Norm complete Abelian *l*-groups: topological duality

Joint work with M. Abbadini and V. Marra

Luca Spada

Department of Mathematics University of Salerno http://logica.dipmat.unisa.it/lucaspada

TACL IX — Nice, 17–21 July 2019.

Kakutani duality

Theorem (Kakutani-Yosida duality 1941)

Archimedean, norm-complete unital real vector lattices with unit preserving homomorphisms are categorically equivalent to compact Hausdorff spaces with continuous functions.

Kakutani duality

Theorem (Kakutani-Yosida duality 1941)

Archimedean, norm-complete unital real vector lattices with unit preserving homomorphisms are categorically equivalent to compact Hausdorff spaces with continuous functions.

Question

What if we want to replace vector space with group in the above statement?

Kakutani duality

Theorem (Kakutani-Yosida duality 1941)

Archimedean, norm-complete unital real vector lattices with unit preserving homomorphisms are categorically equivalent to compact Hausdorff spaces with continuous functions.

Question

What if we want to replace vector space with group in the above statement?

Remark

An answer was already given by Stone: compact Hausdorff spaces correspond to Archimedean, norm-complete and divisible $u\ell$ -groups.

Definition

A $\mathit{ul}\text{-group}\ \langle G,+,-,0,\wedge,\vee,1\rangle$ is an (Abelian) lattice-ordered group with unit. I.e.,

- $\langle G, +, -, 0 \rangle$ is an Abelian group,
- $\langle G, \wedge, \vee \rangle$, is a lattice,

• the operation + is order-invariant: $x \leq y \Rightarrow x + z \leq y + z$,

Definition

A $\mathit{ul}\text{-group}\ \langle G,+,-,0,\wedge,\vee,1\rangle$ is an (Abelian) lattice-ordered group with unit. I.e.,

- $\langle G, +, -, 0 \rangle$ is an Abelian group,
- $\langle G, \wedge, \vee \rangle$, is a lattice,
- the operation + is order-invariant: $x \leq y \Rightarrow x + z \leq y + z$,
- ▶ the constant 1 is an order unit: for all $x \in G$, there exists $n \in \mathbb{N}$ s.t. $x \leq (n)$ 1.

It is customary to write $(n)x \coloneqq \underbrace{x + \cdots + x}_{n \text{ times}}$ and $|x| \coloneqq x \vee -x$.

Definition

A *ul*-group $(G, +, -, 0, \land, \lor, 1)$ is an (Abelian) lattice-ordered group with unit. I.e.,

- $\langle G, +, -, 0 \rangle$ is an Abelian group,
- $\langle G, \wedge, \vee \rangle$, is a lattice,
- the operation + is order-invariant: $x \leq y \Rightarrow x + z \leq y + z$,
- ▶ the constant 1 is an order unit: for all $x \in G$, there exists $n \in \mathbb{N}$ s.t. $x \leq (n)$ 1.

It is customary to write $(n)x := \underbrace{x + \dots + x}_{n \text{ times}}$ and $|x| := x \vee -x$.

Let (G, u) be a $u\ell$ -group. The order unit 1 induces a seminorm $\| \|$ defined as follows:

$$\|g\| := \inf\left\{\frac{p}{q} \in \mathbb{Q} \mid p, q \in \mathbb{N}, q \neq 0 \text{ and } (q)|g| \leqslant (p)1\right\}$$

```
Definition A u\ell-group G is Archimedean:
```

```
for all x, y \in G such that x \ge 0 and y \ge 0 we have:
if, for all n \in \mathbb{N}, (n)x \le y, then x = 0.
```

```
Definition A u\ell-group G is Archimedean:
```

```
for all x, y \in G such that x \ge 0 and y \ge 0 we have:
if, for all n \in \mathbb{N}, (n)x \le y, then x = 0.
```

The seminorm $\| \| : G \to \mathbb{R}^+$ is in fact a norm if, and only if, *G* is Archimedean.

```
Definition A u\ell-group G is Archimedean:
```

for all $x, y \in G$ such that $x \ge 0$ and $y \ge 0$ we have:

if, for all $n \in \mathbb{N}$, $(n)x \leq y$, then x = 0.

The seminorm $\| \| : G \to \mathbb{R}^+$ is in fact a norm if, and only if, *G* is Archimedean.

Definition

A norm complete ℓ -group is an Archimedean, $u\ell$ -group that is complete w.r.t. to the norm || ||. Morphisms of norm-complete ℓ -groups are functions that preserve $+, \lor, \land, -, 0, 1$. This category will by indicated by \overline{G} .

Theorem (Goodearl-Handelman 1980)

Let X *be a compact Hausdorff space. For each* $x \in X$ *choose* A_x *to be either* $A_x = \mathbb{R}$ *or* $A_x = \frac{1}{n}\mathbb{Z}$.

Theorem (Goodearl-Handelman 1980)

Let X *be a compact Hausdorff space. For each* $x \in X$ *choose* A_x *to be either* $A_x = \mathbb{R}$ *or* $A_x = \frac{1}{n}\mathbb{Z}$ *. Then, the algebra of functions*

$$\{f: X \to \mathbb{R} \mid f \text{ cont., } f(x) \in A_x \text{ for all } x \in X\},\$$

is a norm-complete ℓ -group

Theorem (Goodearl-Handelman 1980)

Let X *be a compact Hausdorff space. For each* $x \in X$ *choose* A_x *to be either* $A_x = \mathbb{R}$ *or* $A_x = \frac{1}{n}\mathbb{Z}$ *. Then, the algebra of functions*

$$\{f: X \to \mathbb{R} \mid f \text{ cont.}, f(x) \in A_x \text{ for all } x \in X\},\$$

is a norm-complete ℓ -group and every such a group can be represented in this way.

Theorem (Goodearl-Handelman 1980)

Let X *be a compact Hausdorff space. For each* $x \in X$ *choose* A_x *to be either* $A_x = \mathbb{R}$ *or* $A_x = \frac{1}{n}\mathbb{Z}$ *. Then, the algebra of functions*

$$\{f: X \to \mathbb{R} \mid f \text{ cont., } f(x) \in A_x \text{ for all } x \in X\},\$$

is a norm-complete ℓ -group and every such a group can be represented in this way.

The aim of this talk is to make the above functional representation into a categorical duality.

Abstract and real denominators

We can encode the $(A_x)_{x \in X}$ of Goodearl-Handelman via a function $\zeta \colon X \to \mathbb{N}$.

Remark

It is useful to think of $\zeta(x)$ as the (abstract) denominator of *x*.

Abstract and real denominators

We can encode the $(A_x)_{x \in X}$ of Goodearl-Handelman via a function $\zeta \colon X \to \mathbb{N}$.

Remark

It is useful to think of $\zeta(x)$ as the (abstract) denominator of x. Indeed, saying that

 $f(x) \in A_x$,

as in the statement of Goodearl-Handelman, amounts to saying that

the (real) denominator of $f(x) \in \mathbb{R}$ divides the (abstract) denominator $\zeta(x)$.

where, if $r \in \mathbb{R} \setminus \mathbb{Q}$, we set den(r) = 0.

A-spaces

Definition We call a-space a compact Hausdorff space *X* together with an arbitrary map $\zeta : X \to \mathbb{N}$.

A-spaces

Definition

We call **a-space** a compact Hausdorff space *X* together with an arbitrary map $\zeta : X \to \mathbb{N}$. An a-map from an a-space (X, ζ) into an a-space (Y, ζ') is a continuous map $f : X \to Y$ such that $\forall x \in X$,

$\zeta'(f(x)) \mid \zeta(x)$ f respects the (abstract) denominators.

The category of a-spaces with a-maps is indicated by A.

Recall that \mathbb{N} forms a complete lattice under the divisibility order: the top being 0 and the bottom being 1.

Recall that \mathbb{N} forms a complete lattice under the divisibility order: the top being 0 and the bottom being 1.

Let *I* be a set and $\overline{p} \in \mathbb{R}^{I}$. We define the denominator of \overline{p} to be be the following (natural number):

• If $\overline{p} \in \mathbb{Q}^I$ then

$$\mathtt{den}(\overline{p}) = \mathtt{lcd}\{p_i \mid i \in I\}$$

where lcd stands for the least common denominator.

Recall that \mathbb{N} forms a complete lattice under the divisibility order: the top being 0 and the bottom being 1.

Let *I* be a set and $\overline{p} \in \mathbb{R}^{I}$. We define the denominator of \overline{p} to be be the following (natural number):

• If $\overline{p} \in \mathbb{Q}^I$ then

$$\mathtt{den}(\overline{p}) = \mathtt{lcd}\{p_i \mid i \in I\}$$

where lcd stands for the least common denominator.

• If
$$\overline{p} \notin \mathbb{Q}^I$$
 we set $\operatorname{den}(\overline{p}) = 0$.

Remark

Recall that \mathbb{N} forms a complete lattice under the divisibility order: the top being 0 and the bottom being 1.

Let *I* be a set and $\overline{p} \in \mathbb{R}^{I}$. We define the denominator of \overline{p} to be be the following (natural number):

• If $\overline{p} \in \mathbb{Q}^I$ then

$$\mathtt{den}(\overline{p}) = \mathtt{lcd}\{p_i \mid i \in I\}$$

where lcd stands for the least common denominator.

• If
$$\overline{p} \notin \mathbb{Q}^I$$
 we set $\operatorname{den}(\overline{p}) = 0$.

Remark

For any set *I*, for any *K* closed subset of \mathbb{R}^{I} , the pair $(K, \operatorname{den}_{\restriction_{K}})$ is an a-space.

The functor \mathscr{C}_{ζ}

Let \mathscr{C}_{ζ} : $A \to \overline{G}$ be the assignment that associates to every object $\langle X, \zeta \rangle$ in A the norm-complete ℓ -group

 $\mathscr{C}_{\zeta}(\langle \mathbf{X}, \zeta \rangle) := \{ f \colon \mathbf{X} \to \mathbb{R} \mid f \text{ cont.}, \forall x \in \mathbf{X} \text{ den}(f(x)) \mid \zeta(x) \},\$

The functor \mathscr{C}_{ζ}

Let $\mathscr{C}_{\zeta} \colon A \to \overline{G}$ be the assignment that associates to every object $\langle X, \zeta \rangle$ in A the norm-complete ℓ -group

 $\mathscr{C}_{\zeta}(\langle X,\zeta\rangle):=\{f\colon X\to\mathbb{R}\mid f \text{ cont.}, \forall x\in X \text{ den}(f(x))\mid \zeta(x)\},$

and to any a-map $g: \langle X, \zeta \rangle \to \langle Y, \zeta' \rangle$ the \overline{G} -arrow that sends each $h \in \mathscr{C}_{\zeta}(\langle Y, \zeta' \rangle)$ into the map $h \circ g$.

The functor \mathscr{M} Let $\mathscr{M}: \overline{\mathsf{G}} \to \mathsf{A}$ be the assignment that associates to each norm-complete ℓ -group G, the pair $\langle \operatorname{Max}(G), \zeta_G \rangle$, where $\operatorname{Max}(G)$ is maximal spectrum of G and, for any $\mathfrak{m} \in \operatorname{Max}(G)$,

$$\zeta_G(\mathfrak{m}) := \begin{cases} n & \text{if } G/\mathfrak{m} \cong \frac{1}{n}\mathbb{Z} \\ 0 & \text{otherwise.} \end{cases}$$

The functor \mathscr{M} Let $\mathscr{M}: \overline{\mathsf{G}} \to \mathsf{A}$ be the assignment that associates to each norm-complete ℓ -group G, the pair $\langle \operatorname{Max}(G), \zeta_G \rangle$, where $\operatorname{Max}(G)$ is maximal spectrum of G and, for any $\mathfrak{m} \in \operatorname{Max}(G)$,

$$\zeta_G(\mathfrak{m}) := \begin{cases} n & \text{if } G/\mathfrak{m} \cong \frac{1}{n}\mathbb{Z} \\ 0 & \text{otherwise.} \end{cases}$$

Let also \mathscr{M} assign to every $\overline{\mathsf{G}}$ -homomorphism $h \colon G \to H$ the map that sends every $\mathfrak{m} \in \mathscr{M}(H)$ into its inverse image under h, in symbols $\mathscr{M}(h)(\mathfrak{m}) = h^{-1}[\mathfrak{m}] \in \operatorname{Max}(G)$.

The functor \mathscr{M} Let $\mathscr{M}: \overline{\mathsf{G}} \to \mathsf{A}$ be the assignment that associates to each norm-complete ℓ -group G, the pair $\langle \operatorname{Max}(G), \zeta_G \rangle$, where $\operatorname{Max}(G)$ is maximal spectrum of G and, for any $\mathfrak{m} \in \operatorname{Max}(G)$,

$$\zeta_G(\mathfrak{m}) := \begin{cases} n & \text{if } G/\mathfrak{m} \cong \frac{1}{n}\mathbb{Z} \\ 0 & \text{otherwise.} \end{cases}$$

Let also \mathscr{M} assign to every $\overline{\mathsf{G}}$ -homomorphism $h \colon G \to H$ the map that sends every $\mathfrak{m} \in \mathscr{M}(H)$ into its inverse image under h, in symbols $\mathscr{M}(h)(\mathfrak{m}) = h^{-1}[\mathfrak{m}] \in \operatorname{Max}(G)$.

Theorem *The functors* C_{ζ} *and* \mathcal{M} *form a contravariant adjunction.*

Fixed points

To find a (contravariant) categorical equivalence, we are now interested in finding the fixed points of the this adjunction. Namely,

- The $u\ell$ -groups G such that $G \cong \mathscr{C}_{\zeta} \mathscr{M}(G)$ and
- The a-spaces (X, ζ) such that $(X, \zeta) \cong \mathscr{M} \mathscr{C}_{\zeta}(X, \zeta)$.

The main ingredient to characterise the fixed points of $\mathscr{C}_{\zeta} \mathscr{M}$ is the following result, which has an interest in its own.

Theorem (Stone-Weierstrass for $u\ell$ -groups)

Let (X, ζ) *be an a-space, and let* $G \subseteq \mathscr{C}_{\zeta}(X)$ *be a ul-subgroup. Suppose the following hold.*

The main ingredient to characterise the fixed points of $\mathscr{C}_{\zeta} \mathscr{M}$ is the following result, which has an interest in its own.

Theorem (Stone-Weierstrass for $u\ell$ -groups)

Let (X, ζ) *be an a-space, and let* $G \subseteq \mathscr{C}_{\zeta}(X)$ *be a ul-subgroup. Suppose the following hold.*

1. For every $x \neq y \in X$ there exists $s \in G$ such that $s(x) \neq s(y)$.

The main ingredient to characterise the fixed points of $\mathscr{C}_{\zeta} \mathscr{M}$ is the following result, which has an interest in its own.

Theorem (Stone-Weierstrass for $u\ell$ -groups) Let (X, ζ) be an a-space, and let $G \subseteq \mathscr{C}_{\zeta}(X)$ be a $u\ell$ -subgroup. Suppose the following hold.

- 1. For every $x \neq y \in X$ there exists $s \in G$ such that $s(x) \neq s(y)$.
- 2. For every $x \in X$, $\zeta(x) = \operatorname{den} (g(x))_{g \in G}$.

The main ingredient to characterise the fixed points of $\mathscr{C}_{\zeta} \mathscr{M}$ is the following result, which has an interest in its own.

Theorem (Stone-Weierstrass for $u\ell$ -groups) Let (X, ζ) be an a-space, and let $G \subseteq \mathscr{C}_{\zeta}(X)$ be a $u\ell$ -subgroup. Suppose the following hold.

- 1. For every $x \neq y \in X$ there exists $s \in G$ such that $s(x) \neq s(y)$.
- 2. For every $x \in X$, $\zeta(x) = \operatorname{den} (g(x))_{g \in G}$.

Then G is dense in $\mathscr{C}_{\zeta}(X)$ *with respect to the norm.*

The main ingredient to characterise the fixed points of $\mathscr{C}_{\zeta} \mathscr{M}$ is the following result, which has an interest in its own.

Theorem (Stone-Weierstrass for $u\ell$ -groups) Let (X, ζ) be an a-space, and let $G \subseteq \mathscr{C}_{\zeta}(X)$ be a $u\ell$ -subgroup. Suppose the following hold.

- 1. For every $x \neq y \in X$ there exists $s \in G$ such that $s(x) \neq s(y)$.
- 2. For every $x \in X$, $\zeta(x) = \operatorname{den} (g(x))_{g \in G}$.

Then G is dense in $\mathscr{C}_{\zeta}(X)$ *with respect to the norm.*

Corollary

For any norm-complete ℓ -group G one has $G \cong \mathscr{C}_{\zeta} \mathscr{M}(G)$.

Representable A-spaces

To characterise the fixed points of $\mathscr{M} \mathscr{C}_{\zeta}$ we preliminary notice that:

Lemma

For any a-space (X, ζ) one has $(X, \zeta) \cong \mathscr{M} \mathscr{C}_{\zeta}(X, \zeta)$ if, and only if, there exists $K \subseteq \mathbb{R}^{I}$, closed subspace for some index set I, such that (X, ζ) and $(K, \operatorname{den}_{\restriction K})$ are A-isomorphic.

Representable A-spaces

To characterise the fixed points of $\mathscr{M} \mathscr{C}_{\zeta}$ we preliminary notice that:

Lemma

For any a-space (X, ζ) one has $(X, \zeta) \cong \mathscr{M} \mathscr{C}_{\zeta}(X, \zeta)$ if, and only if, there exists $K \subseteq \mathbb{R}^{I}$, closed subspace for some index set I, such that (X, ζ) and $(K, \operatorname{den}_{\restriction K})$ are A-isomorphic.

So the problem reduces to find a characterisation of the abstract denominators $\zeta \colon X \to \mathbb{N}$ which are concrete denominators for some $(K \subseteq \mathbb{R}^I, \operatorname{den}_{\restriction_K})$.

AN EASY COUNTER EXAMPLE

Consider $[a, b] \subseteq \mathbb{R}$ with its Euclidean topology and endow it with a constant ζ :

 $\forall x \in [a,b] \quad \zeta(x) = 1.$

The only points with denominator equal 1 in \mathbb{R}^{I} are the so-called lattice points i.e., points with integer coordinates.

AN EASY COUNTER EXAMPLE

Consider $[a, b] \subseteq \mathbb{R}$ with its Euclidean topology and endow it with a constant ζ :

 $\forall x \in [a,b] \quad \zeta(x) = 1.$

The only points with denominator equal 1 in \mathbb{R}^{I} are the so-called lattice points i.e., points with integer coordinates.

The only way an embedding of $([a, b], \zeta)$ could respect ζ is either to send all points in one lattice point —failing injectivity— or by sending the points in different lattice points —failing continuity.

Separating points with functions

It is not hard to see that, in order to a-embed an a-space (X, ζ) into some (\mathbb{R}^{I}, den) , we need to have enough \mathbb{R} -valued a-maps on X.

Separating points with functions

It is not hard to see that, in order to a-embed an a-space (X, ζ) into some (\mathbb{R}^{I}, den) , we need to have enough \mathbb{R} -valued a-maps on X.

► They must be able to separate points, and

SEPARATING POINTS WITH FUNCTIONS

It is not hard to see that, in order to a-embed an a-space (X, ζ) into some (\mathbb{R}^{I}, den) , we need to have enough \mathbb{R} -valued a-maps on X.

- ► They must be able to separate points, and
- For any point x ∈ X there must be an a-map f such that den(f(x)) = ζ(x).

Separating points with functions

It is not hard to see that, in order to a-embed an a-space (X, ζ) into some (\mathbb{R}^{I}, den) , we need to have enough \mathbb{R} -valued a-maps on X.

- ► They must be able to separate points, and
- ► for any point $x \in X$ there must be an a-map f such that $den(f(x)) = \zeta(x)$.

But we want to guarantee this property by enforcing some sort of aritmetico-topological property on the space (X, ζ) !

SEPARATING POINTS WITH FUNCTIONS

It is not hard to see that, in order to a-embed an a-space (X, ζ) into some (\mathbb{R}^{I}, den) , we need to have enough \mathbb{R} -valued a-maps on X.

- ► They must be able to separate points, and
- For any point x ∈ X there must be an a-map f such that den(f(x)) = ζ(x).

But we want to guarantee this property by enforcing some sort of aritmetico-topological property on the space (X, ζ) !

1.5.11. THEOREM (URYSOHN'S LEMMA). For every pair A, B of disjoint closed subsets of a normal space X there exists a continuous function $f: X \to I$ such that f(x) = 0 for $x \in A$ and f(x) = 1 for $x \in B$.

Definition An a-normal space is an a-space (X, ζ) with the following properties.

Definition

An a-normal space is an a-space (X, ζ) with the following properties.

(N1) For every $n \in \mathbb{N}$, $\zeta^{-1}[\operatorname{div} n]$ is closed.

Definition

An a-normal space is an a-space (X, ζ) with the following properties.

- (N1) For every $n \in \mathbb{N}$, $\zeta^{-1}[\operatorname{div} n]$ is closed.
- (N2) For any two disjoint closed subsets *A* and *B* of *X*, there exist two disjoint open sets *U* and *V* containing *A* and *B*, respectively

Definition

An a-normal space is an a-space (X, ζ) with the following properties.

- (N1) For every $n \in \mathbb{N}$, $\zeta^{-1}[\operatorname{div} n]$ is closed.
- (N2) For any two disjoint closed subsets *A* and *B* of *X*, there exist two disjoint open sets *U* and *V* containing *A* and *B*, respectively, such that, for every $x \in X \setminus (U \cup V)$, $\zeta(x) = 0$.

Examples of a-normal spaces

Examples of a-normal spaces

Theorem

For any set I, for any K closed subset of \mathbb{R}^{I} , the a-space $(K, \mathtt{den}_{\restriction_{K}})$ is a-normal.

Definition Let (X, ζ) be an a-space and $x \in X$. A point $\alpha \in \mathbb{R}$ is said to be admissible for x if den (α) divides $\zeta(x)$.

Definition Let (X, ζ) be an a-space and $x \in X$. A point $\alpha \in \mathbb{R}$ is said to be admissible for x if den (α) divides $\zeta(x)$.

Theorem (Urysohn's lemma for a-spaces)

Let X *be an a-normal space. Let* A *and* B *be disjoint closed subsets of* X. *Let* $\alpha, \beta \in \mathbb{R}$ *.*

Definition

Let (X, ζ) be an a-space and $x \in X$. A point $\alpha \in \mathbb{R}$ is said to be admissible for x if den (α) divides $\zeta(x)$.

Theorem (Urysohn's lemma for a-spaces)

Let X *be an a-normal space. Let* A *and* B *be disjoint closed subsets of* X. *Let* $\alpha, \beta \in \mathbb{R}$ *. Suppose that*

- 1. α is admissible for every point of A,
- 2. β is admissible for every point of B,

Definition

Let (X, ζ) be an a-space and $x \in X$. A point $\alpha \in \mathbb{R}$ is said to be admissible for x if den (α) divides $\zeta(x)$.

Theorem (Urysohn's lemma for a-spaces)

Let X *be an a-normal space. Let* A *and* B *be disjoint closed subsets of* X. *Let* $\alpha, \beta \in \mathbb{R}$ *. Suppose that*

- 1. α is admissible for every point of A,
- 2. β is admissible for every point of B,

Then, there exists an a-map $f : X \to \mathbb{R}$ *such that*

for all $x \in A$, $f(x) = \alpha$ and for all $y \in B$, $f(y) = \beta$.

Let *X* be an a-space, $[\alpha, \beta] \subseteq \mathbb{R}$, and $f : X \to [\alpha, \beta]$ be an a-map. Pick $D \subseteq [\alpha, \beta]$ such that $\alpha, \beta \in D$.

Let *X* be an a-space, $[\alpha, \beta] \subseteq \mathbb{R}$, and $f : X \to [\alpha, \beta]$ be an a-map. Pick $D \subseteq [\alpha, \beta]$ such that $\alpha, \beta \in D$. For each $r \in D$, set

 $A_r \coloneqq f^{-1}[[\alpha, r]], \text{ and } B(r) \coloneqq f^{-1}[[r, \beta]].$

Let *X* be an a-space, $[\alpha, \beta] \subseteq \mathbb{R}$, and $f : X \to [\alpha, \beta]$ be an a-map. Pick $D \subseteq [\alpha, \beta]$ such that $\alpha, \beta \in D$. For each $r \in D$, set

 $A_r \coloneqq f^{-1}[[\alpha, r]], \text{ and } B(r) \coloneqq f^{-1}[[r, \beta]].$

Then, for all $r, s \in D$, the following properties hold.

1. $B_{\alpha} = A_{\beta} = X$. 2. $A_r \cup B_r = X$.

3.
$$r < s \Rightarrow D, A_r \cap B_s = \emptyset$$
.

4. $r \leq s \Rightarrow$ for every $x \in B_r \cap A_s$ there is $\gamma \in [r, s]$ such that γ is admissible for x.

Let *X* be an a-space, $[\alpha, \beta] \subseteq \mathbb{R}$, and $f : X \to [\alpha, \beta]$ be an a-map. Pick $D \subseteq [\alpha, \beta]$ such that $\alpha, \beta \in D$. For each $r \in D$, set

 $A_r \coloneqq f^{-1}[[\alpha, r]], \text{ and } B(r) \coloneqq f^{-1}[[r, \beta]].$

Then, for all $r, s \in D$, the following properties hold.

- 1. $B_{\alpha} = A_{\beta} = X.$ 2. $A_r \cup B_r = X.$
- 3. $r < s \Rightarrow D, A_r \cap B_s = \emptyset$.
- 4. $r \leq s \Rightarrow$ for every $x \in B_r \cap A_s$ there is $\gamma \in [r, s]$ such that γ is admissible for x.

Definition

Let *X*, α , β be as above. An $[\alpha, \beta]$ -draft on *X* consists of a subset $D \subseteq [\alpha, \beta]$ containing α and β and a pair of closed subsets of *X* (A_r, B_r) for every $r \in D$, such that (1)–(4) hold.

PROOF STRATEGY, CONTINUED Let $(D, (A_d, B_d)_{d \in D})$ be a $[\alpha, \beta]$ -draft on X.

Let $(D, (A_d, B_d)_{d \in D})$ be a $[\alpha, \beta]$ -draft on X.

► If *D* is closed, then there exists $(D', (A_d, B_d)_{d \in D'})$ $[\alpha, \beta]$ -draft on *X* that refines $(D, (A_d, B_d)_{d \in D})$, and such that D' is dense in $[\alpha, \beta]$.

Let $(D, (A_d, B_d)_{d \in D})$ be a $[\alpha, \beta]$ -draft on X.

- ► If *D* is closed, then there exists $(D', (A_d, B_d)_{d \in D'})$ $[\alpha, \beta]$ -draft on *X* that refines $(D, (A_d, B_d)_{d \in D})$, and such that D' is dense in $[\alpha, \beta]$.
- ► A realisation of an $[\alpha, \beta]$ -draft on $X(D, (A_d, B_d)_{d \in D})$ is an a-map $f: X \to [\alpha, \beta]$ such that, for every $r \in D$,

 $f[A_r] \subseteq [\alpha, r]$, and $f[B(r)] \subseteq [r, \beta]$.

Let $(D, (A_d, B_d)_{d \in D})$ be a $[\alpha, \beta]$ -draft on *X*.

- ► If *D* is closed, then there exists $(D', (A_d, B_d)_{d \in D'})$ $[\alpha, \beta]$ -draft on *X* that refines $(D, (A_d, B_d)_{d \in D})$, and such that D' is dense in $[\alpha, \beta]$.
- A realisation of an $[\alpha, \beta]$ -draft on $X (D, (A_d, B_d)_{d \in D})$ is an a-map $f : X \to [\alpha, \beta]$ such that, for every $r \in D$,

 $f[A_r] \subseteq [\alpha, r], \text{ and } f[B(r)] \subseteq [r, \beta].$

If *D* is dense in [α, β]. Then, (D, (A_d, B_d)_{d∈D}) has a unique realisation given by

$$f(x) \coloneqq \inf\{r \in D \mid x \in A_r\} = \sup\{r \in D \mid x \in B(r)\}.$$

Let $(D, (A_d, B_d)_{d \in D})$ be a $[\alpha, \beta]$ -draft on X.

- ► If *D* is closed, then there exists $(D', (A_d, B_d)_{d \in D'})$ $[\alpha, \beta]$ -draft on *X* that refines $(D, (A_d, B_d)_{d \in D})$, and such that D' is dense in $[\alpha, \beta]$.
- ► A realisation of an $[\alpha, \beta]$ -draft on X $(D, (A_d, B_d)_{d \in D})$ is an a-map $f : X \to [\alpha, \beta]$ such that, for every $r \in D$,

 $f[A_r] \subseteq [\alpha, r], \text{ and } f[B(r)] \subseteq [r, \beta].$

If *D* is dense in [α, β]. Then, (D, (A_d, B_d)_{d∈D}) has a unique realisation given by

 $f(x)\coloneqq \inf\{r\in D\mid x\in A_r\}=\sup\{r\in D\mid x\in B(r)\}.$

► Finally, in the stament of the theorem, set $D := \{\alpha, \beta\}$, $A(\alpha) := A, B(\alpha) := X, A(\beta) := X$, and $B(\beta) := B$.

The duality

Theorem

The functors \mathcal{M} *and* \mathcal{C}_{ζ} *give a categorical duality between norm-complete* ℓ *-groups with unit preserving homomorphisms and a-normal spaces with a-maps.*

The duality

Theorem

The functors \mathcal{M} *and* \mathcal{C}_{ζ} *give a categorical duality between norm-complete* ℓ *-groups with unit preserving homomorphisms and a-normal spaces with a-maps.*

Thank you for your attention!