
Difference hierarchies over lattices1
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Motivation

D = bounded distributive lattice

Booleanization of D: unique (up to isomorphism) Boolean algebra D−,

together with a bounded lattice embedding D
ι

↪−−−−→ D− satisfying the
following universal property:

D D−

B
h

ι

h−

D− is the unique (up to isomorphism) Boolean algebra containing D as a
bounded sublattice and generated as a Boolean algebra by D.

Fact: Every element of D− may be written as a difference chain of the form

a1 − (a2 − (· · · − (an−1 − an)) . . . ),

for some a1 ≥ · · · ≥ an in D.
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Related work

Èsakia: Identifies Heyting algebras with the skeleton of closure algebras,

and proves that every element a in a closure algebra may be written as a

disjunction

a =
m∨

k=1

(ak − ak+1) ∨ am+1,

with a1 ≥ a2 ≥ · · · ≥ am+1 constructed from a and using the closure

operator.
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Priestley duality

Priestley spaces1 ! Bounded distributive lattices

X = Priestley space  UpClopen(X )

(XD , τ,≤), where  D = bounded distributive lattice

◦ XD = {prime filters of D}

◦ τ has basis of (cl)opens {â, (â)c | a ∈ D}, with â = {x ∈ XD | a ∈ x}

◦ ≤ is inclusion of prime filters

D ∼= UpClopen(XD) and X ∼= XUpClopen(X )

In particular, D− ∼= Clopen(XD).

1Compact and totally order disconnected topological space
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The topological formulation

X = Priestley space, V ⊆ X = clopen subset.

Then, there are clopen upsets W1 ⊇ · · · ⊇Wn of X such that

V = W1 − (W2 − (· · · − (Wn−1 −Wn)) . . . ).

Our question: Is there a “canonical form” for such a writing?
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An example

1 2

. . .

y

x

X =

UpClopen(X ) = Pfin(N) ∪ {W |W ⊆ X is cofinite and y ∈W }

V = {x} is clopen, V = W −W ′ =⇒ ↑V = {x , y} ⊆W is not open!

There is no smallest clopen upset containing V :

the clopen upsets containing V are precisely the sets of the form W = S ∪ {x , y},
with S ⊆ N cofinite.

Moreover, W ′ = W − {x} = ↑(W − V ) is also a clopen upset and V = W −W ′.

However, ↑V is closed and V = ↑V − ↑(↑V − V ).
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The degree of an element of a poset

P = poset, S ⊆ P, p ∈ P

p1 < p2 < · · · < pn in P is an alternating sequence of length n for p
(with respect to S) provided

pn = p and pi ∈ S if and only if i is odd.

The degree of p (wrt S), degS (p), is the largest k for which there is an
alternating sequence of length k for p,

and p has degree 0 if there is no alternating sequence for p (wrt S).

Example: p has degree 4.
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The degree of an element of a poset

p1 < p2 < · · · < pn in P is an alternating sequence of length n for p
(with respect to S) provided

pn = p and pi ∈ S if and only if i is odd.

The degree of p (wrt S), degS (p), is the largest k for which there is an alternating sequence
of length k for p,

and p has degree 0 if there is no alternating sequence for p (wrt S).

Remarks:

◦ The elements of degree 0 are precisely those of (P − ↑S).

◦ An element of finite degree is of odd degree if and only if it belongs to S .

◦ If S is convex1, then every element of S has degree 1, while every
element of ↑S − S has degree 2.

1S is convex if x ≤ y ≤ z with x , z ∈ S implies y ∈ S .
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An example

In general, there are posets where

every element has an infinite degree:
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The case of a Priestley space

Proposition

X = Priestley space, V ⊆ X = clopen subset.

Then, every element of X has finite degree with respect to V .

Idea of Proof:

◦ Any clopen subset of X may be written as a finite union
V =

⋃n
i=1(Ui −Wi ), with Ui ,Wi ∈ UpClopen(X ).

◦ (Pigeonhole Principle + convexity of (Ui −Wi ))
=⇒ degV (x) ≤ 2n, for x ∈ X .
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Difference chains of closed upsets



Difference chains of closed upsets

Suppose X = Priestley space, V = clopen subset of X

V = G1 − (G2 − (· · · − (Gn−1 − Gn)) . . . )

for some closed upsets G1 ⊇ · · · ⊇ Gn.

V ⊆ G1 =⇒ ↑V ⊆ G1

K1 = ↑V is the smallest possible choice for G1, and

K1 = {x ∈ X | degV (x) ≥ 1}.

G1 − G2 ⊆ V and K1 ⊆ G1 =⇒ ↑(K1 − V ) ⊆ ↑(G1 − V ) ⊆ G2

K2 = ↑(K1 − V ) is the smallest possible choice for G2, and

K2 = {x ∈ X | degV (x) ≥ 2}.

In particular, K1 − K2 = {x ∈ X | degV (x) = 1}.
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Difference chains of closed upsets

Suppose X = Priestley space, V = clopen subset of X

V = G1 − (G2 − (· · · − (Gn−1 − Gn)) . . . )

for some closed upsets G1 ⊇ · · · ⊇ Gn.

K1 = ↑V = {x ∈ X | degV (x) ≥ 1} ⊆ G1

K2 = ↑(K1 − V ) = {x ∈ X | degV (x) ≥ 2} ⊆ G2

G1 − G2 ⊆ K1 − K2 = {x ∈ X | degV (x) = 1}

X ′ = K2 = new Priestley space, V ′ = X ′ ∩ V = clopen subset of X ′,

V ′ = G ′3 − (G ′4 − (· · · − (G ′n−1 − G ′n)) . . . ),

where G ′i = X ′∩Gi (because G ′
1−G ′

2 = (G1−G2)∩K2 ⊆ (K1−K2)∩K2 = ∅)
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where G ′i = X ′∩Gi (because G ′
1−G ′

2 = (G1−G2)∩K2 ⊆ (K1−K2)∩K2 = ∅)

K3 = ↑V ′ = ↑(K2 ∩ V ) is the smallest possible choice for G ′3 ⊆ G3.

K4 = ↑(K3 − V ′) = ↑(K3 − V ) is the smallest possible choice for G ′4 ⊆ G4.
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K4 = ↑(K3 − V ′) = ↑(K3 − V ) is the smallest possible choice for G ′4 ⊆ G4.

Also, degV ′(x) = degV (x)− 2, thus Ki = {x ∈ X | degV (x) ≥ i} (i = 3, 4),

and K3 − K4 = {x ∈ X | degV (x) = 3}.
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Also, degV ′(x) = degV (x)− 2, thus Ki = {x ∈ X | degV (x) ≥ i} (i = 3, 4),

and K3 − K4 = {x ∈ X | degV (x) = 3} ⊇ G ′3 − G ′4 = (G3 − G4) ∩ K2.
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Difference chains of closed upsets

Theorem

X = Priestley space, V = clopen subset of X , define:

K1 = ↑V , K2i = ↑(K2i−1 − V ), K2i+1 = ↑(K2i ∩ V ).

Then, Kn = {x ∈ X | degV (x) ≥ n} and so,

V =
m⋃

i=1
(K2i−1 − K2i ) = K1 − (K2 − (· · · − (K2m−1 − K2m)) . . . ),

where 2m − 1 = max{degV (x) | x ∈ V }.

Moreover, if G1 ⊇ G2 ⊇ · · · ⊇ G2p is a chain of closed upsets satisfying

V = G1 − (G2 − (· · · − (G2p−1 − G2p)) . . . ), then

p ≥ m, Ki ⊆ Gi ,
n⋃

i=1
(G2i−1 − G2i ) ⊆

n⋃
i=1

(K2i−1 − K2i )

(i ≥ 1) (n ≥ 1)
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The case of a co-Heyting algebra

Recall: A co-Heyting algebra is a bounded distributive lattice D equipped

with a binary operation / such that for every a ∈ D,

( /a) is lower adjoint of (a ∨ ) : (x/a ≤ b ⇐⇒ x ≤ a ∨ b).

Fact

A bounded distributive lattice D admits a co-Heyting structure if and only if its
Booleanization is equipped with a ceiling function

D− −→ D, b 7→ dbe =
∧
{c ∈ D | b ≤ c}.

When that is the case, taking upsets preserves clopens of the dual XD and the
functions

d e : D− → D and ↑ : Clopen(XD)→ UpClopen(XD)

are naturally isomorphic.
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The case of a co-Heyting algebra

Corollary

D = co-Heyting algebra, b ∈ D−.

Define:

a1 = dbe, a2i = da2i−1 − be, and a2i+1 = da2i ∧ be,

for i ≥ 1.

Then, the sequence {ai}i≥0 is decreasing, and there exists m ≥ 1 such that
a2m+1 = 0 and

b = a1 − (a2 − (. . . (a2m−1 − a2m) . . . )),

and this is a canonical writing!
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A topological proof of an algebraic result

◦ Every finite distributive lattice is a co-Heyting algebra.

◦ Every bounded distributive lattice is the direct limit of its finite
sublattices.

◦ Booleanization commutes with direct limits of bounded distributive
lattices: (lim

→
Di )
− = lim

→
D−i .

Corollary

Every Boolean element over any bounded distributive lattice may be written
as a difference chain of elements of the lattice.
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The canonical extension approach



Using canonical extensions

Recall: If D is a bounded distributive lattice, its canonical extension is an
embedding D ↪→ Dδ into a complete lattice Dδ such that:

◦ D is dense in Dδ, ie, each element of Dδ is a join of meets and a meet of
joins of elements of D;

◦ the embedding is compact, ie, for every S ,T ⊆ D, if
∧
S ≤

∨
T , then there

are finite subsets S ′ ⊆ S and T ′ ⊆ S so that
∧
S ′ ≤

∨
T ′.

The filter elements of Dδ, F (Dδ), are those in the meet-closure of D.

Set B = D−, X = Priestley space of D.

◦ F (Dδ) ∼= UpClosed(X ) and F (Bδ) ∼= Closed(X ).

◦ D ↪→ B extends to a complete embedding Dδ ↪→ Bδ.

◦ This embedding has a lower adjoint ( ) : Bδ → Dδ given by
u = min{v ∈ Dδ | u ≤ v}, which preserves filter elements.

In particular, ( ) : F (Bδ)→ F (Dδ) and ↑ : Closed(X )→ UpClosed(X ) are
naturally isomorphic.
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Using canonical extensions

Our previous result may be stated as follows:

Theorem

D = bounded distributive lattice, b ∈ D−, define

k1 = b, k2n = k2n−1 − b, k2n+1 = k2n ∧ b.

Then,
b = k1 − (k2 − (. . . (k2n−1 − k2n)) . . . ).
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Using canonical extensions

B = Boolean algebra, I = chain,

{Si}i∈I = increasing chain of meet-subsemilattices of B,

st: D =
⋃

i∈I Si is a bounded sublattice of B, and each inclusion gi : Si ↪→ B
admits an upper adjoint fi : B → Si .

Proposition

◦ ( )
i

= gi fi : B → B is a closure operator,

◦ for every x ∈ B, we have x =
∧

i∈I x
i , where the meet is taken in Bδ.

Theorem

For b ∈ B, define

c1,i = b
i
, c2k,i = c2k−1,i − b

i
, c2k+1,i = c2k,i ∧ b

i

If b ∈ D− ⊆ B, then there is n ∈ N, i ∈ I so that, for every j ≥ i we have

b = c1,j − (c2,j − (· · · − (c2n−1,j − c2n)) . . . ).
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Using canonical extensions

Corollary

B = Boolean algebra, I = chain,

{Si}i∈I = increasing chain of meet-subsemilattices of B,

st: D =
⋃

i∈I Si is a bounded sublattice of B, and each inclusion gi : Si ↪→ B
admits an upper adjoint fi : B → Si .

B ′ ≤ B = Boolean subalgebra closed under ( )
i

= gi fi for i ∈ I . Then,

(D ∩ B ′)− = D− ∩ B ′, (1)

(the Booleanization of a sublattice of B is the Boolean subalgebra of B it generates)

Open question

What are necessary conditions so that (1) holds?
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An application to Logic on Words
Skip a bit Skip all



What is Logic on Words?

k-ary numerical predicate = subset R of Nk

For each set N of numerical predicates, a word u ∈ A+ may be thought of
as a relational structure

Mu = ({1, 2, . . . , |u|}, (R)R∈N , (a)a∈A)

where a is interpreted as the set of integers i such that the i-th letter of u
is an a, and R as R ∩ {1, . . . , |u|}.

Example

Let N = {<}, where < = {(i , j) | i < j} is the usual order relation.
For u = abbaab, we have

Mu = ({1, 2, 3, 4, 5, 6}, <, (a,b))

with a = {1, 4, 5}, b = {2, 3, 6}, and < = {(1, 2), (1, 3), . . . , (5, 6)}.
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What is Logic on Words?

The formula φ = ∃x ax interprets as:

There exists a position x in u such that
the letter in position x is an a.

This defines the language A∗aA∗.

The formula ∃x ∃y (y = x + 1) ∧ ax ∧ by defines the language A∗abA∗.

The formula ∀x (x ≡ r mod n)→ ax defines the language (Ar−1aAn−r )∗.

The formula ∀x (Prime(x) ∨ ¬ ax) defines the language

{w = a1 . . . an ∈ A+ | (ai = a) =⇒ i is prime}.

(<), (+1), and (≡ r mod n) are examples of regular numerical predicates;

Prime(x) is not regular.

C. Borlido (LJAD) Difference hierarchies over lattices June 17-21, 2019 26



What is Logic on Words?

The formula φ = ∃x ax interprets as:

There exists a position x in u such that
the letter in position x is an a.

This defines the language A∗aA∗.

The formula ∃x ∃y (y = x + 1) ∧ ax ∧ by defines the language A∗abA∗.

The formula ∀x (x ≡ r mod n)→ ax defines the language (Ar−1aAn−r )∗.

The formula ∀x (Prime(x) ∨ ¬ ax) defines the language

{w = a1 . . . an ∈ A+ | (ai = a) =⇒ i is prime}.

(<), (+1), and (≡ r mod n) are examples of regular numerical predicates;

Prime(x) is not regular.

C. Borlido (LJAD) Difference hierarchies over lattices June 17-21, 2019 26



What is Logic on Words?

The formula φ = ∃x ax interprets as:

There exists a position x in u such that
the letter in position x is an a.

This defines the language A∗aA∗.

The formula ∃x ∃y (y = x + 1) ∧ ax ∧ by defines the language A∗abA∗.

The formula ∀x (x ≡ r mod n)→ ax defines the language (Ar−1aAn−r )∗.

The formula ∀x (Prime(x) ∨ ¬ ax) defines the language

{w = a1 . . . an ∈ A+ | (ai = a) =⇒ i is prime}.

(<), (+1), and (≡ r mod n) are examples of regular numerical predicates;

Prime(x) is not regular.

C. Borlido (LJAD) Difference hierarchies over lattices June 17-21, 2019 26



What is Logic on Words?

The formula φ = ∃x ax interprets as:

There exists a position x in u such that
the letter in position x is an a.

This defines the language A∗aA∗.

The formula ∃x ∃y (y = x + 1) ∧ ax ∧ by defines the language A∗abA∗.

The formula ∀x (x ≡ r mod n)→ ax defines the language (Ar−1aAn−r )∗.

The formula ∀x (Prime(x) ∨ ¬ ax) defines the language

{w = a1 . . . an ∈ A+ | (ai = a) =⇒ i is prime}.

(<), (+1), and (≡ r mod n) are examples of regular numerical predicates;

Prime(x) is not regular.

C. Borlido (LJAD) Difference hierarchies over lattices June 17-21, 2019 26



What is Logic on Words?

A language L is regular iff the congruence ∼L given by

u ∼L v ⇐⇒ (∀x , y ∈ A∗ xuy ∈ L ⇐⇒ xvy ∈ L)

has finite index

, or equivalently, iff the Boolean algebra generated by the
languages x−1Ly−1 = {u ∈ A+ | xuy ∈ L} (x , y ∈ A∗) is finite.

Theorem (Straubing’1991)

A numerical predicate is regular if and only if it is equivalent to a first-order
formula in the atomic formulas

x < y and x ≡ 0 mod n.
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The quantifier alternation hierarchy

N = set of numerical predicates

Πn[N ] = formulas ∀+ ∃+ · · · ϕ, with n − 1 quantifier alternations, and ϕ a
quantifier-free formula using numerical predicates from N

(E.g. ∀x1 ∀x2 ∃x3 ∀x4 ϕ belongs to Π3[N ])

BΠn[N ] = Boolean combinations of formulas of Πn[N ]

Question

BΠn[arb] ∩ Reg = BΠn[Reg ] ?

For n = 1, the answer is YES (difficult proof, based on a combination of
Semigroup and Ramsey Theory).

For n > 1, this is still an open problem.
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BΠn[N ] = Boolean combinations of formulas of Πn[N ]

Question

BΠn[arb] ∩ Reg = BΠn[Reg ] ?

For n = 1, the answer is YES (difficult proof, based on a combination of
Semigroup and Ramsey Theory).

For n > 1, this is still an open problem.
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An application on Logic on Words

Using the corollary of our results on difference chains, we can give a simple
proof of the n = 1 case:

BΠ1[arb] ∩ Reg = BΠ1[Reg ]

Idea:

1. Take B = P(A+), B ′ = Reg , and Sn = Πn
1[arb] (i.e., formulas ∀x1 . . . ∀xn ϕ).

2. Sn = Πn
1[arb] is a complete meet-semilattice

(but not a lattice: (∀x ax) ∨ (∀x bx) ≡ a+ ∪ b+, but ∀x (ax ∨ bx) ≡ {a, b}+)

3.
⋃

n≥1 Πn
1[arb] is a lattice (e.g. (∀x ax) ∨ (∀x bx) ≡ ∀x ∀y (ax ∨ by))

4. Thus, the embedding gn : Πn
1[arb] ↪→ P(A+) has a lower adjoint fn.

5. We compute fn explicitly, and we obtain fn[Reg ] ⊆ Πn
1[Reg ].

6. Using the corollary, we conclude the desired equality.
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What next?

◦ Can we use the above results to get advances on Straubing’s
Conjecture?

◦ Many variations of Straubing’s Conjecture exist (see e.g. McKenzie,
Thomas, Vollmer, Extensional uniformity for boolean circuits). Will
this approach work?

◦ It is also known that FO[arb] ∩ Reg = FO[Reg ]. The proof is difficult
and involves Boolean circuit complexity and Semigroup theory. Can we
get a simpler one?
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Thank you!
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