of compact Hausdorff spaces



Idea of the construction
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pt = homC(1,−): C→ Set faithful functor

C KH

Set Top

ptpt

Spec

well-pointed
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pt = homC(1,−): C→ Set faithful functor

C KH

Set Top

ptpt

Spec

+ filtrality

Spec: C→ KH is an equivalence iff C is exact and contains∐
J 1 for every set J .



Final remarks:

• Boolean spaces (=zero-dimensional KH spaces) can be
characterised in a similar manner, dropping exactness and
requiring that every object be filtral

• The “axiomatisation” of KH can be exploited to show that the
exact completion of Boolean spaces coincides with KH

• Logic/Algebraic meaning of filtrality? Cf. the works of
Magari (1969), and Raftery (2013)

• Order-topological context? Point-free approach? And
more...

For more details: Marra, R., A characterisation of the category of
compact Hausdorff spaces, arXiv:1808.09738, submitted.
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Thank you for your attention!
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Theorem (Richter, 1992)
Suppose C is a category admitting an object 1 such that:

1. C has all set-indexed copowers of 1;

2. 1 is a regular generator in C;

3. C admits all coequalisers and it is exact;

4. a homC(1, 2) = {⊥ 6= >}, where 2 = 1 + 1;
b for every set I , the co-diagonal morphisms∑

I 1
∑

I 1 +
∑

I 1 ∼=
∑

I 2 2

are jointly monic;
c 2 is a coseparator for the full subcategory of C on the
set-indexed copowers of 1;

5. there is o ∈ homC(1, 2) such that, for every set I ,
∑

I 1 is
(1, o)-compact.

Then C is equivalent to KH.
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