DIFFERENCE HIERARCHIES OVER LATTICES¹

Célia Borlido

(based on joint work with Gerhke, Krebs, and Straubing)

LJAD, CNRS, Université Côte d'Azur

TACL 2019

Topology, Algebra and Categories in Logic

June 17-21, 2019

¹ The research discussed has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No.670624)

3 The canonical extension approach

4 An application to Logic on Words

D = bounded distributive lattice

Booleanization of *D*: unique (up to isomorphism) Boolean algebra D^- , together with a bounded lattice embedding $D \xrightarrow{\iota} D^-$ satisfying the following universal property:

D = bounded distributive lattice

Booleanization of *D*: unique (up to isomorphism) Boolean algebra D^- , together with a bounded lattice embedding $D \xrightarrow{\iota} D^-$ satisfying the following universal property:

 D^- is the unique (up to isomorphism) Boolean algebra containing D as a bounded sublattice and generated as a Boolean algebra by D.

D = bounded distributive lattice

Booleanization of *D*: unique (up to isomorphism) Boolean algebra D^- , together with a bounded lattice embedding $D \xrightarrow{\iota} D^-$ satisfying the following universal property:

 D^- is the unique (up to isomorphism) Boolean algebra containing D as a bounded sublattice and generated as a Boolean algebra by D.

Fact: Every element of D^- may be written as a difference chain of the form

$$a_1-(a_2-(\cdots-(a_{n-1}-a_n))\dots),$$

for some $a_1 \geq \cdots \geq a_n$ in D.

Èsakia: Identifies <u>Heyting algebras</u> with the <u>skeleton of closure algebras</u>, and proves that every element *a* in a closure algebra may be written as a disjunction

$$a = \bigvee_{k=1}^m (a_k - a_{k+1}) \lor a_{m+1},$$

with $a_1 \ge a_2 \ge \cdots \ge a_{m+1}$ constructed from a and using the closure operator.

- **Priestley spaces**¹ *we Bounded distributive lattices*
 - X =Priestley space \rightsquigarrow UpClopen(X)
 - (X_D, τ, \leq) , where \Leftrightarrow D = bounded distributive lattice
- $\circ X_D = \{ \text{prime filters of } D \}$
- τ has basis of (cl)opens $\{\widehat{a}, (\widehat{a})^c \mid a \in D\}$, with $\widehat{a} = \{x \in X_D \mid a \in x\}$
- $\circ~\leq$ is inclusion of prime filters

 $D \cong \mathsf{UpClopen}(X_D)$ and $X \cong X_{\mathsf{UpClopen}(X)}$

In particular, $D^- \cong \text{Clopen}(X_D)$.

¹Compact and totally order disconnected topological space

X = Priestley space, $V \subseteq X =$ clopen subset.

Then, there are clopen upsets $W_1 \supseteq \cdots \supseteq W_n$ of X such that

$$V = W_1 - (W_2 - (\cdots - (W_{n-1} - W_n)) \cdots).$$

Our question: Is there a "canonical form" for such a writing?

 $V = \{x\}$ is clopen

 $V = \{x\}$ is clopen, $V = W - W' \implies \uparrow V = \{x, y\} \subseteq W$ is not open!

7

 $V = \{x\}$ is clopen, $V = W - W' \implies \uparrow V = \{x, y\} \subseteq W$ is not open!

There is no smallest clopen upset containing V:

the clopen upsets containing V are precisely the sets of the form $W = S \cup \{x, y\}$, with $S \subseteq \mathbb{N}$ cofinite.

Moreover, $W' = W - \{x\} = \uparrow (W - V)$ is also a clopen upset and V = W - W'.

 $V = \{x\}$ is clopen, $V = W - W' \implies \uparrow V = \{x, y\} \subseteq W$ is not open!

There is no smallest clopen upset containing V:

the clopen upsets containing V are precisely the sets of the form $W = S \cup \{x, y\}$, with $S \subseteq \mathbb{N}$ cofinite.

Moreover, $W' = W - \{x\} = \uparrow (W - V)$ is also a clopen upset and V = W - W'.

However, $\uparrow V$ is closed and $V = \uparrow V - \uparrow (\uparrow V - V)$. C. Borlido (LJAD) DIFFERENCE HIERARCHIES OVER LATTICES JUNE 17-21, 2019

 $p_n = p$ and $p_i \in S$ if and only if *i* is odd.

 $p_n = p$ and $p_i \in S$ if and only if *i* is odd.

$$p_n = p$$
 and $p_i \in S$ if and only if *i* is odd.

The degree of p (wrt S), deg_S(p), is the largest k for which there is an alternating sequence of length k for p,

and p has degree 0 if there is no alternating sequence for p (wrt S).

Example: *p* has degree 4.

 $p_n = p$ and $p_i \in S$ if and only if *i* is odd.

The degree of p (wrt S), deg_S(p), is the largest k for which there is an alternating sequence of length k for p,

and p has degree 0 if there is no alternating sequence for p (wrt S).

Remarks:

- The elements of degree 0 are precisely those of $(P \uparrow S)$.
- An element of finite degree is of odd degree if and only if it belongs to S.
- If S is convex¹, then every element of S has degree 1, while every element of $\uparrow S S$ has degree 2.

¹*S* is convex if $x \le y \le z$ with $x, z \in S$ implies $y \in S$.

In general, there are posets where every element has an infinite degree:

PROPOSITION

$$X =$$
Priestley space, $V \subseteq X =$ clopen subset.

Then, every element of X has finite degree with respect to V.

PROPOSITION

X =Priestley space, $V \subseteq X =$ clopen subset.

Then, every element of X has finite degree with respect to V.

Idea of Proof:

- Any clopen subset of X may be written as a finite union $V = \bigcup_{i=1}^{n} (U_i W_i)$, with $U_i, W_i \in \text{UpClopen}(X)$.
- (Pigeonhole Principle + convexity of $(U_i W_i)$) ⇒ deg_V(x) ≤ 2n, for x ∈ X.

Difference chains of closed upsets

for some closed upsets $G_1 \supseteq \cdots \supseteq G_n$.

 $V \subseteq G_1 \implies \uparrow V \subseteq G_1$

$$V \subseteq G_1 \implies \uparrow V \subseteq G_1$$

 $\mathcal{K}_1 = \uparrow V$ is the smallest possible choice for G_1 , and $\mathcal{K}_1 = \{x \in X \mid \deg_V(x) \ge 1\}.$

$$V \subseteq G_1 \implies \uparrow V \subseteq G_1$$

 $\mathcal{K}_1 = \uparrow V$ is the smallest possible choice for \mathcal{G}_1 , and $\mathcal{K}_1 = \{x \in X \mid \deg_V(x) \ge 1\}.$

$$G_1 - G_2 \subseteq V$$
 and $K_1 \subseteq G_1 \implies \uparrow (K_1 - V) \subseteq \uparrow (G_1 - V) \subseteq G_2$

$$V \subseteq G_1 \implies \uparrow V \subseteq G_1$$

 $\mathcal{K}_1 = \uparrow V$ is the smallest possible choice for G_1 , and $\mathcal{K}_1 = \{x \in X \mid \deg_V(x) \ge 1\}.$

$$\mathsf{G}_1-\mathsf{G}_2\subseteq \mathsf{V}$$
 and $\mathsf{K}_1\subseteq\mathsf{G}_1\implies \uparrow(\mathsf{K}_1-\mathsf{V})\subseteq\uparrow(\mathsf{G}_1-\mathsf{V})\subseteq\mathsf{G}_2$

 $\mathcal{K}_2 = \uparrow (\mathcal{K}_1 - V)$ is the smallest possible choice for \mathcal{G}_2 , and $\mathcal{K}_2 = \{ x \in X \mid \deg_V(x) \ge 2 \}.$

C. Borlido (LJAD)

$$V \subseteq G_1 \implies \uparrow V \subseteq G_1$$

 $\mathcal{K}_1 = \uparrow V$ is the smallest possible choice for G_1 , and $\mathcal{K}_1 = \{x \in X \mid \deg_V(x) \ge 1\}.$

$$\mathsf{G}_1-\mathsf{G}_2\subseteq \mathsf{V}$$
 and $\mathsf{K}_1\subseteq\mathsf{G}_1\implies \uparrow(\mathsf{K}_1-\mathsf{V})\subseteq\uparrow(\mathsf{G}_1-\mathsf{V})\subseteq\mathsf{G}_2$

 $K_2 = \uparrow (K_1 - V)$ is the smallest possible choice for G_2 , and $K_2 = \{x \in X \mid \deg_V(x) \ge 2\}.$

In particular, $K_1 - K_2 = \{x \in X \mid \deg_V(x) = 1\}.$

C. Borlido (LJAD)

$$\begin{split} \mathcal{K}_1 &= \uparrow \mathcal{V} = \{ x \in X \mid \deg_{\mathcal{V}}(x) \geq 1 \} \subseteq \mathcal{G}_1 \\ \mathcal{K}_2 &= \uparrow (\mathcal{K}_1 - \mathcal{V}) = \{ x \in X \mid \deg_{\mathcal{V}}(x) \geq 2 \} \subseteq \mathcal{G}_2 \\ \mathcal{K}_1 - \mathcal{K}_2 &= \{ x \in X \mid \deg_{\mathcal{V}}(x) = 1 \} \end{split}$$

$$\begin{split} & \mathcal{K}_1 = \uparrow \mathcal{V} = \{x \in X \mid \deg_{\mathcal{V}}(x) \geq 1\} \subseteq \mathcal{G}_1 \\ & \mathcal{K}_2 = \uparrow (\mathcal{K}_1 - \mathcal{V}) = \{x \in X \mid \deg_{\mathcal{V}}(x) \geq 2\} \subseteq \mathcal{G}_2 \\ & \mathcal{G}_1 - \mathcal{G}_2 \subseteq \mathcal{K}_1 - \mathcal{K}_2 = \{x \in X \mid \deg_{\mathcal{V}}(x) = 1\} \end{split}$$

Suppose X = Priestley space, V = clopen subset of X $V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n)) \dots)$ for some closed upsets $G_1 \supseteq \dots \supseteq G_n$. $K_1 = \uparrow V = \{x \in X \mid \deg_V(x) \ge 1\} \subseteq G_1$ $K_2 = \uparrow (K_1 - V) = \{x \in X \mid \deg_V(x) \ge 2\} \subseteq G_2$ $G_1 - G_2 \subseteq K_1 - K_2 = \{x \in X \mid \deg_V(x) = 1\}$

 $\begin{aligned} X' &= K_2 = \text{new Priestley space}, \quad V' = X' \cap V = \text{clopen subset of } X', \\ V' &= G'_3 - (G'_4 - (\cdots - (G'_{n-1} - G'_n)) \cdots), \\ \text{where } G'_i &= X' \cap G_i \qquad (\text{because } G'_1 - G'_2 = (G_1 - G_2) \cap K_2 \subseteq (K_1 - K_2) \cap K_2 = \emptyset) \end{aligned}$

for some closed upsets $G_1 \supseteq \cdots \supseteq G_n$.

$$\begin{split} \mathcal{K}_1 &= \uparrow \mathcal{V} = \{ x \in X \mid \deg_{\mathcal{V}}(x) \geq 1 \} \subseteq \mathcal{G}_1 \\ \mathcal{K}_2 &= \uparrow (\mathcal{K}_1 - \mathcal{V}) = \{ x \in X \mid \deg_{\mathcal{V}}(x) \geq 2 \} \subseteq \mathcal{G}_2 \\ \mathcal{G}_1 - \mathcal{G}_2 \subseteq \mathcal{K}_1 - \mathcal{K}_2 = \{ x \in X \mid \deg_{\mathcal{V}}(x) = 1 \} \end{split}$$

 $\begin{aligned} X' &= K_2 = \text{new Priestley space}, \quad V' = X' \cap V = \text{clopen subset of } X', \\ V' &= G'_3 - (G'_4 - (\dots - (G'_{n-1} - G'_n))\dots), \\ \text{where } G'_i &= X' \cap G_i \quad (\text{because } G'_1 - G'_2 = (G_1 - G_2) \cap K_2 \subseteq (K_1 - K_2) \cap K_2 = \emptyset) \end{aligned}$

 $K_3 = \uparrow V' = \uparrow (K_2 \cap V)$ is the smallest possible choice for $G'_3 \subseteq G_3$. $K_4 = \uparrow (K_3 - V') = \uparrow (K_3 - V)$ is the smallest possible choice for $G'_4 \subseteq G_4$.

C. Borlido (LJAD)

for some closed upsets $G_1 \supseteq \cdots \supseteq G_n$.

$$\begin{split} \mathcal{K}_1 &= \uparrow \mathcal{V} = \{x \in X \mid \deg_{\mathcal{V}}(x) \geq 1\} \subseteq \mathcal{G}_1 \\ \mathcal{K}_2 &= \uparrow (\mathcal{K}_1 - \mathcal{V}) = \{x \in X \mid \deg_{\mathcal{V}}(x) \geq 2\} \subseteq \mathcal{G}_2 \\ \mathcal{G}_1 - \mathcal{G}_2 \subseteq \mathcal{K}_1 - \mathcal{K}_2 = \{x \in X \mid \deg_{\mathcal{V}}(x) = 1\} \end{split}$$

 $\begin{aligned} X' &= K_2 = \text{new Priestley space,} \quad V' = X' \cap V = \text{clopen subset of } X', \\ V' &= G'_3 - (G'_4 - (\dots - (G'_{n-1} - G'_n)) \dots), \\ \text{where } G'_i &= X' \cap G_i \qquad (\text{because } G'_1 - G'_2 = (G_1 - G_2) \cap K_2 \subseteq (K_1 - K_2) \cap K_2 = \emptyset) \end{aligned}$ $\begin{aligned} K_3 &= \uparrow V' = \uparrow (K_2 \cap V) \text{ is the smallest possible choice for } G'_3 \subseteq G_3. \\ K_4 &= \uparrow (K_3 - V') = \uparrow (K_3 - V) \text{ is the smallest possible choice for } G'_4 \subseteq G_4. \\ \text{Also, } \deg_{V'}(x) &= \deg_V(x) - 2, \text{ thus } K_i = \{x \in X \mid \deg_V(x) \ge i\} \ (i = 3, 4), \\ \text{and } \quad K_3 - K_4 = \{x \in X \mid \deg_V(x) = 3\}. \end{aligned}$

for some closed upsets $G_1 \supseteq \cdots \supseteq G_n$.

$$\begin{split} \mathcal{K}_1 &= \uparrow \mathcal{V} = \{ x \in X \mid \deg_{\mathcal{V}}(x) \geq 1 \} \subseteq \mathcal{G}_1 \\ \mathcal{K}_2 &= \uparrow (\mathcal{K}_1 - \mathcal{V}) = \{ x \in X \mid \deg_{\mathcal{V}}(x) \geq 2 \} \subseteq \mathcal{G}_2 \\ \mathcal{G}_1 - \mathcal{G}_2 \subseteq \mathcal{K}_1 - \mathcal{K}_2 = \{ x \in X \mid \deg_{\mathcal{V}}(x) = 1 \} \end{split}$$

 $\begin{aligned} X' &= K_2 = \text{new Priestley space,} \quad V' = X' \cap V = \text{clopen subset of } X', \\ V' &= G'_3 - (G'_4 - (\dots - (G'_{n-1} - G'_n)) \dots), \\ \text{where } G'_i &= X' \cap G_i \qquad (\text{because } G'_1 - G'_2 = (G_1 - G_2) \cap K_2 \subseteq (K_1 - K_2) \cap K_2 = \emptyset) \end{aligned}$ $\begin{aligned} K_3 &= \uparrow V' = \uparrow (K_2 \cap V) \text{ is the smallest possible choice for } G'_3 \subseteq G_3. \\ K_4 &= \uparrow (K_3 - V') = \uparrow (K_3 - V) \text{ is the smallest possible choice for } G'_4 \subseteq G_4. \end{aligned}$ $\begin{aligned} \text{Also, } \deg_{V'}(x) &= \deg_V(x) - 2, \text{ thus } K_i = \{x \in X \mid \deg_V(x) \ge i\} \ (i = 3, 4), \\ \text{and } \quad K_3 - K_4 = \{x \in X \mid \deg_V(x) = 3\} \supseteq G'_3 - G'_4 = (G_3 - G_4) \cap K_2. \end{aligned}$

Theorem

X = Priestley space, V = clopen subset of X, define:

 $K_1 = \uparrow V$, $K_{2i} = \uparrow (K_{2i-1} - V)$, $K_{2i+1} = \uparrow (K_{2i} \cap V)$.

X = Priestley space, V = clopen subset of X, define:

 $K_1 = \uparrow V$, $K_{2i} = \uparrow (K_{2i-1} - V)$, $K_{2i+1} = \uparrow (K_{2i} \cap V)$.

Then, $K_n = \{x \in X \mid \deg_V(x) \ge n\}$

 $X = \text{Priestley space}, \quad V = \text{clopen subset of } X, \quad \text{define:}$ $K_1 = \uparrow V, \quad K_{2i} = \uparrow (K_{2i-1} - V), \quad K_{2i+1} = \uparrow (K_{2i} \cap V).$ Then, $K_n = \{x \in X \mid \deg_V(x) \ge n\}$ and so,

$$V = \bigcup_{i=1}^{m} (K_{2i-1} - K_{2i}) = K_1 - (K_2 - (\cdots - (K_{2m-1} - K_{2m})) \cdots),$$

where $2m - 1 = \max\{\deg_V(x) \mid x \in V\}$.

 $\begin{aligned} X &= \text{Priestley space,} \quad V = \text{clopen subset of } X, \quad \text{define:} \\ K_1 &= \uparrow V, \quad K_{2i} = \uparrow (K_{2i-1} - V), \quad K_{2i+1} = \uparrow (K_{2i} \cap V). \end{aligned}$ Then, $K_n = \{x \in X \mid \deg_V(x) \geq n\}$ and so,

$$V = \bigcup_{i=1}^{m} (K_{2i-1} - K_{2i}) = K_1 - (K_2 - (\cdots - (K_{2m-1} - K_{2m})) \dots),$$

where $2m - 1 = \max\{\deg_V(x) \mid x \in V\}$.

Moreover, if $G_1 \supseteq G_2 \supseteq \cdots \supseteq G_{2p}$ is a chain of closed upsets satisfying

$$V = G_1 - (G_2 - (\cdots - (G_{2p-1} - G_{2p})) \dots)$$

 $\begin{aligned} X &= \text{Priestley space,} \quad V = \text{clopen subset of } X, \quad \text{define:} \\ K_1 &= \uparrow V, \quad K_{2i} = \uparrow (K_{2i-1} - V), \quad K_{2i+1} = \uparrow (K_{2i} \cap V). \end{aligned}$ Then, $K_n = \{x \in X \mid \deg_V(x) \ge n\}$ and so,

$$V = \bigcup_{i=1}^{m} (K_{2i-1} - K_{2i}) = K_1 - (K_2 - (\cdots - (K_{2m-1} - K_{2m})) \cdots),$$

where $2m - 1 = \max\{\deg_V(x) \mid x \in V\}$.

Moreover, if $G_1 \supseteq G_2 \supseteq \cdots \supseteq G_{2p}$ is a chain of closed upsets satisfying

$$V = G_1 - (G_2 - (\dots - (G_{2p-1} - G_{2p}))\dots),$$
 then

$p \ge m$

 $\begin{aligned} X &= \text{Priestley space,} \quad V = \text{clopen subset of } X, \quad \text{define:} \\ K_1 &= \uparrow V, \quad K_{2i} = \uparrow (K_{2i-1} - V), \quad K_{2i+1} = \uparrow (K_{2i} \cap V). \end{aligned}$ Then, $K_n = \{x \in X \mid \deg_V(x) \geq n\}$ and so,

$$V = \bigcup_{i=1}^{m} (K_{2i-1} - K_{2i}) = K_1 - (K_2 - (\cdots - (K_{2m-1} - K_{2m})) \dots),$$

where $2m - 1 = \max\{\deg_V(x) \mid x \in V\}$.

Moreover, if $G_1 \supseteq G_2 \supseteq \cdots \supseteq G_{2p}$ is a chain of closed upsets satisfying

$$V = G_1 - (G_2 - (\dots - (G_{2p-1} - G_{2p}))\dots),$$
 then

 $p \ge m,$ $K_i \subseteq G_i$ $(i \ge 1)$

 $\begin{aligned} X &= \text{Priestley space,} \quad V = \text{clopen subset of } X, \quad \text{define:} \\ K_1 &= \uparrow V, \quad K_{2i} = \uparrow (K_{2i-1} - V), \quad K_{2i+1} = \uparrow (K_{2i} \cap V). \end{aligned}$ Then, $K_n = \{x \in X \mid \deg_V(x) \geq n\}$ and so,

$$V = \bigcup_{i=1}^{m} (K_{2i-1} - K_{2i}) = K_1 - (K_2 - (\cdots - (K_{2m-1} - K_{2m})) \cdots),$$

where $2m - 1 = \max\{\deg_V(x) \mid x \in V\}$.

Moreover, if $G_1 \supseteq G_2 \supseteq \cdots \supseteq G_{2p}$ is a chain of closed upsets satisfying

$$V = G_1 - (G_2 - (\dots - (G_{2p-1} - G_{2p}))\dots),$$
 then

 $p \ge m, \qquad \qquad K_i \subseteq G_i, \qquad \qquad \bigcup_{i=1}^n (G_{2i-1} - G_{2i}) \subseteq \bigcup_{i=1}^n (K_{2i-1} - K_{2i})$ $(i \ge 1) \qquad \qquad (n \ge 1)$

Recall: A co-Heyting algebra is a bounded distributive lattice *D* equipped with a binary operation $_{-/_{-}}$ such that for every $a \in D$, $(_{-/a})$ is lower adjoint of $(a \lor _{-})$: $(x/a \le b \iff x \le a \lor b)$.

Fact

A bounded distributive lattice D admits a co-Heyting structure if and only if its Booleanization is equipped with a ceiling function

$$D^- \longrightarrow D$$
, $b \mapsto \lceil b \rceil = \bigwedge \{ c \in D \mid b \leq c \}$.

When that is the case, taking upsets preserves clopens of the dual X_D and the functions

$$[-]: D^- \to D$$
 and $\uparrow_-: \operatorname{Clopen}(X_D) \to \operatorname{UpClopen}(X_D)$

are naturally isomorphic.

COROLLARY

 $D = ext{co-Heyting algebra}, \quad b \in D^-.$

Define:

for

$$a_1 = \lceil b \rceil,$$
 $a_{2i} = \lceil a_{2i-1} - b \rceil,$ and $a_{2i+1} = \lceil a_{2i} \wedge b \rceil,$
 $i \ge 1.$

Then, the sequence $\{a_i\}_{i\geq 0}$ is decreasing, and there exists $m\geq 1$ such that $a_{2m+1}=0$ and

$$b = a_1 - (a_2 - (\dots (a_{2m-1} - a_{2m}) \dots)),$$

and this is a canonical writing!

 $\circ\,$ Every finite distributive lattice is a co-Heyting algebra.

- Every finite distributive lattice is a co-Heyting algebra.
- Every bounded distributive lattice is the direct limit of its finite sublattices.

- Every finite distributive lattice is a co-Heyting algebra.
- Every bounded distributive lattice is the direct limit of its finite sublattices.
- Booleanization commutes with direct limits of bounded distributive lattices: $(\lim_{\rightarrow} D_i)^- = \lim_{\rightarrow} D_i^-$.

- Every finite distributive lattice is a co-Heyting algebra.
- Every bounded distributive lattice is the direct limit of its finite sublattices.
- Booleanization commutes with direct limits of bounded distributive lattices: $(\lim_{\to} D_i)^- = \lim_{\to} D_i^-$.

COROLLARY

Every Boolean element over any bounded distributive lattice may be written as a difference chain of elements of the lattice.

The canonical extension approach

Recall: If D is a bounded distributive lattice, its canonical extension is an embedding $D \hookrightarrow D^{\delta}$ into a complete lattice D^{δ} such that:

- *D* is dense in D^{δ} , ie, each element of D^{δ} is a join of meets and a meet of joins of elements of *D*;
- the embedding is compact, ie, for every $S, T \subseteq D$, if $\bigwedge S \leq \bigvee T$, then there are finite subsets $S' \subseteq S$ and $T' \subseteq S$ so that $\bigwedge S' \leq \bigvee T'$.

The filter elements of D^{δ} , $F(D^{\delta})$, are those in the meet-closure of D.

Recall: If D is a bounded distributive lattice, its canonical extension is an embedding $D \hookrightarrow D^{\delta}$ into a complete lattice D^{δ} such that:

- *D* is dense in D^{δ} , ie, each element of D^{δ} is a join of meets and a meet of joins of elements of *D*;
- the embedding is compact, ie, for every $S, T \subseteq D$, if $\bigwedge S \leq \bigvee T$, then there are finite subsets $S' \subseteq S$ and $T' \subseteq S$ so that $\bigwedge S' \leq \bigvee T'$.

The filter elements of D^{δ} , $F(D^{\delta})$, are those in the meet-closure of D.

Set $B = D^-$, X = Priestley space of D.

- \circ $F(D^{\delta}) \cong UpClosed(X)$ and $F(B^{\delta}) \cong Closed(X)$.
- $D \hookrightarrow B$ extends to a complete embedding $D^{\delta} \hookrightarrow B^{\delta}$.
- This embedding has a lower adjoint $\overline{(_)} : B^{\delta} \to D^{\delta}$ given by $\overline{u} = \min\{v \in D^{\delta} \mid u \leq v\}$, which preserves filter elements.

Recall: If D is a bounded distributive lattice, its canonical extension is an embedding $D \hookrightarrow D^{\delta}$ into a complete lattice D^{δ} such that:

- *D* is dense in D^{δ} , ie, each element of D^{δ} is a join of meets and a meet of joins of elements of *D*;
- the embedding is compact, ie, for every $S, T \subseteq D$, if $\bigwedge S \leq \bigvee T$, then there are finite subsets $S' \subseteq S$ and $T' \subseteq S$ so that $\bigwedge S' \leq \bigvee T'$.

The filter elements of D^{δ} , $F(D^{\delta})$, are those in the meet-closure of D.

Set $B = D^-$, X = Priestley space of D.

- \circ $F(D^{\delta}) \cong UpClosed(X)$ and $F(B^{\delta}) \cong Closed(X)$.
- $\circ D \hookrightarrow B$ extends to a complete embedding $D^{\delta} \hookrightarrow B^{\delta}$.
- This embedding has a lower adjoint $\overline{(_)} : B^{\delta} \to D^{\delta}$ given by $\overline{u} = \min\{v \in D^{\delta} \mid u \leq v\}$, which preserves filter elements.

In particular, $\overline{(_)} : F(B^{\delta}) \to F(D^{\delta})$ and $\uparrow_{_} : Closed(X) \to UpClosed(X)$ are naturally isomorphic.

C. Borlido (LJAD)

Our previous result may be stated as follows:

Theorem

 $D = bounded distributive lattice, b \in D^-$, define

$$k_1 = \overline{b}, \qquad k_{2n} = \overline{k_{2n-1} - b}, \qquad k_{2n+1} = \overline{k_{2n} \wedge b}.$$

Then,

$$b = k_1 - (k_2 - (\dots (k_{2n-1} - k_{2n}))\dots).$$

B = Boolean algebra, I = chain,

 ${S_i}_{i \in I}$ = increasing chain of meet-subsemilattices of B,

st: $D = \bigcup_{i \in I} S_i$ is a bounded sublattice of B, and each inclusion $g_i : S_i \hookrightarrow B$ admits an upper adjoint $f_i : B \to S_i$.

B = Boolean algebra, I = chain,

 ${S_i}_{i \in I}$ = increasing chain of meet-subsemilattices of B,

st: $D = \bigcup_{i \in I} S_i$ is a bounded sublattice of B, and each inclusion $g_i : S_i \hookrightarrow B$ admits an upper adjoint $f_i : B \to S_i$.

PROPOSITION

$$\circ \ \overline{(_)}^i = g_i f_i : B o B$$
 is a closure operator,

• for every $x \in B$, we have $\overline{x} = \bigwedge_{i \in I} \overline{x}^i$, where the meet is taken in B^{δ} .

B = Boolean algebra, I = chain,

 ${S_i}_{i \in I}$ = increasing chain of meet-subsemilattices of B,

st: $D = \bigcup_{i \in I} S_i$ is a bounded sublattice of B, and each inclusion $g_i : S_i \hookrightarrow B$ admits an upper adjoint $f_i : B \to S_i$.

PROPOSITION

$$\circ \ \overline{(_)}^i = g_i f_i : B o B$$
 is a closure operator,

• for every $x \in B$, we have $\overline{x} = \bigwedge_{i \in I} \overline{x}^i$, where the meet is taken in B^{δ} .

Theorem

For $b \in B$, define $c_{1,i} = \overline{b}^{i}$, $c_{2k,i} = \overline{c_{2k-1,i} - b}^{i}$, $c_{2k+1,i} = \overline{c_{2k,i} \wedge b}^{i}$

If $b \in D^- \subseteq B$, then there is $n \in \mathbb{N}$, $i \in I$ so that, for every $j \ge i$ we have

$$b = c_{1,j} - (c_{2,j} - (\cdots - (c_{2n-1,j} - c_{2n})) \dots).$$

COROLLARY

B = Boolean algebra, I = chain,

 ${S_i}_{i \in I}$ = increasing chain of meet-subsemilattices of B,

st: $D = \bigcup_{i \in I} S_i$ is a bounded sublattice of B, and each inclusion $g_i : S_i \hookrightarrow B$ admits an upper adjoint $f_i : B \to S_i$.

 $B' \leq B = \text{Boolean subalgebra closed under } \overline{(_)}^i = g_i f_i \text{ for } i \in I. \text{ Then,}$ $(D \cap B')^- = D^- \cap B', \tag{1}$

(the Booleanization of a sublattice of B is the Boolean subalgebra of B it generates)

COROLLARY

B = Boolean algebra, I = chain,

 ${S_i}_{i \in I}$ = increasing chain of meet-subsemilattices of B,

st: $D = \bigcup_{i \in I} S_i$ is a bounded sublattice of B, and each inclusion $g_i : S_i \hookrightarrow B$ admits an upper adjoint $f_i : B \to S_i$.

 $B' \leq B$ = Boolean subalgebra closed under $\overline{(_)}^i = g_i f_i$ for $i \in I$. Then, $(D \cap B')^- = D^- \cap B'$, (1)

(the Booleanization of a sublattice of B is the Boolean subalgebra of B it generates)

OPEN QUESTION

What are necessary conditions so that (1) holds?

An application to Logic on Words

Skip a bit Ski

Skip all

WHAT IS LOGIC ON WORDS?

k-ary numerical predicate = subset *R* of \mathbb{N}^k

k-ary numerical predicate = subset *R* of \mathbb{N}^k

For each set N of numerical predicates, a word $u \in A^+$ may be thought of as a relational structure

 $\mathcal{M}_{u} = (\{1, 2, \dots, |u|\}, (R)_{R \in \mathcal{N}}, (\mathbf{a})_{a \in A})$

where **a** is interpreted as the set of integers *i* such that the *i*-th letter of *u* is an *a*, and *R* as $R \cap \{1, \ldots, |u|\}$.

k-ary numerical predicate = subset *R* of \mathbb{N}^k

For each set N of numerical predicates, a word $u \in A^+$ may be thought of as a relational structure

 $\mathcal{M}_{u} = (\{1, 2, \dots, |u|\}, (R)_{R \in \mathcal{N}}, (\mathbf{a})_{a \in A})$

where **a** is interpreted as the set of integers *i* such that the *i*-th letter of *u* is an *a*, and *R* as $R \cap \{1, \ldots, |u|\}$.

EXAMPLE

Let $\mathcal{N} = \{<\}$, where $\langle = \{(i,j) \mid i < j\}$ is the usual order relation. For u = abbaab, we have

 $\mathcal{M}_u = (\{1, 2, 3, 4, 5, 6\}, <, (\mathbf{a}, \mathbf{b}))$

with $\mathbf{a} = \{1, 4, 5\}$, $\mathbf{b} = \{2, 3, 6\}$, and $\langle = \{(1, 2), (1, 3), \dots, (5, 6)\}$.

There exists a position x in u such that the letter in position x is an a.

This defines the language A^*aA^* .

There exists a position x in u such that the letter in position x is an a.

This defines the language A^*aA^* .

The formula $\exists x \exists y \ (y = x + 1) \land ax \land by$ defines the language A^*abA^* .

The formula $\forall x \ (x \equiv r \mod n) \rightarrow \mathbf{a}x$ defines the language $(A^{r-1}aA^{n-r})^*$.

There exists a position x in u such that the letter in position x is an a.

This defines the language A^*aA^* .

The formula $\exists x \exists y \ (y = x + 1) \land ax \land by$ defines the language A^*abA^* .

The formula $\forall x \ (x \equiv r \mod n) \rightarrow \mathbf{a}x$ defines the language $(A^{r-1}aA^{n-r})^*$.

The formula $\forall x \text{ (Prime}(x) \lor \neg ax)$ defines the language $\{w = a_1 \dots a_n \in A^+ \mid (a_i = a) \implies i \text{ is prime}\}.$

There exists a position x in u such that the letter in position x is an a.

This defines the language A^*aA^* .

The formula $\exists x \exists y \ (y = x + 1) \land ax \land by$ defines the language A^*abA^* .

The formula $\forall x \ (x \equiv r \mod n) \rightarrow \mathbf{a}x$ defines the language $(A^{r-1}aA^{n-r})^*$.

The formula $\forall x (\text{Prime}(x) \lor \neg ax)$ defines the language $\{w = a_1 \dots a_n \in A^+ \mid (a_i = a) \implies i \text{ is prime}\}.$

(<), (+1), and ($\equiv r \mod n$) are examples of regular numerical predicates; **Prime**(*x*) is not regular. A language *L* is regular iff the congruence \sim_L given by

$$u \sim_L v \iff (\forall x, y \in A^* \quad xuy \in L \iff xvy \in L)$$

has finite index

A language L is regular iff the congruence \sim_L given by

$$u \sim_L v \iff (\forall x, y \in A^* \quad xuy \in L \iff xvy \in L)$$

has finite index, or equivalently, iff the Boolean algebra generated by the languages $x^{-1}Ly^{-1} = \{u \in A^+ \mid xuy \in L\}$ $(x, y \in A^*)$ is finite.

A language *L* is regular iff the congruence \sim_L given by

$$u \sim_L v \iff (\forall x, y \in A^* \quad xuy \in L \iff xvy \in L)$$

has finite index, or equivalently, iff the Boolean algebra generated by the languages $x^{-1}Ly^{-1} = \{u \in A^+ \mid xuy \in L\}$ $(x, y \in A^*)$ is finite.

THEOREM (STRAUBING'1991)

A numerical predicate is regular if and only if it is equivalent to a first-order formula in the atomic formulas

$$x < y$$
 and $x \equiv 0 \mod n$.

$\mathcal{N} = \mathsf{set} \mathsf{ of numerical predicates}$

 $\Pi_n[\mathcal{N}] =$ formulas $\forall^+ \exists^+ \cdots \varphi$, with n-1 quantifier alternations, and φ a quantifier-free formula using numerical predicates from \mathcal{N}

(E.g. $\forall x_1 \ \forall x_2 \ \exists x_3 \ \forall x_4 \ \varphi$ belongs to $\Pi_3[\mathcal{N}]$)

 $\mathcal{B}\Pi_n[\mathcal{N}] =$ Boolean combinations of formulas of $\Pi_n[\mathcal{N}]$

$\mathcal{N} = \mathsf{set} \mathsf{ of numerical predicates}$

 $\Pi_n[\mathcal{N}] =$ formulas $\forall^+ \exists^+ \cdots \varphi$, with n-1 quantifier alternations, and φ a quantifier-free formula using numerical predicates from \mathcal{N}

(E.g. $\forall x_1 \ \forall x_2 \ \exists x_3 \ \forall x_4 \ \varphi$ belongs to $\Pi_3[\mathcal{N}]$)

 $\mathcal{B}\Pi_n[\mathcal{N}] =$ Boolean combinations of formulas of $\Pi_n[\mathcal{N}]$

QUESTION

$$\mathcal{B}\Pi_n[arb] \cap Reg = \mathcal{B}\Pi_n[Reg]$$
?

$\mathcal{N} = \mathsf{set} \mathsf{ of numerical predicates}$

 $\Pi_n[\mathcal{N}] =$ formulas $\forall^+ \exists^+ \cdots \varphi$, with n-1 quantifier alternations, and φ a quantifier-free formula using numerical predicates from \mathcal{N}

(E.g. $\forall x_1 \ \forall x_2 \ \exists x_3 \ \forall x_4 \ \varphi$ belongs to $\Pi_3[\mathcal{N}]$)

 $\mathcal{B}\Pi_n[\mathcal{N}] =$ Boolean combinations of formulas of $\Pi_n[\mathcal{N}]$

QUESTION

$$\mathcal{B}\Pi_n[arb] \cap Reg = \mathcal{B}\Pi_n[Reg]$$
?

For n = 1, the answer is YES (difficult proof, based on a combination of Semigroup and Ramsey Theory).

For n > 1, this is still an open problem.

C. Borlido (LJAD)

Using the corollary of our results on difference chains, we can give a simple proof of the n = 1 case:

$$\mathcal{B}\Pi_1[\mathit{arb}] \cap \mathit{Reg} = \mathcal{B}\Pi_1[\mathit{Reg}]$$

Using the corollary of our results on difference chains, we can give a simple proof of the n = 1 case:

$$\mathcal{B}\Pi_1[\mathit{arb}] \cap \mathit{Reg} = \mathcal{B}\Pi_1[\mathit{Reg}]$$

Idea:

- 1. Take $B = \mathcal{P}(A^+)$, B' = Reg, and $S_n = \prod_{1}^{n} [arb]$ (i.e., formulas $\forall x_1 \dots \forall x_n \varphi$).
- 2. $S_n = \prod_1^n [arb]$ is a complete meet-semilattice (but not a lattice: $(\forall x \ \mathbf{a}x) \lor (\forall x \ \mathbf{b}x) \equiv a^+ \cup b^+$, but $\forall x \ (\mathbf{a}x \lor \mathbf{b}x) \equiv \{a, b\}^+$)
- 3. $\bigcup_{n\geq 1} \prod_{1}^{n} [arb]$ is a lattice (e.g. $(\forall x \ \mathbf{a}x) \lor (\forall x \ \mathbf{b}x) \equiv \forall x \ \forall y \ (\mathbf{a}x \lor \mathbf{b}y))$
- 4. Thus, the embedding $g_n : \Pi_1^n[arb] \hookrightarrow \mathcal{P}(A^+)$ has a lower adjoint f_n .
- 5. We compute f_n explicitly, and we obtain $f_n[Reg] \subseteq \prod_{i=1}^{n}[Reg]$.
- 6. Using the corollary, we conclude the desired equality.

C. Borlido (LJAD)

- Can we use the above results to get advances on *Straubing's Conjecture*?
- Many variations of Straubing's Conjecture exist (see e.g. McKenzie, Thomas, Vollmer, Extensional uniformity for boolean circuits). Will this approach work?
- It is also known that FO[arb] ∩ Reg = FO[Reg]. The proof is difficult and involves Boolean circuit complexity and Semigroup theory. Can we get a simpler one?

Thank you!