Difference hierarchies over lattices ${ }^{1}$

Célia Borlido

(based on joint work with Gerhke, Krebs, and Straubing)

LJAD, CNRS, Université Côte d'Azur

TACL 2019

Topology, Algebra and Categories in Logic

June 17-21, 2019

[^0](1) Introduction
(2) Difference chains of closed upsets
(3) The canonical extension approach
(4) An application to Logic on Words
$D=$ bounded distributive lattice
Booleanization of D : unique (up to isomorphism) Boolean algebra D^{-}, together with a bounded lattice embedding $D \longleftrightarrow{ }^{\iota} D^{-}$satisfying the following universal property:

$D=$ bounded distributive lattice
Booleanization of D : unique (up to isomorphism) Boolean algebra D^{-}, together with a bounded lattice embedding $D \longleftrightarrow{ }^{\iota} D^{-}$satisfying the following universal property:

D^{-}is the unique (up to isomorphism) Boolean algebra containing D as a bounded sublattice and generated as a Boolean algebra by D.
$D=$ bounded distributive lattice
Booleanization of D : unique (up to isomorphism) Boolean algebra D^{-}, together with a bounded lattice embedding $D \longleftrightarrow{ }^{\iota} D^{-}$satisfying the following universal property:

D^{-}is the unique (up to isomorphism) Boolean algebra containing D as a bounded sublattice and generated as a Boolean algebra by D.

Fact: Every element of D^{-}may be written as a difference chain of the form

$$
a_{1}-\left(a_{2}-\left(\cdots-\left(a_{n-1}-a_{n}\right)\right) \ldots\right),
$$

for some $a_{1} \geq \cdots \geq a_{n}$ in D.

Èsakia: Identifies Heyting algebras with the skeleton of closure algebras, and proves that every element a in a closure algebra may be written as a disjunction

$$
a=\bigvee_{k=1}^{m}\left(a_{k}-a_{k+1}\right) \vee a_{m+1}
$$

with $a_{1} \geq a_{2} \geq \cdots \geq a_{m+1}$ constructed from a and using the closure operator.

Priestley spaces ${ }^{1} \quad$ m \rightarrow Bounded distributive lattices

$X=$ Priestley space $\rightsquigarrow \quad$ UpClopen (X)
$\left(X_{D}, \tau, \leq\right)$, where in $D=$ bounded distributive lattice

- $X_{D}=\{$ prime filters of $D\}$
- τ has basis of (cl)opens $\left\{\widehat{a},(\widehat{a})^{c} \mid a \in D\right\}$, with $\widehat{a}=\left\{x \in X_{D} \mid a \in x\right\}$
- \leq is inclusion of prime filters

$$
D \cong \operatorname{UpClopen}\left(X_{D}\right) \quad \text { and } \quad X \cong X_{\text {UpClopen }(X)}
$$

In particular, $D^{-} \cong \operatorname{Clopen}\left(X_{D}\right)$.
${ }^{1}$ Compact and totally order disconnected topological space
C. Borlido (LJAD)
$X=$ Priestley space, $V \subseteq X=$ clopen subset.
Then, there are clopen upsets $W_{1} \supseteq \cdots \supseteq W_{n}$ of X such that

$$
V=W_{1}-\left(W_{2}-\left(\cdots-\left(W_{n-1}-W_{n}\right)\right) \ldots\right)
$$

Our question: Is there a "canonical form" for such a writing?

$X=\begin{array}{ll}\bullet & \bullet \\ 1\end{array} \quad 2$

$\operatorname{UpClopen}(X)=\mathcal{P}_{\text {fin }}(\mathbb{N}) \cup\{W \mid W \subseteq X$ is cofinite and $y \in W\}$

$\operatorname{UpClopen}(X)=\mathcal{P}_{\text {fin }}(\mathbb{N}) \cup\{W \mid W \subseteq X$ is cofinite and $y \in W\}$
$V=\{x\}$ is clopen

$\operatorname{UpClopen}(X)=\mathcal{P}_{\text {fin }}(\mathbb{N}) \cup\{W \mid W \subseteq X$ is cofinite and $y \in W\}$
$V=\{x\}$ is clopen, $\quad V=W-W^{\prime} \Longrightarrow \uparrow V=\{x, y\} \subseteq W$ is not open!

$\operatorname{UpClopen}(X)=\mathcal{P}_{\text {fin }}(\mathbb{N}) \cup\{W \mid W \subseteq X$ is cofinite and $y \in W\}$
$V=\{x\}$ is clopen, $\quad V=W-W^{\prime} \Longrightarrow \uparrow V=\{x, y\} \subseteq W$ is not open!
There is no smallest clopen upset containing V :
the clopen upsets containing V are precisely the sets of the form $W=S \cup\{x, y\}$, with $S \subseteq \mathbb{N}$ cofinite.
Moreover, $W^{\prime}=W-\{x\}=\uparrow(W-V)$ is also a clopen upset and $V=W-W^{\prime}$.

$$
\operatorname{UpClopen}(X)=\mathcal{P}_{\text {fin }}(\mathbb{N}) \cup\{W \mid W \subseteq X \text { is cofinite and } y \in W\}
$$

$V=\{x\}$ is clopen, $\quad V=W-W^{\prime} \Longrightarrow \uparrow V=\{x, y\} \subseteq W$ is not open!
There is no smallest clopen upset containing V :
the clopen upsets containing V are precisely the sets of the form $W=S \cup\{x, y\}$, with $S \subseteq \mathbb{N}$ cofinite.
Moreover, $W^{\prime}=W-\{x\}=\uparrow(W-V)$ is also a clopen upset and $V=W-W^{\prime}$.

However, $\uparrow V$ is closed and $\quad V=\uparrow V-\uparrow(\uparrow V-V)$.

$$
P=\text { poset, } \quad S \subseteq P, \quad p \in P
$$

$p_{1}<p_{2}<\cdots<p_{n}$ in P is an alternating sequence of length n for p (with respect to S) provided

$$
p_{n}=p \quad \text { and } \quad p_{i} \in S \text { if and only if } i \text { is odd. }
$$

$$
P=\text { poset, } \quad S \subseteq P, \quad p \in P
$$

$p_{1}<p_{2}<\cdots<p_{n}$ in P is an alternating sequence of length n for p (with respect to S) provided

$$
p_{n}=p \quad \text { and } \quad p_{i} \in S \text { if and only if } i \text { is odd. }
$$

$$
P=\text { poset, } \quad S \subseteq P, \quad p \in P
$$

$p_{1}<p_{2}<\cdots<p_{n}$ in P is an alternating sequence of length n for p (with respect to S) provided

$$
p_{n}=p \quad \text { and } \quad p_{i} \in S \text { if and only if } i \text { is odd. }
$$

The degree of $p(w r t S), \operatorname{deg}_{S}(p)$, is the largest k for which there is an alternating sequence of length k for p, and p has degree 0 if there is no alternating sequence for p (wrt S).

Example: p has degree 4.
$p_{1}<p_{2}<\cdots<p_{n}$ in P is an alternating sequence of length n for p (with respect to S) provided

$$
p_{n}=p \quad \text { and } \quad p_{i} \in S \text { if and only if } i \text { is odd. }
$$

The degree of $p($ wrt $S), \operatorname{deg}_{S}(p)$, is the largest k for which there is an alternating sequence of length k for p, and p has degree 0 if there is no alternating sequence for $p(w r t S)$.

Remarks:

- The elements of degree 0 are precisely those of $(P-\uparrow S)$.
- An element of finite degree is of odd degree if and only if it belongs to S.
- If S is convex ${ }^{1}$, then every element of S has degree 1 , while every element of $\uparrow S-S$ has degree 2 .
${ }^{1} S$ is convex if $x \leq y \leq z$ with $x, z \in S$ implies $y \in S$.
C. Borlido (LJAD)

In general, there are posets where every element has an infinite degree:

Proposition
 $X=$ Priestley space, $\quad V \subseteq X=$ clopen subset.
 Then, every element of X has finite degree with respect to V.

Proposition

$X=$ Priestley space, $\quad V \subseteq X=$ clopen subset.
Then, every element of X has finite degree with respect to V.

Idea of Proof:

- Any clopen subset of X may be written as a finite union $V=\bigcup_{i=1}^{n}\left(U_{i}-W_{i}\right)$, with $U_{i}, W_{i} \in U p C l o p e n(X)$.
- (Pigeonhole Principle + convexity of $\left.\left(U_{i}-W_{i}\right)\right)$
$\Longrightarrow \operatorname{deg}_{V}(x) \leq 2 n$, for $x \in X$.

Difference chains of closed upsets

Suppose $X=$ Priestley space, $\quad V=$ clopen subset of X $V=G_{1}-\left(G_{2}-\left(\cdots-\left(G_{n-1}-G_{n}\right)\right) \ldots\right)$
for some closed upsets $G_{1} \supseteq \cdots \supseteq G_{n}$.

Suppose $X=$ Priestley space, $\quad V=$ clopen subset of X

$$
V=G_{1}-\left(G_{2}-\left(\cdots-\left(G_{n-1}-G_{n}\right)\right) \ldots\right)
$$

for some closed upsets $G_{1} \supseteq \cdots \supseteq G_{n}$.
$V \subseteq G_{1} \Longrightarrow \uparrow V \subseteq G_{1}$

Suppose $X=$ Priestley space, $\quad V=$ clopen subset of X

$$
V=G_{1}-\left(G_{2}-\left(\cdots-\left(G_{n-1}-G_{n}\right)\right) \ldots\right)
$$

for some closed upsets $G_{1} \supseteq \cdots \supseteq G_{n}$.
$V \subseteq G_{1} \Longrightarrow \uparrow V \subseteq G_{1}$
$K_{1}=\uparrow V$ is the smallest possible choice for G_{1}, and

$$
K_{1}=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq 1\right\} .
$$

Suppose $X=$ Priestley space, $\quad V=$ clopen subset of X

$$
V=G_{1}-\left(G_{2}-\left(\cdots-\left(G_{n-1}-G_{n}\right)\right) \ldots\right)
$$

for some closed upsets $G_{1} \supseteq \cdots \supseteq G_{n}$.
$V \subseteq G_{1} \Longrightarrow \uparrow V \subseteq G_{1}$
$K_{1}=\uparrow V$ is the smallest possible choice for G_{1}, and

$$
K_{1}=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq 1\right\} .
$$

$$
G_{1}-G_{2} \subseteq V \text { and } K_{1} \subseteq G_{1} \Longrightarrow \uparrow\left(K_{1}-V\right) \subseteq \uparrow\left(G_{1}-V\right) \subseteq G_{2}
$$

Suppose $X=$ Priestley space, $\quad V=$ clopen subset of X

$$
V=G_{1}-\left(G_{2}-\left(\cdots-\left(G_{n-1}-G_{n}\right)\right) \ldots\right)
$$

for some closed upsets $G_{1} \supseteq \cdots \supseteq G_{n}$.
$V \subseteq G_{1} \Longrightarrow \uparrow V \subseteq G_{1}$
$K_{1}=\uparrow V$ is the smallest possible choice for G_{1}, and

$$
K_{1}=\left\{x \in X \mid \operatorname{deg}_{v}(x) \geq 1\right\}
$$

$$
G_{1}-G_{2} \subseteq V \text { and } K_{1} \subseteq G_{1} \Longrightarrow \uparrow\left(K_{1}-V\right) \subseteq \uparrow\left(G_{1}-V\right) \subseteq G_{2}
$$

$K_{2}=\uparrow\left(K_{1}-V\right)$ is the smallest possible choice for G_{2}, and

$$
K_{2}=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq 2\right\} .
$$

Suppose $X=$ Priestley space, $\quad V=$ clopen subset of X

$$
V=G_{1}-\left(G_{2}-\left(\cdots-\left(G_{n-1}-G_{n}\right)\right) \ldots\right)
$$

for some closed upsets $G_{1} \supseteq \cdots \supseteq G_{n}$.
$V \subseteq G_{1} \Longrightarrow \uparrow V \subseteq G_{1}$
$K_{1}=\uparrow V$ is the smallest possible choice for G_{1}, and

$$
K_{1}=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq 1\right\} .
$$

$$
G_{1}-G_{2} \subseteq V \text { and } K_{1} \subseteq G_{1} \Longrightarrow \uparrow\left(K_{1}-V\right) \subseteq \uparrow\left(G_{1}-V\right) \subseteq G_{2}
$$

$K_{2}=\uparrow\left(K_{1}-V\right)$ is the smallest possible choice for G_{2}, and

$$
K_{2}=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq 2\right\} .
$$

In particular, $K_{1}-K_{2}=\left\{x \in X \mid \operatorname{deg}_{V}(x)=1\right\}$.

Suppose $X=$ Priestley space, $\quad V=$ clopen subset of X

$$
V=G_{1}-\left(G_{2}-\left(\cdots-\left(G_{n-1}-G_{n}\right)\right) \ldots\right)
$$

for some closed upsets $G_{1} \supseteq \cdots \supseteq G_{n}$.

$$
\begin{gathered}
K_{1}=\uparrow V=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq 1\right\} \subseteq G_{1} \\
K_{2}=\uparrow\left(K_{1}-V\right)=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq 2\right\} \subseteq G_{2} \\
K_{1}-K_{2}=\left\{x \in X \mid \operatorname{deg}_{V}(x)=1\right\}
\end{gathered}
$$

Suppose $X=$ Priestley space, $\quad V=$ clopen subset of X

$$
V=G_{1}-\left(G_{2}-\left(\cdots-\left(G_{n-1}-G_{n}\right)\right) \ldots\right)
$$

for some closed upsets $G_{1} \supseteq \cdots \supseteq G_{n}$.

$$
\begin{gathered}
K_{1}=\uparrow V=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq 1\right\} \subseteq G_{1} \\
K_{2}=\uparrow\left(K_{1}-V\right)=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq 2\right\} \subseteq G_{2} \\
G_{1}-G_{2} \subseteq K_{1}-K_{2}=\left\{x \in X \mid \operatorname{deg}_{V}(x)=1\right\}
\end{gathered}
$$

Suppose $X=$ Priestley space, $\quad V=$ clopen subset of X

$$
V=G_{1}-\left(G_{2}-\left(\cdots-\left(G_{n-1}-G_{n}\right)\right) \ldots\right)
$$

for some closed upsets $G_{1} \supseteq \cdots \supseteq G_{n}$.

$$
\begin{gathered}
K_{1}=\uparrow V=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq 1\right\} \subseteq G_{1} \\
K_{2}=\uparrow\left(K_{1}-V\right)=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq 2\right\} \subseteq G_{2} \\
G_{1}-G_{2} \subseteq K_{1}-K_{2}=\left\{x \in X \mid \operatorname{deg}_{V}(x)=1\right\}
\end{gathered}
$$

$X^{\prime}=K_{2}=$ new Priestley space, $\quad V^{\prime}=X^{\prime} \cap V=$ clopen subset of X^{\prime},

$$
V^{\prime}=G_{3}^{\prime}-\left(G_{4}^{\prime}-\left(\cdots-\left(G_{n-1}^{\prime}-G_{n}^{\prime}\right)\right) \ldots\right),
$$

where $G_{i}^{\prime}=X^{\prime} \cap G_{i} \quad$ (because $\left.G_{1}^{\prime}-G_{2}^{\prime}=\left(G_{1}-G_{2}\right) \cap K_{2} \subseteq\left(K_{1}-K_{2}\right) \cap K_{2}=\emptyset\right)$

Suppose $X=$ Priestley space, $\quad V=$ clopen subset of X

$$
V=G_{1}-\left(G_{2}-\left(\cdots-\left(G_{n-1}-G_{n}\right)\right) \ldots\right)
$$

for some closed upsets $G_{1} \supseteq \cdots \supseteq G_{n}$.

$$
\begin{gathered}
K_{1}=\uparrow V=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq 1\right\} \subseteq G_{1} \\
K_{2}=\uparrow\left(K_{1}-V\right)=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq 2\right\} \subseteq G_{2} \\
G_{1}-G_{2} \subseteq K_{1}-K_{2}=\left\{x \in X \mid \operatorname{deg}_{V}(x)=1\right\}
\end{gathered}
$$

$X^{\prime}=K_{2}=$ new Priestley space, $\quad V^{\prime}=X^{\prime} \cap V=$ clopen subset of X^{\prime},

$$
V^{\prime}=G_{3}^{\prime}-\left(G_{4}^{\prime}-\left(\cdots-\left(G_{n-1}^{\prime}-G_{n}^{\prime}\right)\right) \ldots\right),
$$

where $G_{i}^{\prime}=X^{\prime} \cap G_{i} \quad$ (because $\left.G_{1}^{\prime}-G_{2}^{\prime}=\left(G_{1}-G_{2}\right) \cap K_{2} \subseteq\left(K_{1}-K_{2}\right) \cap K_{2}=\emptyset\right)$
$K_{3}=\uparrow V^{\prime}=\uparrow\left(K_{2} \cap V\right)$ is the smallest possible choice for $G_{3}^{\prime} \subseteq G_{3}$.
$K_{4}=\uparrow\left(K_{3}-V^{\prime}\right)=\uparrow\left(K_{3}-V\right)$ is the smallest possible choice for $G_{4}^{\prime} \subseteq G_{4}$.

Suppose $X=$ Priestley space, $\quad V=$ clopen subset of X

$$
V=G_{1}-\left(G_{2}-\left(\cdots-\left(G_{n-1}-G_{n}\right)\right) \ldots\right)
$$

for some closed upsets $G_{1} \supseteq \cdots \supseteq G_{n}$.

$$
\begin{gathered}
K_{1}=\uparrow V=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq 1\right\} \subseteq G_{1} \\
K_{2}=\uparrow\left(K_{1}-V\right)=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq 2\right\} \subseteq G_{2} \\
G_{1}-G_{2} \subseteq K_{1}-K_{2}=\left\{x \in X \mid \operatorname{deg}_{V}(x)=1\right\}
\end{gathered}
$$

$X^{\prime}=K_{2}=$ new Priestley space, $\quad V^{\prime}=X^{\prime} \cap V=$ clopen subset of X^{\prime},

$$
V^{\prime}=G_{3}^{\prime}-\left(G_{4}^{\prime}-\left(\cdots-\left(G_{n-1}^{\prime}-G_{n}^{\prime}\right)\right) \ldots\right),
$$

where $G_{i}^{\prime}=X^{\prime} \cap G_{i} \quad$ (because $G_{1}^{\prime}-G_{2}^{\prime}=\left(G_{1}-G_{2}\right) \cap K_{2} \subseteq\left(K_{1}-K_{2}\right) \cap K_{2}=\emptyset$)
$K_{3}=\uparrow V^{\prime}=\uparrow\left(K_{2} \cap V\right)$ is the smallest possible choice for $G_{3}^{\prime} \subseteq G_{3}$.
$K_{4}=\uparrow\left(K_{3}-V^{\prime}\right)=\uparrow\left(K_{3}-V\right)$ is the smallest possible choice for $G_{4}^{\prime} \subseteq G_{4}$.
Also, $\operatorname{deg}_{V^{\prime}}(x)=\operatorname{deg}_{V}(x)-2$, thus $K_{i}=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq i\right\}(i=3,4)$,
and $K_{3}-K_{4}=\left\{x \in X \mid \operatorname{deg}_{v}(x)=3\right\}$.

Suppose $X=$ Priestley space, $\quad V=$ clopen subset of X

$$
V=G_{1}-\left(G_{2}-\left(\cdots-\left(G_{n-1}-G_{n}\right)\right) \ldots\right)
$$

for some closed upsets $G_{1} \supseteq \cdots \supseteq G_{n}$.

$$
\begin{gathered}
K_{1}=\uparrow V=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq 1\right\} \subseteq G_{1} \\
K_{2}=\uparrow\left(K_{1}-V\right)=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq 2\right\} \subseteq G_{2} \\
G_{1}-G_{2} \subseteq K_{1}-K_{2}=\left\{x \in X \mid \operatorname{deg}_{V}(x)=1\right\}
\end{gathered}
$$

$X^{\prime}=K_{2}=$ new Priestley space, $\quad V^{\prime}=X^{\prime} \cap V=$ clopen subset of X^{\prime},

$$
V^{\prime}=G_{3}^{\prime}-\left(G_{4}^{\prime}-\left(\cdots-\left(G_{n-1}^{\prime}-G_{n}^{\prime}\right)\right) \ldots\right),
$$

where $G_{i}^{\prime}=X^{\prime} \cap G_{i} \quad$ (because $G_{1}^{\prime}-G_{2}^{\prime}=\left(G_{1}-G_{2}\right) \cap K_{2} \subseteq\left(K_{1}-K_{2}\right) \cap K_{2}=\emptyset$)
$K_{3}=\uparrow V^{\prime}=\uparrow\left(K_{2} \cap V\right)$ is the smallest possible choice for $G_{3}^{\prime} \subseteq G_{3}$.
$K_{4}=\uparrow\left(K_{3}-V^{\prime}\right)=\uparrow\left(K_{3}-V\right)$ is the smallest possible choice for $G_{4}^{\prime} \subseteq G_{4}$.
Also, $\operatorname{deg}_{V^{\prime}}(x)=\operatorname{deg}_{V}(x)-2$, thus $K_{i}=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq i\right\}(i=3,4)$,
and $\quad K_{3}-K_{4}=\left\{x \in X \mid \operatorname{deg}_{V}(x)=3\right\} \supseteq G_{3}^{\prime}-G_{4}^{\prime}=\left(G_{3}-G_{4}\right) \cap K_{2}$.

Theorem

$X=$ Priestley space, $\quad V=$ clopen subset of X, \quad define:

$$
K_{1}=\uparrow V, \quad K_{2 i}=\uparrow\left(K_{2 i-1}-V\right), \quad K_{2 i+1}=\uparrow\left(K_{2 i} \cap V\right)
$$

Theorem

$X=$ Priestley space, $\quad V=$ clopen subset of X, \quad define:

$$
K_{1}=\uparrow V, \quad K_{2 i}=\uparrow\left(K_{2 i-1}-V\right), \quad K_{2 i+1}=\uparrow\left(K_{2 i} \cap V\right) .
$$

Then, $K_{n}=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq n\right\}$

Theorem

$X=$ Priestley space, $\quad V=$ clopen subset of X, \quad define:

$$
K_{1}=\uparrow V, \quad K_{2 i}=\uparrow\left(K_{2 i-1}-V\right), \quad K_{2 i+1}=\uparrow\left(K_{2 i} \cap V\right)
$$

Then, $K_{n}=\left\{x \in X \mid \operatorname{deg}_{v}(x) \geq n\right\}$ and so,

$$
V=\bigcup_{i=1}^{m}\left(K_{2 i-1}-K_{2 i}\right)=K_{1}-\left(K_{2}-\left(\cdots-\left(K_{2 m-1}-K_{2 m}\right)\right) \ldots\right)
$$

where $2 m-1=\max \left\{\operatorname{deg}_{V}(x) \mid x \in V\right\}$.

Theorem

$X=$ Priestley space, $\quad V=$ clopen subset of X, \quad define:

$$
K_{1}=\uparrow V, \quad K_{2 i}=\uparrow\left(K_{2 i-1}-V\right), \quad K_{2 i+1}=\uparrow\left(K_{2 i} \cap V\right) .
$$

Then, $K_{n}=\left\{x \in X \mid \operatorname{deg}_{v}(x) \geq n\right\}$ and so,

$$
V=\bigcup_{i=1}^{m}\left(K_{2 i-1}-K_{2 i}\right)=K_{1}-\left(K_{2}-\left(\cdots-\left(K_{2 m-1}-K_{2 m}\right)\right) \ldots\right),
$$

where $2 m-1=\max \left\{\operatorname{deg}_{V}(x) \mid x \in V\right\}$.
Moreover, if $G_{1} \supseteq G_{2} \supseteq \cdots \supseteq G_{2 p}$ is a chain of closed upsets satisfying

$$
V=G_{1}-\left(G_{2}-\left(\cdots-\left(G_{2 p-1}-G_{2 p}\right)\right) \ldots\right)
$$

Theorem

$X=$ Priestley space, $\quad V=$ clopen subset of X, \quad define:

$$
K_{1}=\uparrow V, \quad K_{2 i}=\uparrow\left(K_{2 i-1}-V\right), \quad K_{2 i+1}=\uparrow\left(K_{2 i} \cap V\right) .
$$

Then, $K_{n}=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq n\right\}$ and so,

$$
V=\bigcup_{i=1}^{m}\left(K_{2 i-1}-K_{2 i}\right)=K_{1}-\left(K_{2}-\left(\cdots-\left(K_{2 m-1}-K_{2 m}\right)\right) \ldots\right)
$$

where $2 m-1=\max \left\{\operatorname{deg}_{V}(x) \mid x \in V\right\}$.
Moreover, if $G_{1} \supseteq G_{2} \supseteq \cdots \supseteq G_{2 p}$ is a chain of closed upsets satisfying

$$
V=G_{1}-\left(G_{2}-\left(\cdots-\left(G_{2 p-1}-G_{2 p}\right)\right) \ldots\right), \quad \text { then }
$$

$$
p \geq m
$$

Theorem

$X=$ Priestley space, $\quad V=$ clopen subset of X, \quad define:

$$
K_{1}=\uparrow V, \quad K_{2 i}=\uparrow\left(K_{2 i-1}-V\right), \quad K_{2 i+1}=\uparrow\left(K_{2 i} \cap V\right) .
$$

Then, $K_{n}=\left\{x \in X \mid \operatorname{deg}_{V}(x) \geq n\right\}$ and so,

$$
V=\bigcup_{i=1}^{m}\left(K_{2 i-1}-K_{2 i}\right)=K_{1}-\left(K_{2}-\left(\cdots-\left(K_{2 m-1}-K_{2 m}\right)\right) \ldots\right)
$$

where $2 m-1=\max \left\{\operatorname{deg}_{V}(x) \mid x \in V\right\}$.
Moreover, if $G_{1} \supseteq G_{2} \supseteq \cdots \supseteq G_{2 p}$ is a chain of closed upsets satisfying

$$
\begin{aligned}
& \quad V=G_{1}-\left(G_{2}-\left(\cdots-\left(G_{2 p-1}-G_{2 p}\right)\right) \ldots\right), \quad \text { then } \\
& p \geq m, \quad K_{i} \subseteq G_{i} \\
& (i \geq 1)
\end{aligned}
$$

Theorem

$X=$ Priestley space, $\quad V=$ clopen subset of X, \quad define:

$$
K_{1}=\uparrow V, \quad K_{2 i}=\uparrow\left(K_{2 i-1}-V\right), \quad K_{2 i+1}=\uparrow\left(K_{2 i} \cap V\right) .
$$

Then, $K_{n}=\left\{x \in X \mid \operatorname{deg}_{v}(x) \geq n\right\}$ and so,

$$
V=\bigcup_{i=1}^{m}\left(K_{2 i-1}-K_{2 i}\right)=K_{1}-\left(K_{2}-\left(\cdots-\left(K_{2 m-1}-K_{2 m}\right)\right) \ldots\right)
$$

where $2 m-1=\max \left\{\operatorname{deg}_{V}(x) \mid x \in V\right\}$.
Moreover, if $G_{1} \supseteq G_{2} \supseteq \cdots \supseteq G_{2 p}$ is a chain of closed upsets satisfying

$$
\begin{gathered}
V=G_{1}-\left(G_{2}-\left(\cdots-\left(G_{2 p-1}-G_{2 p}\right)\right) \ldots\right), \quad \text { then } \\
p \geq m, \quad \begin{array}{c}
K_{i} \subseteq G_{i}, \\
(i \geq 1)
\end{array} \quad \bigcup_{i=1}^{n}\left(G_{2 i-1}-G_{2 i}\right) \subseteq \bigcup_{i=1}^{n}\left(K_{2 i-1}-K_{2 i}\right)
\end{gathered}
$$

Recall: A co-Heyting algebra is a bounded distributive lattice D equipped with a binary operation _/- such that for every $a \in D$, $(-/ a)$ is lower adjoint of $\left(a \vee_{-}\right):(x / a \leq b \Longleftrightarrow x \leq a \vee b)$.

FACT

A bounded distributive lattice D admits a co-Heyting structure if and only if its Booleanization is equipped with a ceiling function

$$
D^{-} \longrightarrow D, \quad b \mapsto\lceil b\rceil=\bigwedge\{c \in D \mid b \leq c\} .
$$

When that is the case, taking upsets preserves clopens of the dual X_{D} and the functions

$$
\left\lceil _: D^{-} \rightarrow D \quad \text { and } \quad \uparrow_{-}: \operatorname{Clopen}\left(X_{D}\right) \rightarrow \operatorname{UpClopen}\left(X_{D}\right)\right.
$$

are naturally isomorphic.

Corollary

$D=$ co-Heyting algebra, $\quad b \in D^{-}$.
Define:

$$
a_{1}=\lceil b\rceil, \quad a_{2 i}=\left\lceil a_{2 i-1}-b\right\rceil, \quad \text { and } \quad a_{2 i+1}=\left\lceil a_{2 i} \wedge b\right\rceil,
$$

for $i \geq 1$.
Then, the sequence $\left\{a_{i}\right\}_{i \geq 0}$ is decreasing, and there exists $m \geq 1$ such that $a_{2 m+1}=0$ and

$$
b=a_{1}-\left(a_{2}-\left(\ldots\left(a_{2 m-1}-a_{2 m}\right) \ldots\right)\right),
$$

and this is a canonical writing!

- Every finite distributive lattice is a co-Heyting algebra.
- Every finite distributive lattice is a co-Heyting algebra.
- Every bounded distributive lattice is the direct limit of its finite sublattices.
- Every finite distributive lattice is a co-Heyting algebra.
- Every bounded distributive lattice is the direct limit of its finite sublattices.
- Booleanization commutes with direct limits of bounded distributive lattices: $\left(\lim _{\rightarrow} D_{i}\right)^{-}=\lim _{\rightarrow} D_{i}^{-}$.
- Every finite distributive lattice is a co-Heyting algebra.
- Every bounded distributive lattice is the direct limit of its finite sublattices.
- Booleanization commutes with direct limits of bounded distributive lattices: $\left(\lim _{\rightarrow} D_{i}\right)^{-}=\lim _{\rightarrow} D_{i}^{-}$.

Corollary

Every Boolean element over any bounded distributive lattice may be written as a difference chain of elements of the lattice.

The canonical extension approach

Recall: If D is a bounded distributive lattice, its canonical extension is an embedding $D \hookrightarrow D^{\delta}$ into a complete lattice D^{δ} such that:

- D is dense in D^{δ}, ie, each element of D^{δ} is a join of meets and a meet of joins of elements of D;
- the embedding is compact, ie, for every $S, T \subseteq D$, if $\bigwedge S \leq \bigvee T$, then there are finite subsets $S^{\prime} \subseteq S$ and $T^{\prime} \subseteq S$ so that $\wedge S^{\prime} \leq \bigvee T^{\prime}$.
The filter elements of $D^{\delta}, F\left(D^{\delta}\right)$, are those in the meet-closure of D.

Recall: If D is a bounded distributive lattice, its canonical extension is an embedding $D \hookrightarrow D^{\delta}$ into a complete lattice D^{δ} such that:

- D is dense in D^{δ}, ie, each element of D^{δ} is a join of meets and a meet of joins of elements of D;
- the embedding is compact, ie, for every $S, T \subseteq D$, if $\bigwedge S \leq \bigvee T$, then there are finite subsets $S^{\prime} \subseteq S$ and $T^{\prime} \subseteq S$ so that $\wedge S^{\prime} \leq \bigvee T^{\prime}$.
The filter elements of $D^{\delta}, F\left(D^{\delta}\right)$, are those in the meet-closure of D.
Set $B=D^{-}, \quad X=$ Priestley space of D.
- $F\left(D^{\delta}\right) \cong \operatorname{UpClosed}(X)$ and $F\left(B^{\delta}\right) \cong \operatorname{Closed}(X)$.
- $D \hookrightarrow B$ extends to a complete embedding $D^{\delta} \hookrightarrow B^{\delta}$.
- This embedding has a lower adjoint $\overline{(-)}: B^{\delta} \rightarrow D^{\delta}$ given by $\bar{u}=\min \left\{v \in D^{\delta} \mid u \leq v\right\}$, which preserves filter elements.

Recall: If D is a bounded distributive lattice, its canonical extension is an embedding $D \hookrightarrow D^{\delta}$ into a complete lattice D^{δ} such that:

- D is dense in D^{δ}, ie, each element of D^{δ} is a join of meets and a meet of joins of elements of D;
- the embedding is compact, ie, for every $S, T \subseteq D$, if $\bigwedge S \leq \bigvee T$, then there are finite subsets $S^{\prime} \subseteq S$ and $T^{\prime} \subseteq S$ so that $\wedge S^{\prime} \leq \bigvee T^{\prime}$.
The filter elements of $D^{\delta}, F\left(D^{\delta}\right)$, are those in the meet-closure of D.
Set $B=D^{-}, \quad X=$ Priestley space of D.
- $F\left(D^{\delta}\right) \cong \operatorname{UpClosed}(X)$ and $F\left(B^{\delta}\right) \cong \operatorname{Closed}(X)$.
- $D \hookrightarrow B$ extends to a complete embedding $D^{\delta} \hookrightarrow B^{\delta}$.
- This embedding has a lower adjoint $\overline{(-)}: B^{\delta} \rightarrow D^{\delta}$ given by $\bar{u}=\min \left\{v \in D^{\delta} \mid u \leq v\right\}$, which preserves filter elements.

In particular, $\overline{(-)}: F\left(B^{\delta}\right) \rightarrow F\left(D^{\delta}\right)$ and $\uparrow_{-}: \operatorname{Closed}(X) \rightarrow U_{p C l o s e d}(X)$ are naturally isomorphic.

Our previous result may be stated as follows:

Theorem

$D=$ bounded distributive lattice, $\quad b \in D^{-}, \quad$ define

$$
k_{1}=\bar{b}, \quad k_{2 n}=\overline{k_{2 n-1}-b}, \quad k_{2 n+1}=\overline{k_{2 n} \wedge b} .
$$

Then,

$$
b=k_{1}-\left(k_{2}-\left(\ldots\left(k_{2 n-1}-k_{2 n}\right)\right) \ldots\right)
$$

$B=$ Boolean algebra, $\quad I=$ chain, $\left\{S_{i}\right\}_{i \in I}=$ increasing chain of meet-subsemilattices of B,
st: $D=\bigcup_{i \in I} S_{i}$ is a bounded sublattice of B, and each inclusion $g_{i}: S_{i} \hookrightarrow B$ admits an upper adjoint $f_{i}: B \rightarrow S_{i}$.
$B=$ Boolean algebra, $\quad I=$ chain, $\left\{S_{i}\right\}_{i \in I}=$ increasing chain of meet-subsemilattices of B,
st: $D=\bigcup_{i \in I} S_{i}$ is a bounded sublattice of B, and each inclusion $g_{i}: S_{i} \hookrightarrow B$ admits an upper adjoint $f_{i}: B \rightarrow S_{i}$.

Proposition

- $\overline{(-)}^{i}=g_{i} f_{i}: B \rightarrow B$ is a closure operator,
- for every $x \in B$, we have $\bar{x}=\bigwedge_{i \in I} \bar{x}^{i}$, where the meet is taken in B^{δ}.
$B=$ Boolean algebra, $\quad I=$ chain, $\left\{S_{i}\right\}_{i \in I}=$ increasing chain of meet-subsemilattices of B,
st: $D=\bigcup_{i \in I} S_{i}$ is a bounded sublattice of B, and each inclusion $g_{i}: S_{i} \hookrightarrow B$ admits an upper adjoint $f_{i}: B \rightarrow S_{i}$.

Proposition

- $\overline{(-)}^{i}=g_{i} f_{i}: B \rightarrow B$ is a closure operator,
- for every $x \in B$, we have $\bar{x}=\bigwedge_{i \in I} \bar{x}^{i}$, where the meet is taken in B^{δ}.

Theorem

For $b \in B$, define

$$
c_{1, i}=\bar{b}^{i}, \quad c_{2 k, i}={\overline{c_{2 k-1, i}-b}}^{i}, \quad c_{2 k+1, i}={\overline{c_{2 k, i} \wedge b}}^{i}
$$

If $b \in D^{-} \subseteq B$, then there is $n \in \mathbb{N}, i \in I$ so that, for every $j \geq i$ we have

$$
b=c_{1, j}-\left(c_{2, j}-\left(\cdots-\left(c_{2 n-1, j}-c_{2 n}\right)\right) \ldots\right)
$$

Corollary

$B=$ Boolean algebra, $\quad I=$ chain,
$\left\{S_{i}\right\}_{i \in I}=$ increasing chain of meet-subsemilattices of B,
st: $D=\bigcup_{i \in I} S_{i}$ is a bounded sublattice of B, and each inclusion $g_{i}: S_{i} \hookrightarrow B$ admits an upper adjoint $f_{i}: B \rightarrow S_{i}$.
$B^{\prime} \leq B=$ Boolean subalgebra closed under $\overline{(-)}^{i}=g_{i} f_{i}$ for $i \in I$. Then,

$$
\begin{equation*}
\left(D \cap B^{\prime}\right)^{-}=D^{-} \cap B^{\prime} \tag{1}
\end{equation*}
$$

(the Booleanization of a sublattice of B is the Boolean subalgebra of B it generates)

Corollary

$B=$ Boolean algebra, $\quad I=$ chain,
$\left\{S_{i}\right\}_{i \in I}=$ increasing chain of meet-subsemilattices of B,
st: $D=\bigcup_{i \in I} S_{i}$ is a bounded sublattice of B, and each inclusion $g_{i}: S_{i} \hookrightarrow B$ admits an upper adjoint $f_{i}: B \rightarrow S_{i}$.
$B^{\prime} \leq B=$ Boolean subalgebra closed under $\overline{(-)}^{i}=g_{i} f_{i}$ for $i \in I$. Then,

$$
\begin{equation*}
\left(D \cap B^{\prime}\right)^{-}=D^{-} \cap B^{\prime} \tag{1}
\end{equation*}
$$

(the Booleanization of a sublattice of B is the Boolean subalgebra of B it generates)

Open question

What are necessary conditions so that (1) holds?

An application to Logic on Words

k-ary numerical predicate $=$ subset R of \mathbb{N}^{k}

k-ary numerical predicate $=$ subset R of \mathbb{N}^{k}
For each set \mathcal{N} of numerical predicates, a word $u \in A^{+}$may be thought of as a relational structure

$$
\mathcal{M}_{u}=\left(\{1,2, \ldots,|u|\},(R)_{R \in \mathcal{N}},(\mathbf{a})_{a \in A}\right)
$$

where \mathbf{a} is interpreted as the set of integers i such that the i-th letter of u is an a, and R as $R \cap\{1, \ldots,|u|\}$.
k-ary numerical predicate $=$ subset R of \mathbb{N}^{k}
For each set \mathcal{N} of numerical predicates, a word $u \in A^{+}$may be thought of as a relational structure

$$
\mathcal{M}_{u}=\left(\{1,2, \ldots,|u|\},(R)_{R \in \mathcal{N}},(\mathbf{a})_{a \in A}\right)
$$

where \mathbf{a} is interpreted as the set of integers i such that the i-th letter of u is an a, and R as $R \cap\{1, \ldots,|u|\}$.

Example

Let $\mathcal{N}=\{<\}$, where $<=\{(i, j) \mid i<j\}$ is the usual order relation.
For $u=a b b a a b$, we have

$$
\mathcal{M}_{u}=(\{1,2,3,4,5,6\},<,(\mathbf{a}, \mathbf{b}))
$$

with $\mathbf{a}=\{1,4,5\}, \mathbf{b}=\{2,3,6\}$, and $<=\{(1,2),(1,3), \ldots,(5,6)\}$.

The formula $\phi=\exists x$ ax interprets as:
There exists a position x in u such that the letter in position x is an a.

This defines the language $A^{*} a A^{*}$.

The formula $\phi=\exists x$ ax interprets as:
There exists a position x in u such that the letter in position x is an a.

This defines the language $A^{*} a A^{*}$.

The formula $\exists x \exists y(y=x+1) \wedge \mathbf{a} x \wedge$ by defines the language $A^{*} a b A^{*}$.

The formula $\forall x(x \equiv r \bmod n) \rightarrow \mathbf{a x}$ defines the language $\left(A^{r-1} a A^{n-r}\right)^{*}$.

The formula $\phi=\exists x$ ax interprets as:
There exists a position x in u such that the letter in position x is an a.

This defines the language $A^{*} a A^{*}$.

The formula $\exists x \exists y(y=x+1) \wedge \mathbf{a} x \wedge$ by defines the language $A^{*} a b A^{*}$.

The formula $\forall x(x \equiv r \bmod n) \rightarrow \mathbf{a x}$ defines the language $\left(A^{r-1} a A^{n-r}\right)^{*}$.

The formula $\forall x$ (Prime $(x) \vee \neg \mathbf{a} x)$ defines the language $\left\{w=a_{1} \ldots a_{n} \in A^{+} \mid\left(a_{i}=a\right) \Longrightarrow i\right.$ is prime $\}$.

The formula $\phi=\exists x$ ax interprets as:
There exists a position x in u such that the letter in position x is an a.

This defines the language $A^{*} a A^{*}$.

The formula $\exists x \exists y(y=x+1) \wedge \mathbf{a} x \wedge$ by defines the language $A^{*} a b A^{*}$.

The formula $\forall x(x \equiv r \bmod n) \rightarrow \mathbf{a x}$ defines the language $\left(A^{r-1} a A^{n-r}\right)^{*}$.

The formula $\forall x$ (Prime $(x) \vee \neg \mathbf{a} x)$ defines the language $\left\{w=a_{1} \ldots a_{n} \in A^{+} \mid\left(a_{i}=a\right) \Longrightarrow i\right.$ is prime $\}$.
$(<),(+1)$, and $(\equiv r \bmod n)$ are examples of regular numerical predicates; Prime (x) is not regular.

A language L is regular iff the congruence \sim_{L} given by

$$
u \sim_{L} v \Longleftrightarrow\left(\forall x, y \in A^{*} \quad x u y \in L \Longleftrightarrow x v y \in L\right)
$$

has finite index

A language L is regular iff the congruence \sim_{L} given by

$$
u \sim_{L} v \Longleftrightarrow\left(\forall x, y \in A^{*} \quad x u y \in L \Longleftrightarrow x v y \in L\right)
$$

has finite index, or equivalently, iff the Boolean algebra generated by the languages $x^{-1} L y^{-1}=\left\{u \in A^{+} \mid x u y \in L\right\}\left(x, y \in A^{*}\right)$ is finite.

A language L is regular iff the congruence \sim_{L} given by

$$
u \sim_{L} v \Longleftrightarrow\left(\forall x, y \in A^{*} \quad x u y \in L \Longleftrightarrow x v y \in L\right)
$$

has finite index, or equivalently, iff the Boolean algebra generated by the languages $x^{-1} L y^{-1}=\left\{u \in A^{+} \mid x u y \in L\right\}\left(x, y \in A^{*}\right)$ is finite.

Theorem (Straubing'1991)

A numerical predicate is regular if and only if it is equivalent to a first-order formula in the atomic formulas

$$
x<y \quad \text { and } \quad x \equiv 0 \quad \bmod n
$$

$\mathcal{N}=$ set of numerical predicates
$\Pi_{n}[\mathcal{N}]=$ formulas $\forall^{+} \exists^{+} \ldots \varphi$, with $n-1$ quantifier alternations, and φ a quantifier-free formula using numerical predicates from \mathcal{N}
(E.g. $\forall x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \varphi$ belongs to $\left.\Pi_{3}[\mathcal{N}]\right)$
$\mathcal{B} \Pi_{n}[\mathcal{N}]=$ Boolean combinations of formulas of $\Pi_{n}[\mathcal{N}]$
$\mathcal{N}=$ set of numerical predicates
$\Pi_{n}[\mathcal{N}]=$ formulas $\forall^{+} \exists^{+} \ldots \varphi$, with $n-1$ quantifier alternations, and φ a quantifier-free formula using numerical predicates from \mathcal{N}
(E.g. $\forall x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \varphi$ belongs to $\left.\Pi_{3}[\mathcal{N}]\right)$
$\mathcal{B} \Pi_{n}[\mathcal{N}]=$ Boolean combinations of formulas of $\Pi_{n}[\mathcal{N}]$

Question

$$
\mathcal{B} \Pi_{n}[a r b] \cap \operatorname{Reg}=\mathcal{B} \Pi_{n}[\operatorname{Reg}] \text { ? }
$$

$\mathcal{N}=$ set of numerical predicates
$\Pi_{n}[\mathcal{N}]=$ formulas $\forall^{+} \exists^{+} \cdots \varphi$, with $n-1$ quantifier alternations, and φ a quantifier-free formula using numerical predicates from \mathcal{N}
(E.g. $\forall x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \varphi$ belongs to $\left.\Pi_{3}[\mathcal{N}]\right)$
$\mathcal{B} \Pi_{n}[\mathcal{N}]=$ Boolean combinations of formulas of $\Pi_{n}[\mathcal{N}]$

Question

$$
\mathcal{B} \Pi_{n}[a r b] \cap \operatorname{Reg}=\mathcal{B} \Pi_{n}[\operatorname{Reg}] ?
$$

For $n=1$, the answer is YES (difficult proof, based on a combination of Semigroup and Ramsey Theory).

For $n>1$, this is still an open problem.

Using the corollary of our results on difference chains, we can give a simple proof of the $n=1$ case:

$\mathcal{B} \Pi_{1}[a r b] \cap \operatorname{Reg}=\mathcal{B} \Pi_{1}[\operatorname{Reg}]$

Using the corollary of our results on difference chains, we can give a simple proof of the $n=1$ case:

$\mathcal{B} \Pi_{1}[a r b] \cap \operatorname{Reg}=\mathcal{B} \Pi_{1}[R e g]$

Idea:

1. Take $B=\mathcal{P}\left(A^{+}\right), B^{\prime}=\operatorname{Reg}$, and $S_{n}=\Pi_{1}^{n}[a r b] \quad$ (i.e., formulas $\forall x_{1} \ldots \forall x_{n} \varphi$).
2. $S_{n}=\Pi_{1}^{n}[a r b]$ is a complete meet-semilattice
(but not a lattice: $(\forall x \mathbf{a} x) \vee(\forall x \mathbf{b} x) \equiv a^{+} \cup b^{+}$, but $\left.\forall x(\mathbf{a} x \vee \mathbf{b} x) \equiv\{a, b\}^{+}\right)$
3. $\bigcup_{n \geq 1} \Pi_{1}^{n}[a r b]$ is a lattice (e.g. $(\forall x \mathbf{a} x) \vee(\forall x \mathbf{b} x) \equiv \forall x \forall y(\mathbf{a} x \vee \mathbf{b} y))$
4. Thus, the embedding $g_{n}: \Pi_{1}^{n}[a r b] \hookrightarrow \mathcal{P}\left(A^{+}\right)$has a lower adjoint f_{n}.
5. We compute f_{n} explicitly, and we obtain $f_{n}[R e g] \subseteq \Pi_{1}^{n}[R e g]$.
6. Using the corollary, we conclude the desired equality.

- Can we use the above results to get advances on Straubing's Conjecture?
- Many variations of Straubing's Conjecture exist (see e.g. McKenzie, Thomas, Vollmer, Extensional uniformity for boolean circuits). Will this approach work?
- It is also known that $\mathbf{F O}[a r b] \cap \operatorname{Reg}=\mathbf{F O}[R e g]$. The proof is difficult and involves Boolean circuit complexity and Semigroup theory. Can we get a simpler one?

Thank you!

[^0]: ${ }^{1}$ The research discussed has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No.670624)

