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THE SPECTRAL SPACE RIGHT ORDERS ON GROUPS A FRUITFUL CORRESPONDENCE

THE SPECTRAL SPACE

The spectral space, or `-spectrum, was introduced for Abelian `-groups by
Klaus Keimel in his doctoral dissertation (1971).

His aim was to follow on from the success of scheme theory in algebraic
geometry, and introduce sheaf-theoretic methods in the study of `-groups.

The spectral space has been widely studied for Abelian `-groups, and later
introduced also for arbitrary `-groups (e.g. Conrad & Martinez, 1990).
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LATTICE-ORDERED GROUPS

An `-group is an algebra 〈H, ·,∧,∨,−1, e〉 where 〈H, ·,−1, e〉 is a group,
〈H,∧,∨〉 is a (distributive) lattice, and · distributes over ∧,∨.

The class of all `-groups is a variety, that is, an equationally definable class.

EXAMPLE

Given a chain Ω, the group Aut(Ω) of its order-preserving bijections can be
made into an `-group by defining the coordinate-wise lattice order:

f ≤ g⇐⇒ f(a) ≤ g(a), for every a ∈ Ω.

The `-groups of order-preserving bijections of chains generate the variety
of `-groups. More precisely, the `-group Aut(R) generates the variety.
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THE SPECTRAL SPACE

A convex `-subgroup of an `-group H is a convex sublattice subgroup of H.

For a convex `-subgroup c ⊆ H, the quotient H/c is a lattice with
operations cx ∧ cy = c(x ∧ y), and cx ∨ cy = c(x ∨ y).

We call a convex `-subgroup p ( H prime if for every x, y ∈ H, if x ∧ y ∈ p
then x ∈ p or y ∈ p. Equivalently, if the quotient H/p is a chain.

The set Spec H of prime convex `-subgroups ordered by ⊆ is a root system.

Every p ∈ Spec H contains at least one minimal element m ∈ Min H
(by a simple application of Zorn’s Lemma).
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THE SPECTRAL SPACE

We endow Spec H with the spectral topology, whose basic open sets are

S(x) = {p ∈ Spec H | x 6∈ p}, for x ∈ H.

These are all the compact opens, and the space is a completely normal
generalised spectral space.

We endow Min H with the subspace topology, and get a Hausdorff space.
It is not necessarily compact.
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EXAMPLE: FREE ABELIAN `-GROUP

Consider the `-group of piece-wise homogeoneous linear functions
f : R2 → R with integral coefficients.

It is generated as a distributive lattice by Z2.

It is the free Abelian `-group F`A(2) over 2 generators.
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EXAMPLE: FREE ABELIAN `-GROUP

The root system Spec F`A(2) is:

. . . . . . . . .

Every element p ∈ Spec F`A(2) is extended by a unique maximal element
p∗ ∈ Max F`A(2), and we can consider the continuous closed map

λ : Min F`A(2)→ Max F`A(2),

defined by
λ(m) = m∗.
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EXAMPLE: FREE ABELIAN `-GROUP

The space Max F`A(2) is homeomorphic to S1 with the Euclidean topology.

Z

Z

S1 ∼= Max F`
A(2)
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EXAMPLE: FREE ABELIAN `-GROUP

The points in Max F`A(2) ∩Min F`A(2)

. . . . . . . . .

can be thought of as those points (x, y) ∈ S1 with x
y 6∈ Q.

Z

Z

S1

‘irrational’ point
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EXAMPLE: FREE ABELIAN `-GROUP

The points in Max F`A(2) \Min F`A(2)

. . . . . . . . .

can be thought of as those points (x, y) ∈ S1 with x
y ∈ Q.

Z

Z

S1
‘rational’ point
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EXAMPLE: COMPACTNESS

EXAMPLE

Consider the Abelian `-group H1 generated in C([0,1],R) by the maps

1̂ : [0,1]→ R, x 7→ 1 and id[0,1] : [0,1]→ R, x 7→ x.

The space Min H1 is compact.

NON-EXAMPLE

Consider the Abelian `-group H2 generated in C([0,1],R) by the maps

1̂ : [0,1]→ R, x 7→ 1 and id[0,1] : [0,1]→ R, x 7→ x

and (−)
2
: [0,1]→ R, x 7→ x2.

The space Min H2 is not compact.
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RIGHT ORDERS

The theory of orderable groups is often presented as an area of the theory
of lattice-ordered groups (briefly, `-groups).

EXAMPLE

A group is right orderable if, and only if, it embeds into an `-group.

Orderability of many interesting groups has recently attracted the interest
of people from different areas in mathematics.

EXAMPLE

Orderability of the fundamental group of a 3-manifold is related to the
existence of certain foliations. (Boyer, Rolfsen, & Wiest, 2005)

EXAMPLE

A countable group is right orderable if, and only if, it acts faithfully on R
by orientation-preserving homeomorphisms.
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RIGHT ORDERS

Given a group 〈G, ·,−1, e〉 a right-invariant (total) order ≤ on G is a total
order on G such that for every a, b, t ∈ G,

a ≤ b =⇒ a · t ≤ b · t.

We call a right-invariant order on a group G a (total) right order on G.

Given a right order on G, the set of its non-negative elements C ⊆ G is a
submonoid of G with the properties C ∪ C−1 = G and C ∩ C−1 = {e}, and we
call such a submonoid a (total) cone for G.

Conversely, every cone C is the positive cone of some right order ≤C on G,
defined via: a ≤C b if, and only if, ba−1 ∈ C.

We identify a right order ≤ on G with its cone C, and hence see the set
R(G) of all possible right orders on G as a set of subsets of G.
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THE TOPOLOGICAL SPACE OF ORDERS

Given a right orderable group G, the set R(G) of right orders on G is
non-empty, and it is possible to endow it with a topology τ , namely the
smallest topology containing the sets

R(a) = {C ∈ R(G) | a ∈ C}, for a ∈ G.

This space was introduced by Adam Sikora in 2004, and was proved to be
compact, Hausdorff, and totally disconnected.
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EXAMPLE: ORDERS ON Z2

Lines through the origin, with irrational slope...

Z

Z0
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EXAMPLE: ORDERS ON Z2

... determine one (Archimedean) order...

Z

Z0

C
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EXAMPLE: ORDERS ON Z2

... determine two (Archimedean) orders.

Z

Z0

C
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EXAMPLE: ORDERS ON Z2

Lines through the origin, with rational slope...

Z

Z0
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Lines through the origin, with rational slope...

Z

Z0
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EXAMPLE: ORDERS ON Z2

... determine one (lexicographic) order...

Z

Z

C

0
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EXAMPLE: ORDERS ON Z2

... determine two (lexicographic) orders...

Z

Z

C

0
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EXAMPLE: ORDERS ON Z2

... determine three (lexicographic) orders...

Z

Z

C

0
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EXAMPLE: ORDERS ON Z2

... determine four (lexicographic) orders.

Z

Z

C

0
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EXAMPLE: ISOLATED POINTS

Let F(n) be the free group generated by n ≥ 2 variables.

THEOREM (MCCLEARY)
The space R(F(n)) for n ≥ 2, doesn’t have any isolated points.

Given a group 〈G, ·,−1, e〉 an order ≤ on G is a right order on G which is
also left invariant, that is, for every a, b, t ∈ G, a ≤ b =⇒ t · a ≤ t · b.

We identify an order ≤ on G with its cone C, and hence see the space
O(G) of all possible orders on G as a subspace of R(G).

CONJECTURE.
The space O(F(n)) for n ≥ 2, doesn’t have any isolated points.

This was first asked by McCleary (1986) in a different form.

CENTRALIZERS IN FREE LATTICE-ORDERED GROUPS 465 

An element of f of an I•-group F is basic if e < f and if {h G Fie •< h •< f} is 

totally ordered. Weinberg showed that the free abelian œ-group of rank ,/> 1 has no 

basic elements. His argument is a subset of his proof of [ 10, Theorem 4.2 ], and part 

of the present argument is similar to Weinberg's. 

LEMMA 19. Let e < w G Frr Then w is basic if and only if there exists a unique 
right ordering G X of G = G• in which ew > e. 

PROOF. Suppose G x is the unique right ordering in which ew > e. Let 
e •< h i •< w, i = 1,2, and suppose without loss of generality that eh 1 •< eh 2 in G x. Then 
e(h2h•l ^ e) = e in G x, and certainly also in the other right orderings. By Proposition 
14, h2h•l ^ e = e in Fr•i.e., h 1 •< h 2. Hence w is basic. Conversely, let G 1 and G x2 be distinct right orderings in which ew > e. Pick 
h 1 GG such that e<h 1 in G xl but not inG x2. Letk l=(h 1 ̂  w) ve•<w. Then 
e<k 1 in G xl and ek 1 =e in G x2. Similarly, there exists k2GFr/ such that 
e•<k 2•<w, e<k 2inG x2 andek 2=Ping xl Sincek I andk 2 are incomparable, w • ß 

is not basic. 

PROPOSITION 20. Fr/has a basic element if and only if G,1 has a finite subset S 
for which there is a unique right ordering of G,1 making all elements of S positive. 

PROOF. Suppose w= Vi•jwij is basic. Then for some i 0, 6/%XjWio j) v e is 
also basic. Let G x be the unique right ordering in which e(Ajwi0 j v e) > e. Then G x 
is also the unique right ordering in which each wi0 j is positive. 

Conversely, if G x is the unique right ordering making all elements of S positive, 
then once e is deleted from S, (A s) v e is basic. 

(RHETORICAL) QUESTION. Does the free group Gr/(1 < r/< oo) have a finite 
subset S for which there is a unique right ordering of Gr/ making all elements of S 
p os i tive ? 

(OPEN) QUESTION. Does G (1 < r/< oo) have a finite subset S for which there 

is a unique (two-sided) total order of Gr/making all elements of S positive? 
For infinite r/, both questions have easy negative answers. Some comments on 

f'mite ,/: The answer to the rhetorical question should be "no" since F "shouldn't" 

have a basic element; the negative answer will be confirmed in a future paper. The 

open question can be shown to be equivalent to the question of whether the free 
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FREE `-GROUPS

For a group G and a variety V of `-groups, there are an `-group F`V(G) and
a group homomorphism η : G→ F`V(G) characterised by the following...

... UNIVERSAL PROPERTY.
For each group homomorphism p : G→ H with H ∈ V, there is exactly
one `-homomorphism h : F`V(G)→ H such that the following diagram

G F`V(G)

H

p

η

! h

commutes, i.e., h(η(a)) = p(a), for each a ∈ G.

It is easy to see that η[G] generates F`V(G) as a lattice.
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EXAMPLE: COMPACTNESS

THEOREM

For any right-orderable group G, the minimal spectrum Min F`(G) of the
free `-group F`(G) is the space R(G) of right orders on G.

Since R(η[G]) is very easily proved compact, we get:

COROLLARY

For any group G, the space Min F`(G) of the free `-group F`(G) is compact.
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EXAMPLE: COMPACTNESS
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BACK TO THE EXAMPLE: COMPACTNESS

EXAMPLE

Consider the Abelian `-group H1 generated in C([0,1],R) by the maps

1̂ : [0,1]→ R, x 7→ 1 and id[0,1] : [0,1]→ R, x 7→ x.

The space Min H1 is compact.

NON-EXAMPLE

Consider the Abelian `-group H2 generated in C([0,1],R) by the maps

1̂ : [0,1]→ R, x 7→ 1 and id[0,1] : [0,1]→ R, x 7→ x

and (−)
2
: [0,1]→ R, x 7→ x2.

The space Min H2 is not compact.
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EXAMPLE: ISOLATED POINTS

The class of those `-groups which are subdirect products of totally ordered
groups forms the variety R of representable `-groups.

THEOREM

The minimal spectrum Min F`R(n) of the free representable `-group F`R(n) of
rank n is the space O(F(n)) of orders on the free group F(n) of rank n.
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EXAMPLE: ISOLATED POINTS

Every element p ∈ Spec F`R(n) for n ≥ 2 is extended by a unique maximal
element p∗ ∈ Max F`R(n), and we can consider the continuous closed map

λ : Min F`R(n)→ Max F`R(n),

defined by
λ(m) = m∗.

It is possible to show: Max F`R(n) ∼= Max F`A(n) ∼= Sn−1.

We say that the map λ is irreducible if it sends proper closed subsets of
Min F`R(n) to proper closed subsets of Max F`R(n).

COROLLARY

If the map λ is irreducible, then Min F`R(n) doesn’t have any isolated points.
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EXAMPLE: ISOLATED POINTS

PROOF...
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EXAMPLE: ISOLATED POINTS

... PROOF.
Hence, the image of the green points through the map λ is the red part.
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This is not possible, since Max F`R(n) is homeomorphic to Sn−1 with the
Euclidean topology and hence, it doesn’t have isolated points.  
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CONCLUDING REMARKS

What’s next?

Recall that Max F`R(n) ∼= Max F`A(n) ∼= Sn−1.

The `-group F`R(n) acts in various ways on Max F`R(n) ∼= Sn−1.

We seek a representation of F`R(n) in Homeo(Sn−1).

Possibly, exploiting the dynamic realisation of orderable groups.

————————————————————————————————

A. Colacito and V. Marra. ORDERS ON GROUPS, AND SPECTRAL SPACES OF

LATTICE-GROUPS. arXiv Preprint available. Submitted (2019).
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