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Kakutani duality

Theorem (Kakutani-Yosida duality 1941)
Archimedean, norm-complete unital real vector lattices with unit
preserving homomorphisms are categorically equivalent to compact
Hausdorff spaces with continuous functions.

Question
What if we want to replace vector space with group in the
above statement?

Remark
An answer was already given by Stone: compact Hausdorff
spaces correspond to Archimedean, norm-complete and
divisible u`-groups.
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Norm-complete `-groups
Definition
A u`-group 〈G,+,−, 0,∧,∨, 1〉 is an (Abelian) lattice-ordered
group with unit. I.e.,
I 〈G,+,−, 0〉 is an Abelian group,
I 〈G,∧,∨〉, is a lattice,
I the operation + is order-invariant: x 6 y⇒ x + z 6 y + z,

I the constant 1 is an order unit: for all x ∈ G, there exists
n ∈ N s.t. x 6 (n)1.

It is customary to write (n)x := x + · · ·+ x︸ ︷︷ ︸
n times

and |x| := x ∨ −x.

Let (G,u) be a u`-group. The order unit 1 induces a seminorm
‖ ‖ defined as follows:

‖g‖ := inf

{
p
q
∈ Q | p, q ∈ N, q 6= 0 and (q)|g| 6 (p)1

}
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Norm-complete `-groups

Definition
A u`-group G is Archimedean:

for all x, y ∈ G such that x > 0 and y > 0 we have:

if, for all n ∈ N, (n)x 6 y, then x = 0.

The seminorm ‖ ‖ : G→ R+ is in fact a norm if, and only if, G is
Archimedean.

Definition
A norm complete `-group is an Archimedean, u`-group that is
complete w.r.t. to the norm ‖ ‖. Morphisms of norm-complete
`-groups are functions that preserve +,∨,∧,−, 0, 1. This
category will by indicated by G.
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Functional representation

Theorem (Goodearl-Handelman 1980)
Let X be a compact Hausdorff space. For each x ∈ X choose Ax to be
either Ax = R or Ax = 1

nZ.

Then, the algebra of functions{
f : X → R | f cont., f (x) ∈ Ax for all x ∈ X

}
,

is a norm-complete `-group and every such a group can be represented
in this way.

The aim of this talk is to make the above functional
representation into a categorical duality.

5/21



Functional representation

Theorem (Goodearl-Handelman 1980)
Let X be a compact Hausdorff space. For each x ∈ X choose Ax to be
either Ax = R or Ax = 1

nZ. Then, the algebra of functions{
f : X → R | f cont., f (x) ∈ Ax for all x ∈ X

}
,

is a norm-complete `-group

and every such a group can be represented
in this way.

The aim of this talk is to make the above functional
representation into a categorical duality.

5/21



Functional representation

Theorem (Goodearl-Handelman 1980)
Let X be a compact Hausdorff space. For each x ∈ X choose Ax to be
either Ax = R or Ax = 1

nZ. Then, the algebra of functions{
f : X → R | f cont., f (x) ∈ Ax for all x ∈ X

}
,

is a norm-complete `-group and every such a group can be represented
in this way.

The aim of this talk is to make the above functional
representation into a categorical duality.

5/21



Functional representation

Theorem (Goodearl-Handelman 1980)
Let X be a compact Hausdorff space. For each x ∈ X choose Ax to be
either Ax = R or Ax = 1

nZ. Then, the algebra of functions{
f : X → R | f cont., f (x) ∈ Ax for all x ∈ X

}
,

is a norm-complete `-group and every such a group can be represented
in this way.

The aim of this talk is to make the above functional
representation into a categorical duality.

5/21



Abstract and real denominators

We can encode the (Ax)x∈X of Goodearl-Handelman via a
function ζ : X → N.

Remark
It is useful to think of ζ(x) as the (abstract) denominator of x.

Indeed, saying that
f (x) ∈ Ax,

as in the statement of Goodearl-Handelman, amounts to saying
that

the (real) denominator of f (x) ∈ R divides the (abstract)
denominator ζ(x).

where, if r ∈ R \Q, we set den(r) = 0.
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A-spaces

Definition
We call a-space a compact Hausdorff space X together with an
arbitrary map ζ : X → N.

An a-map from an a-space (X, ζ) into
an a-space (Y, ζ ′) is a continuous map f : X → Y such that
∀x ∈ X,

ζ ′(f (x)) | ζ(x) f respects the (abstract) denominators.

The category of a-spaces with a-maps is indicated by A.
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Examples of a-space
Recall that N forms a complete lattice under the divisibility
order: the top being 0 and the bottom being 1.

Let I be a set and p ∈ RI . We define the denominator of p to be
be the following (natural number):
I If p ∈ QI then

den(p) = lcd{pi | i ∈ I}

where lcd stands for the least common denominator.
I If p 6∈ QI we set den(p) = 0.

Remark
For any set I, for any K closed subset of RI , the pair (K, den�K) is
an a-space.
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The main adjunction

The functor Cζ

Let Cζ : A→ G be the assignment that associates to every object
〈X, ζ〉 in A the norm-complete `-group

Cζ(〈X, ζ〉) := {f : X → R | f cont., ∀x ∈ X den(f (x)) | ζ(x)},

and to any a-map g : 〈X, ζ〉 → 〈Y, ζ ′〉 the G-arrow that sends
each h ∈ Cζ(〈Y, ζ ′〉) into the map h ◦ g.
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The main adjunction

The functor M
Let M : G→ A be the assignment that associates to each
norm-complete `-group G, the pair 〈Max(G), ζG〉, where Max(G)
is maximal spectrum of G and, for any m ∈ Max(G),

ζG(m) :=

{
n if G/m ∼= 1

nZ
0 otherwise.

Let also M assign to every G-homomorphism h : G→ H the
map that sends every m ∈M (H) into its inverse image under h,
in symbols M (h)(m) = h−1[m] ∈ Max(G).

Theorem
The functors Cζ and M form a contravariant adjunction.
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Fixed points

To find a (contravariant) categorical equivalence, we are now
interested in finding the fixed points of the this adjunction.
Namely,
I The u`-groups G such that G ∼= Cζ M (G) and
I The a-spaces (X, ζ) such that (X, ζ) ∼= M Cζ(X, ζ).
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Stone-Weierstrass for u`-groups

The main ingredient to characterise the fixed points of Cζ M is
the following result, which has an interest in its own.

Theorem (Stone-Weierstrass for u`-groups)
Let (X, ζ) be an a-space, and let G ⊆ Cζ (X) be a u`-subgroup.
Suppose the following hold.

1. For every x 6= y ∈ X there exists s ∈ G such that s(x) 6= s(y).
2. For every x ∈ X, ζ(x) = den (g(x))g∈G.

Then G is dense in Cζ (X) with respect to the norm.

Corollary
For any norm-complete `-group G one has G ∼= Cζ M (G).
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Representable a-spaces

To characterise the fixed points of M Cζ we preliminary notice
that:

Lemma
For any a-space (X, ζ) one has (X, ζ) ∼= M Cζ(X, ζ) if, and only if,
there exists K ⊆ RI , closed subspace for some index set I, such that
(X, ζ) and (K, den�K) are A-isomorphic.

So the problem reduces to find a characterisation of the abstract
denominators ζ : X → N which are concrete denominators for
some (K ⊆ RI, den�K).
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An easy counter example

Consider [a, b] ⊆ R with its Euclidean topology and endow it
with a constant ζ:

∀x ∈ [a, b] ζ(x) = 1.

The only points with denominator equal 1 in RI are the
so-called lattice points i.e., points with integer coordinates.

The only way an embedding of ([a, b], ζ) could respect ζ is
either to send all points in one lattice point —failing
injectivity— or by sending the points in different lattice points
—failing continuity.
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Separating points with functions

It is not hard to see that, in order to a-embed an a-space (X, ζ)
into some (RI, den), we need to have enough R-valued a-maps
on X.

I They must be able to separate points, and
I for any point x ∈ X there must be an a-map f such that

den(f (x)) = ζ(x).
But we want to guarantee this property by enforcing some sort
of aritmetico-topological property on the space (X, ζ)!
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a-normal space
Definition
An a-normal space is an a-space (X, ζ) with the following
properties.

(N1) For every n ∈ N, ζ−1[div n] is closed.
(N2) For any two disjoint closed subsets A and B of X, there

exist two disjoint open sets U and V containing A and B,
respectively, such that, for every x ∈ X \ (U ∪ V), ζ(x) = 0.Norm complete

abelian ℓ-groups:
topological duality

Luca Spada

The problem

Motivations

a-normal
spaces

LQ`K +QKTH2i2 �#2HB�M ℓ@;`QmTb,
iQTQHQ;B+�H /m�HBiv

CQBMi rQ`F rBi? JX �##�/BMB �M/ oX J�``�

Luca Spada

.2T�`iK2Mi Q7 J�i?2K�iB+b
lMBp2`bBiv Q7 a�H2`MQ

?iiT,ffHQ;B+�X/BTK�iXmMBb�XBifHm+�bT�/�

h�*G As ě LB+2- RdĜkR CmHv kyRNX

X
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VU
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Urysohn’s lemma for a-spaces

Definition
Let (X, ζ) be an a-space and x ∈ X. A point α ∈ R is said to be
admissible for x if den(α) divides ζ(x).

Theorem (Urysohn’s lemma for a-spaces)
Let X be an a-normal space. Let A and B be disjoint closed subsets of
X. Let α, β ∈ R. Suppose that

1. α is admissible for every point of A,
2. β is admissible for every point of B,

Then, there exists an a-map f : X → R such that

for all x ∈ A, f (x) = α and for all y ∈ B, f (y) = β.
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Proof strategy
Let X be an a-space, [α, β] ⊆ R, and f : X → [α, β] be an a-map.
Pick D ⊆ [α, β] such that α, β ∈ D.

For each r ∈ D, set

Ar := f−1[[α, r]], and B(r) := f−1[[r, β]].

Then, for all r, s ∈ D, the following properties hold.
1. Bα = Aβ = X.
2. Ar ∪ Br = X.
3. r < s⇒ D, Ar ∩ Bs = ∅.
4. r 6 s⇒ for every x ∈ Br ∩As there is γ ∈ [r, s] such that γ is

admissible for x.

Definition
Let X, α, β be as above. An [α, β]-draft on X consists of a subset
D ⊆ [α, β] containing α and β and a pair of closed subsets of X
(Ar,Br) for every r ∈ D, such that (1)–(4) hold.
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Proof strategy, continued
Let (D, (Ad,Bd)d∈D) be a [α, β]-draft on X.

I If D is closed, then there exists (D′, (Ad,Bd)d∈D′) [α, β]-draft
on X that refines (D, (Ad,Bd)d∈D), and such that D′ is dense
in [α, β].

I A realisation of an [α, β]-draft on X (D, (Ad,Bd)d∈D) is an
a-map f : X → [α, β] such that, for every r ∈ D,

f [Ar] ⊆ [α, r], and f [B(r)] ⊆ [r, β].

I If D is dense in [α, β]. Then, (D, (Ad,Bd)d∈D) has a unique
realisation given by

f (x) := inf{r ∈ D | x ∈ Ar} = sup{r ∈ D | x ∈ B(r)}.

I Finally, in the stament of the theorem, set D := {α, β},
A(α) := A, B(α) := X, A(β) := X, and B(β) := B.
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The duality

Theorem
The functors M and Cζ give a categorical duality between
norm-complete `-groups with unit preserving homomorphisms and
a-normal spaces with a-maps.

Thank you for your attention!
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