### ORDERS ON GROUPS AN APPROACH THROUGH SPECTRAL SPACES

#### Almudena Colacito Based on joint work with Vincenzo Marra

Mathematisches Institut Universität Bern

TACL 2019 June 20, 2019

### SPECTRAL SPACES AN APPROACH THROUGH ORDERS ON GROUPS

#### Almudena Colacito Based on joint work with Vincenzo Marra

Mathematisches Institut Universität Bern

> TACL 2019 June 20, 2019

## THE SPECTRAL SPACE

The *spectral space*, or  $\ell$ -*spectrum*, was introduced for Abelian  $\ell$ -groups by Klaus Keimel in his doctoral dissertation (1971).

His aim was to follow on from the success of scheme theory in algebraic geometry, and introduce sheaf-theoretic methods in the study of  $\ell$ -groups.

The spectral space has been widely studied for Abelian  $\ell$ -groups, and later introduced also for arbitrary  $\ell$ -groups (e.g. Conrad & Martinez, 1990).

# LATTICE-ORDERED GROUPS

An  $\ell$ -group is an algebra  $\langle H, \cdot, \wedge, \vee, ^{-1}, e \rangle$  where  $\langle H, \cdot, ^{-1}, e \rangle$  is a group,  $\langle H, \wedge, \vee \rangle$  is a (distributive) lattice, and  $\cdot$  distributes over  $\wedge, \vee$ .

The class of all  $\ell$ -groups is a variety, that is, an *equationally definable class*.

### EXAMPLE

Given a chain  $\Omega$ , the group Aut( $\Omega$ ) of its *order-preserving bijections* can be made into an  $\ell$ -group by defining the *coordinate-wise lattice order*:

 $f \leq g \iff f(a) \leq g(a)$ , for every  $a \in \Omega$ .

The  $\ell$ -groups of order-preserving bijections of chains generate the variety of  $\ell$ -groups. More precisely, the  $\ell$ -group Aut $(\mathbb{R})$  generates the variety.

# LATTICE-ORDERED GROUPS

An  $\ell$ -group is an algebra  $\langle H, \cdot, \wedge, \vee, ^{-1}, e \rangle$  where  $\langle H, \cdot, ^{-1}, e \rangle$  is a group,  $\langle H, \wedge, \vee \rangle$  is a (distributive) lattice, and  $\cdot$  distributes over  $\wedge, \vee$ .

The class of all  $\ell$ -groups is a variety, that is, an *equationally definable class*.

### EXAMPLE

Given a chain  $\Omega$ , the group Aut( $\Omega$ ) of its *order-preserving bijections* can be made into an  $\ell$ -group by defining the *coordinate-wise lattice order*:

 $f \leq g \iff f(a) \leq g(a)$ , for every  $a \in \Omega$ .

The  $\ell$ -groups of order-preserving bijections of chains generate the variety of  $\ell$ -groups. More precisely, the  $\ell$ -group Aut( $\mathbb{R}$ ) generates the variety.

# THE SPECTRAL SPACE

#### A convex $\ell$ -subgroup of an $\ell$ -group H is a convex sublattice subgroup of H.

For a convex  $\ell$ -subgroup  $\mathfrak{c} \subseteq H$ , the quotient  $H/\mathfrak{c}$  is a *lattice* with operations  $\mathfrak{cx} \wedge \mathfrak{cy} = \mathfrak{c}(x \wedge y)$ , and  $\mathfrak{cx} \vee \mathfrak{cy} = \mathfrak{c}(x \vee y)$ .

We call a convex  $\ell$ -subgroup  $\mathfrak{p} \subsetneq H$  prime if for every  $x, y \in H$ , if  $x \land y \in \mathfrak{p}$  then  $x \in \mathfrak{p}$  or  $y \in \mathfrak{p}$ . Equivalently, if the quotient  $H/\mathfrak{p}$  *is a chain*.

The set Spec H of *prime convex*  $\ell$ *-subgroups* ordered by  $\subseteq$  is a *root system*.

Every  $\mathfrak{p} \in \text{Spec } H$  contains at least one *minimal* element  $\mathfrak{m} \in \text{Min } H$  (by a simple application of Zorn's Lemma).

## THE SPECTRAL SPACE

We endow Spec H with the spectral topology, whose basic open sets are

$$\mathbb{S}(x) = \{ \mathfrak{p} \in \operatorname{Spec} H \mid x \notin \mathfrak{p} \}, \text{ for } x \in H.$$

These are all the *compact opens*, and the space is a <u>completely normal</u> generalised spectral space.

We endow Min H with the subspace topology, and get a Hausdorff space. It is not necessarily *compact*.

Consider the  $\ell$ -group of piece-wise homogeoneous linear functions  $f \colon \mathbb{R}^2 \to \mathbb{R}$  with integral coefficients. It is generated *as a distributive lattice* by  $\mathbb{Z}^2$ . It is the free Abelian  $\ell$ -group  $F^{\ell}_{A}(2)$  over 2 generators.

## EXAMPLE: FREE ABELIAN $\ell$ -Group

The root system Spec  $F^{\ell}_{A}(2)$  is:

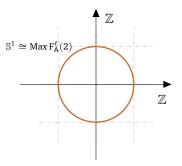
Every element  $\mathfrak{p} \in \text{Spec} F^{\ell}_{A}(2)$  is extended by a *unique maximal* element  $\mathfrak{p}^* \in \text{Max} F^{\ell}_{A}(2)$ , and we can consider the *continuous closed* map

$$\lambda: \operatorname{Min} F^{\ell}_{\mathsf{A}}(2) \to \operatorname{Max} F^{\ell}_{\mathsf{A}}(2),$$

defined by

$$\lambda(\mathfrak{m})=\mathfrak{m}^*.$$

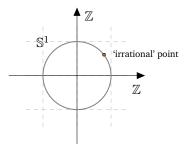
The space  $\mbox{Max}\,F^\ell_A(2)$  is homeomorphic to  $\mathbb{S}^1$  with the Euclidean topology.



The points in  $\text{Max}\,F^\ell_{\mathsf{A}}(2)\cap\text{Min}\,F^\ell_{\mathsf{A}}(2)$ 



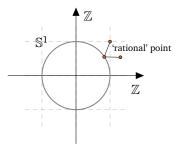
can be thought of as those points  $(x, y) \in \mathbb{S}^1$  with  $\frac{x}{y} \notin \mathbb{Q}$ .



The points in  $\text{Max}\,F^\ell_A(2)\setminus \text{Min}\,F^\ell_A(2)$ 



can be thought of as those points  $(x, y) \in \mathbb{S}^1$  with  $\frac{x}{y} \in \mathbb{Q}$ .



#### EXAMPLE

Consider the Abelian  $\ell$ -group H<sub>1</sub> generated in C([0, 1],  $\mathbb{R}$ ) by the maps

 $\hat{1}: [0,1] \to \mathbb{R}, x \mapsto 1 \text{ and } \operatorname{id}_{[0,1]}: [0,1] \to \mathbb{R}, x \mapsto x.$ 

#### The space $Min H_1$ is compact.

#### NON-EXAMPLE

Consider the Abelian  $\ell$ -group H<sub>2</sub> generated in C([0, 1],  $\mathbb{R}$ ) by the maps

$$\hat{1} \colon [0,1] \to \mathbb{R}, x \mapsto 1$$
 and  $\mathrm{id}_{[0,1]} \colon [0,1] \to \mathbb{R}, x \mapsto x$ 

and 
$$(-)^2 \colon [0,1] \to \mathbb{R}, \quad x \mapsto x^2.$$

The space  $Min H_2$  is *not* compact.

#### EXAMPLE

Consider the Abelian  $\ell$ -group H<sub>1</sub> generated in C([0, 1],  $\mathbb{R}$ ) by the maps

 $\hat{1} \colon [0,1] \to \mathbb{R}, x \mapsto 1$  and  $\operatorname{id}_{[0,1]} \colon [0,1] \to \mathbb{R}, x \mapsto x.$ 

The space  $Min H_1$  is compact.

#### Non-Example

Consider the Abelian  $\ell$ -group H<sub>2</sub> generated in C([0, 1],  $\mathbb{R}$ ) by the maps

$$\hat{1} \colon [0,1] \to \mathbb{R}, \ x \mapsto 1 \quad \text{and} \quad \operatorname{id}_{[0,1]} \colon [0,1] \to \mathbb{R}, \ x \mapsto x$$

and 
$$(-)^2 \colon [0,1] \to \mathbb{R}, \quad x \mapsto x^2.$$

The space  $Min H_2$  is *not* compact.

## RIGHT ORDERS

The theory of orderable groups is often presented as an area of the theory of lattice-ordered groups (briefly,  $\ell$ -groups).

#### EXAMPLE

A group is right orderable if, and only if, it embeds into an  $\ell\text{-}\text{group}.$ 

Orderability of many interesting groups has recently attracted the interest of people from different areas in mathematics.

#### EXAMPLE

Orderability of the fundamental group of a 3-manifold is related to the existence of certain foliations. (Boyer, Rolfsen, & Wiest, 2005)

### EXAMPLE

A countable group is right orderable if, and only if, it acts faithfully on  $\mathbb{R}$  by orientation-preserving homeomorphisms.

## RIGHT ORDERS

Given a group  $(G, \cdot, -1, e)$  a *right-invariant* (total) order  $\leq$  on G is a total order on G such that for every  $a, b, t \in G$ ,

$$a \leq b \Longrightarrow a \cdot t \leq b \cdot t.$$

#### We call a *right-invariant* order on a group G a (total) right order on G.

Given a right order on G, the set of its *non-negative elements*  $C \subseteq G$  is a submonoid of G with the properties  $C \cup C^{-1} = G$  and  $C \cap C^{-1} = \{e\}$ , and we call such a submonoid a (total) **cone** for G.

Conversely, every *cone C* is the positive cone of some right order  $\leq_C$  on G, defined via:  $a \leq_C b$  if, and only if,  $ba^{-1} \in C$ .

We identify a right order  $\leq$  on G with its cone C, and hence see the set  $\mathcal{R}(G)$  of all possible right orders on G as a set of subsets of G.

## RIGHT ORDERS

Given a group  $(G, \cdot, -1, e)$  a *right-invariant* (total) order  $\leq$  on G is a total order on G such that for every  $a, b, t \in G$ ,

$$a \leq b \Longrightarrow a \cdot t \leq b \cdot t.$$

We call a *right-invariant* order on a group G a (total) right order on G.

Given a right order on G, the set of its *non-negative elements*  $C \subseteq G$  is a submonoid of G with the properties  $C \cup C^{-1} = G$  and  $C \cap C^{-1} = \{e\}$ , and we call such a submonoid a (total) cone for G.

Conversely, every *cone C* is the positive cone of some right order  $\leq_C$  on G, defined via:  $a \leq_C b$  if, and only if,  $ba^{-1} \in C$ .

We identify a right order  $\leq$  on G with its cone C, and hence see the set  $\mathcal{R}(G)$  of *all possible right orders on* G as a set of subsets of G.

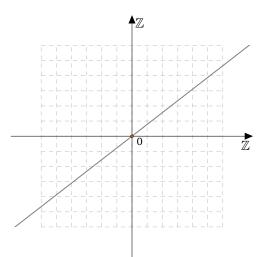
## THE TOPOLOGICAL SPACE OF ORDERS

Given a *right orderable* group G, the set  $\mathcal{R}(G)$  of right orders on G is non-empty, and it is possible to endow it with a topology  $\tau$ , namely the *smallest topology* containing the sets

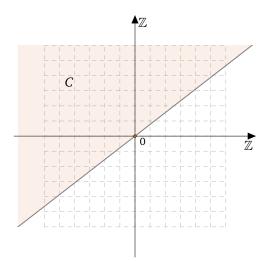
$$\mathbb{R}(a) = \{ C \in \mathcal{R}(G) \mid a \in C \}, \text{ for } a \in G.$$

This space was introduced by Adam Sikora in 2004, and was proved to be compact, Hausdorff, and totally disconnected.

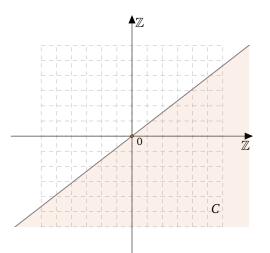
### Lines through the origin, with irrational slope...



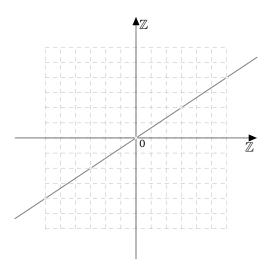
... determine one (Archimedean) order ...



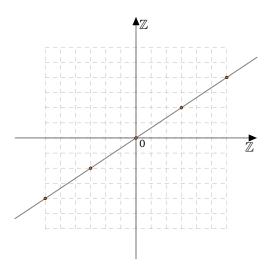
### ... determine *two* (Archimedean) orders.



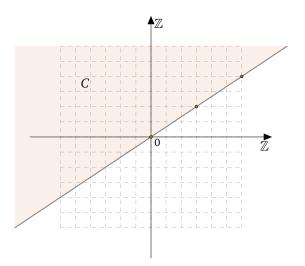
Lines through the origin, with rational slope...



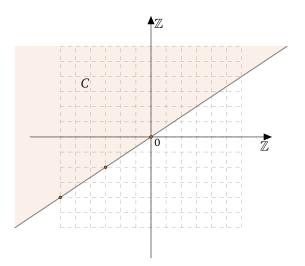
Lines through the origin, with rational slope...



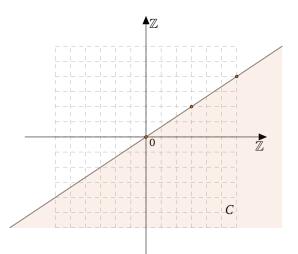
... determine one (lexicographic) order...



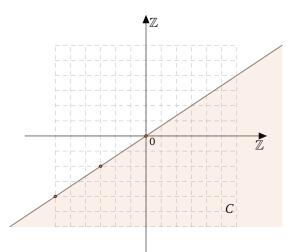
### ... determine two (lexicographic) orders...



### ... determine three (lexicographic) orders...



### ... determine *four* (lexicographic) *orders*.



Let F(n) be the free group generated by  $n \ge 2$  variables.

THEOREM (MCCLEARY)

The space  $\mathcal{R}(F(n))$  for  $n \ge 2$ , doesn't have any isolated points.

Let F(n) be the free group generated by  $n \ge 2$  variables.

### THEOREM (MCCLEARY)

The space  $\mathcal{R}(F(n))$  for  $n \geq 2$ , doesn't have any isolated points.

Given a group  $\langle G, \cdot, -1, e \rangle$  an order  $\leq$  on G is a *right order* on G which is also *left invariant*, that is, for every  $a, b, t \in G$ ,  $a \leq b \Longrightarrow t \cdot a \leq t \cdot b$ .

We identify an order  $\leq$  on G with its cone *C*, and hence see the space  $\mathcal{O}(G)$  of *all possible orders on G* as a subspace of  $\mathcal{R}(G)$ .

Let F(n) be the free group generated by  $n \ge 2$  variables.

### THEOREM (MCCLEARY)

The space  $\mathcal{R}(F(n))$  for  $n \geq 2$ , doesn't have any isolated points.

Given a group  $(G, \cdot, -1, e)$  an order  $\leq$  on G is a *right order* on G which is also *left invariant*, that is, for every  $a, b, t \in G$ ,  $a \leq b \implies t \cdot a \leq t \cdot b$ .

We identify an order  $\leq$  on G with its cone *C*, and hence see the space  $\mathcal{O}(G)$  of *all possible orders on G* as a subspace of  $\mathcal{R}(G)$ .

### CONJECTURE.

The space  $\mathcal{O}(F(n))$  for  $n \ge 2$ , doesn't have any isolated points.

#### This was first asked by McCleary (1986) in a different form.

(OPEN) QUESTION. Does G  $(1 < \eta < \infty)$  have a finite subset S for which there is a unique (two-sided) total order of  $G_{\eta}$  making all elements of S positive?

RIGHT ORDERS ON GROUPS

### Free $\ell$ -Groups

For a group G and a variety V of  $\ell$ -groups, there are an  $\ell$ -group  $F_V^{\ell}(G)$  and a group homomorphism  $\eta \colon G \to F_V^{\ell}(G)$  characterised by the following...

#### ... UNIVERSAL PROPERTY.

For each group homomorphism  $p: G \to H$  with  $H \in V$ , there is exactly one  $\ell$ -homomorphism  $h: F^{\ell}_{V}(G) \to H$  such that the following diagram



commutes, i.e.,  $h(\eta(a)) = p(a)$ , for each  $a \in G$ .

It is easy to see that  $\eta[G]$  generates  $F_V^{\ell}(G)$  as a lattice.

#### THEOREM

For any right-orderable group G, the minimal spectrum  $Min F^{\ell}(G)$  of the free  $\ell$ -group  $F^{\ell}(G)$  is the space  $\mathcal{R}(G)$  of right orders on G.

Since  $\mathcal{R}(\eta[G])$  is very easily proved compact, we get:

#### COROLLARY

For any group G, the space  $Min F^{\ell}(G)$  of the free  $\ell$ -group  $F^{\ell}(G)$  is compact.

#### THEOREM

For any group G, the minimal spectrum  $Min F^{\ell}(G)$  of the free  $\ell$ -group  $F^{\ell}(G)$  is the space  $\mathcal{R}(\eta[G])$  of right orders on the group  $\eta[G]$ .

Since  $\mathcal{R}(\eta[G])$  is very easily proved compact, we get:

#### COROLLARY

For any group G, the space  $Min F^{\ell}(G)$  of the free  $\ell$ -group  $F^{\ell}(G)$  is compact.

#### THEOREM

For any group G, the minimal spectrum  $Min F^{\ell}(G)$  of the free  $\ell$ -group  $F^{\ell}(G)$  is the space  $\mathcal{R}(\eta[G])$  of right orders on the group  $\eta[G]$ .

Since  $\mathcal{R}(\eta[G])$  is very easily proved compact, we get:

#### COROLLARY

For any group G, the space  $Min\,F^\ell(G)$  of the free  $\ell\text{-group}\,F^\ell(G)$  is compact.

# BACK TO THE EXAMPLE: COMPACTNESS

#### EXAMPLE

Consider the Abelian  $\ell$ -group H<sub>1</sub> generated in C([0, 1],  $\mathbb{R}$ ) by the maps

 $\hat{1} \colon [0,1] \to \mathbb{R}, \ x \mapsto 1 \quad \text{and} \quad \operatorname{id}_{[0,1]} \colon [0,1] \to \mathbb{R}, \ x \mapsto x.$ 

The space  $Min H_1$  is compact.

### Non-Example

Consider the Abelian  $\ell$ -group H<sub>2</sub> generated in C([0, 1],  $\mathbb{R}$ ) by the maps

$$\hat{1} \colon [0,1] \to \mathbb{R}, \ x \mapsto 1 \quad \text{and} \quad \operatorname{id}_{[0,1]} \colon [0,1] \to \mathbb{R}, \ x \mapsto x$$

and 
$$(-)^2 \colon [0,1] \to \mathbb{R}, \quad x \mapsto x^2.$$

The space  $Min H_2$  is *not* compact.

The class of those  $\ell$ -groups which are *subdirect products* of totally ordered groups forms the variety R of representable  $\ell$ -groups.

#### THEOREM

The minimal spectrum  $\operatorname{Min} F^{\ell}_{\mathsf{R}}(n)$  of the free representable  $\ell$ -group  $F^{\ell}_{\mathsf{R}}(n)$  of rank n is the space  $\mathcal{O}(F(n))$  of orders on the free group F(n) of rank n.

Every element  $\mathfrak{p} \in \operatorname{Spec} F^{\ell}_{\mathsf{R}}(n)$  for  $n \geq 2$  is extended by a *unique maximal* element  $\mathfrak{p}^* \in \operatorname{Max} F^{\ell}_{\mathsf{R}}(n)$ , and we can consider the *continuous closed* map

$$\lambda: \operatorname{Min} \mathrm{F}^{\ell}_{\mathsf{R}}(n) \to \operatorname{Max} \mathrm{F}^{\ell}_{\mathsf{R}}(n),$$

defined by

$$\lambda(\mathfrak{m})=\mathfrak{m}^*.$$

It is possible to show:  $\operatorname{Max} F^{\ell}_{\mathsf{R}}(n) \cong \operatorname{Max} F^{\ell}_{\mathsf{A}}(n) \cong \mathbb{S}^{n-1}$ .

We say that the map  $\lambda$  is irreducible if it sends proper closed subsets of  $\operatorname{Min} F^{\ell}_{\mathsf{R}}(n)$  to proper closed subsets of  $\operatorname{Max} F^{\ell}_{\mathsf{R}}(n)$ .

### COROLLARY

If the map  $\lambda$  is irreducible, then  $\operatorname{Min} F^\ell_{\mathsf{R}}(n)$  doesn't have any isolated points.

Every element  $\mathfrak{p} \in \operatorname{Spec} F^{\ell}_{\mathsf{R}}(n)$  for  $n \geq 2$  is extended by a *unique maximal* element  $\mathfrak{p}^* \in \operatorname{Max} F^{\ell}_{\mathsf{R}}(n)$ , and we can consider the *continuous closed* map

$$\lambda: \operatorname{Min} \mathrm{F}^{\ell}_{\mathsf{R}}(n) \to \operatorname{Max} \mathrm{F}^{\ell}_{\mathsf{R}}(n),$$

defined by

$$\lambda(\mathfrak{m})=\mathfrak{m}^*.$$

It is possible to show:  $\operatorname{Max} F^{\ell}_{\mathsf{R}}(n) \cong \operatorname{Max} F^{\ell}_{\mathsf{A}}(n) \cong \mathbb{S}^{n-1}$ .

We say that the map  $\lambda$  is irreducible if it sends proper closed subsets of  $\operatorname{Min} F^{\ell}_{\mathsf{R}}(n)$  to proper closed subsets of  $\operatorname{Max} F^{\ell}_{\mathsf{R}}(n)$ .

### COROLLARY

If the map  $\lambda$  is irreducible, then  $\operatorname{Min} F^{\ell}_{\mathsf{R}}(n)$  doesn't have any isolated points.

### PROOF...

Suppose that there is an isolated point in  $\operatorname{Min} F_{\mathsf{R}}^{\ell}(n)$ .



The image of the green points through the map  $\lambda$  must be *proper*.

$$\overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow} \operatorname{Min} F_{\mathsf{R}}^{\ell}(n)$$

### PROOF...

Suppose that there is an isolated point in  $\operatorname{Min} F_{\mathsf{R}}^{\ell}(n)$ .



The image of the green points through the map  $\lambda$  must be *proper*.

#### ... Proof.

Hence, the image of the green points through the map  $\lambda$  is the red part.

• • • • • • • • • • • • Max  $F_{\mathsf{R}}^{\ell}(n) \cong \mathbb{S}^{n-1}$ ...
• • • • • • • • • Min  $F_{\mathsf{R}}^{\ell}(n)$ 

This is not possible, since  $\operatorname{Max} F^{\ell}_{\mathsf{R}}(n)$  is homeomorphic to  $\mathbb{S}^{n-1}$  with the Euclidean topology and hence, it doesn't have isolated points.  $\oint$ 

 $\operatorname{Max} \operatorname{F}^{\ell}_{\mathsf{R}}(n) \cong \mathbb{S}^{n-1}$   $\cdots$   $\operatorname{Max} \operatorname{F}^{\ell}_{\mathsf{R}}(n)$   $\operatorname{Max} \operatorname{F}^{\ell}_{\mathsf{R}}(n)$ 

Therefore, if  $\lambda$  is irreducible, then Min  $F_{\mathsf{R}}^{\ell}(n)$  doesn't have isolated points.

#### ... Proof.

Hence, the image of the green points through the map  $\lambda$  is the red part.

 $\operatorname{Max} F_{\mathsf{R}}^{\ell}(n) \cong \mathbb{S}^{n-1}$   $\ldots$   $\operatorname{Max} F_{\mathsf{R}}^{\ell}(n) \cong \mathbb{S}^{n-1}$   $\operatorname{Max} F_{\mathsf{R}}^{\ell}(n)$ 

This is not possible, since  $\operatorname{Max} F^{\ell}_{\mathsf{R}}(n)$  is homeomorphic to  $\mathbb{S}^{n-1}$  with the Euclidean topology and hence, it doesn't have isolated points.  $\notin$ 



Therefore, if  $\lambda$  is irreducible, then Min  $F_{\mathsf{R}}^{\ell}(n)$  doesn't have isolated points.

## CONCLUDING REMARKS

#### What's next?

Recall that  $\operatorname{Max} F_{\mathsf{R}}^{\ell}(n) \cong \operatorname{Max} F_{\mathsf{A}}^{\ell}(n) \cong \mathbb{S}^{n-1}$ . The  $\ell$ -group  $F_{\mathsf{R}}^{\ell}(n)$  acts in various ways on  $\operatorname{Max} F_{\mathsf{R}}^{\ell}(n) \cong \mathbb{S}^{n-1}$ . We seek a *representation* of  $F_{\mathsf{R}}^{\ell}(n)$  in Homeo( $\mathbb{S}^{n-1}$ ). Possibly, exploiting the *dynamic realisation* of orderable groups.

A. Colacito and V. Marra. ORDERS ON GROUPS, AND SPECTRAL SPACES OF LATTICE-GROUPS. arXiv Preprint available. Submitted (2019).

THANK YOU FOR YOUR ATTENTION

## CONCLUDING REMARKS

#### What's next?

Recall that  $\operatorname{Max} F_{\mathsf{R}}^{\ell}(n) \cong \operatorname{Max} F_{\mathsf{A}}^{\ell}(n) \cong \mathbb{S}^{n-1}$ . The  $\ell$ -group  $F_{\mathsf{R}}^{\ell}(n)$  acts in various ways on  $\operatorname{Max} F_{\mathsf{R}}^{\ell}(n) \cong \mathbb{S}^{n-1}$ . We seek a *representation* of  $F_{\mathsf{R}}^{\ell}(n)$  in Homeo( $\mathbb{S}^{n-1}$ ). Possibly, exploiting the *dynamic realisation* of orderable groups.

A. Colacito and V. Marra. ORDERS ON GROUPS, AND SPECTRAL SPACES OF LATTICE-GROUPS. arXiv Preprint available. Submitted (2019).

THANK YOU FOR YOUR ATTENTION