A Sahlqvist theorem for subordination algebras

Laurent De Rudder and Georges Hansoul

TACL 2019 - June 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Example For a Kripke frame (X, R) we have

 $(X, R) \models \Box p \rightarrow \Box \Box p \text{ iff } (X, R) \models x R y \land y R z \rightarrow x R z.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

For a Kripke frame (X, R) we have

$$(X, R) \models \Box p \rightarrow \Box \Box p \text{ iff } (X, R) \models x R y \land y R z \rightarrow x R z.$$

Theorem

If φ is a Sahlqvist formula φ then there exists a first order formula $\alpha(\varphi)$ (in the language of the accessibility relation) such that, for a Kripke frame (X, R),

$$(X, R) \models \varphi \text{ iff } (X, R) \models \alpha(\varphi).$$

Example

For a Kripke frame (X, R) we have

$$(X, R) \models \Box p \rightarrow \Box \Box p \text{ iff } (X, R) \models x R y \land y R z \rightarrow x R z.$$

Theorem

If φ is a Sahlqvist formula φ then there exists a first order formula $\alpha(\varphi)$ (in the language of the accessibility relation) such that, for a Kripke frame (X, R),

$$(X, R) \models \varphi \text{ iff } (X, R) \models \alpha(\varphi).$$

Example

 $p \rightarrow \Diamond p$ (reflexivity), $p \rightarrow \Box \Diamond p$ (symmetry), $\Box p \rightarrow \Diamond p$ (right unboundness), ...

Subordination algebras

Definition

A subordination algebra is a pair (B, \prec) where B is a Boolean algebra and \prec a binary relation on B such that :

- ▶ 0 \prec 0 and 1 \prec 1,
- ▶ $a \prec b, c$ implies $a \prec b \land c$,
- ▶ $a, b \prec c$ implies $a \lor b \prec c$,
- $a \leq b \prec c \leq d$ implies $a \prec d$.

Subordination algebras as generalisation of modal algebras

Definition (Option 1)

Let (B, \Diamond) be a modal algebra. Define on B the relation

 $a \prec_{\Diamond} b \text{ iff } \Diamond a \leq b.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then, (B, \prec_{\Diamond}) is a subordination algebra.

Subordination algebras as generalisation of modal algebras

Definition (Option 1)

Let (B, \Diamond) be a modal algebra. Define on B the relation

 $a \prec_{\Diamond} b$ iff $\Diamond a \leq b$.

Then, (B, \prec_{\Diamond}) is a subordination algebra.

Definition (Option 2)

Let (B, \blacklozenge) be a modal algebra. Define on B the relation

$$a \prec_{\blacklozenge} b$$
 iff $a \leq \blacksquare b$.

Then $(B, \prec_{\blacklozenge})$ is a subordination algebra.

Subordination morphisms

Definition

Let B, C be subordination algebras and $h: B \longrightarrow C$ a Boolean morphism. Consider the following axioms :

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(w)
$$a \prec b$$
 implies $h(a) \prec h(b)$,

(\diamond) $h(a) \prec c$ implies $a \prec b$ and $h(b) \leq c$ for some b,

(\blacklozenge) $a \prec h(c)$ implies $b \prec c$ and $a \leq h(b)$ for some b.

Subordination algebras as generalisation of modal algebras

Proposition If $h: (B, \Diamond) \longrightarrow (C, \Diamond)$ is a modal morphism, then $h: (B, \prec_{\Diamond}) \longrightarrow (C, \prec_{\Diamond})$ is a Boolean morphism verifying (w) and (\Diamond) .

Subordination algebras as generalisation of modal algebras

Proposition If $h: (B, \Diamond) \longrightarrow (C, \Diamond)$ is a modal morphism, then $h: (B, \prec_{\Diamond}) \longrightarrow (C, \prec_{\Diamond})$ is a Boolean morphism verifying (w) and (\Diamond) . Proposition

If $h: (B, \blacklozenge) \longrightarrow (C, \blacklozenge)$ is a modal morphism, then $h: (B, \prec_{\blacklozenge}) \longrightarrow (C, \prec_{\blacklozenge})$ is a Boolean morphism verifying (w) and (\diamondsuit)

Subordination spaces

Definition

A subordination space is a pair (X, R) where X a Stone space and R a closed binary relation on X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Subordination spaces

Definition

A subordination space is a pair (X, R) where X a Stone space and R a closed binary relation on X.

Definition

Let X, Y be subordination spaces and $f : X \longrightarrow C$ a continuous function. Consider the following axioms :

- (w) x R y implies f(x) R f(y),
- (\Diamond) f(x) R y implies x R z and f(z) = y for some z,
- (\blacklozenge) x R f(y) implies z R y and f(z) = x for some z.

Dual of a subordination algebra

Let (B, \prec) be a subordination algebra. We denote

1. $X_B = \text{Ult}(B)$ the Stone dual of B, that is the set of ultrafilters of B equipped with the topology generated by the set

 $\eta(a) = \{x \in \mathsf{Ult}(B) \mid x \ni a\},\$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dual of a subordination algebra

Let (B, \prec) be a subordination algebra. We denote

1. $X_B = \text{Ult}(B)$ the Stone dual of B, that is the set of ultrafilters of B equipped with the topology generated by the set

$$\eta(a) = \{x \in \mathsf{Ult}(B) \mid x \ni a\},\$$

2. R_{\prec} the binary relation on X_B defined by

$$x R_{\prec} y \Leftrightarrow \prec (y, -) := \{a \mid \exists b \in y : b \prec a\} \subseteq x.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dual of a subordination algebra

Let (B, \prec) be a subordination algebra. We denote

1. $X_B = \text{Ult}(B)$ the Stone dual of B, that is the set of ultrafilters of B equipped with the topology generated by the set

$$\eta(a) = \{x \in \mathsf{Ult}(B) \mid x \ni a\},\$$

2. R_{\prec} the binary relation on X_B defined by

$$x R_{\prec} y \Leftrightarrow \prec (y, -) := \{a \mid \exists b \in y : b \prec a\} \subseteq x.$$

Proposition

The pair (X_B, R_{\prec}) forms a subordination space.

Dual of a subordination space

Let (X, R) be a subordination space. We denote

1. $B_X = \operatorname{Clop}(X)$ the Stone dual of X, that is the Boolean algebra of clopen sets of X,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Dual of a subordination space

Let (X, R) be a subordination space. We denote

- 1. $B_X = \operatorname{Clop}(X)$ the Stone dual of X, that is the Boolean algebra of clopen sets of X,
- 2. \prec_R the binary relation on B_X defined by

 $O \prec_R U \Leftrightarrow R(-, O) \subseteq U.$

Dual of a subordination space

Let (X, R) be a subordination space. We denote

- 1. $B_X = \operatorname{Clop}(X)$ the Stone dual of X, that is the Boolean algebra of clopen sets of X,
- 2. \prec_R the binary relation on B_X defined by

$$O \prec_R U \Leftrightarrow R(-, O) \subseteq U.$$

Proposition

The pair (B_X, \prec_R) is a subordination algebra.

Duals of morphisms

Proposition

1. If $h: B \longrightarrow C$ is a Boolean morphism verifying (w) (resp. (\Diamond) and (\blacklozenge)) then

$$\operatorname{Ult}(h) : \operatorname{Ult}(C) \longrightarrow \operatorname{Ult}(B) : x \longmapsto h^{-1}(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is a continuous function that verifies (w) (resp. (\diamondsuit) and (\blacklozenge))

Duals of morphisms

Proposition

1. If $h: B \longrightarrow C$ is a Boolean morphism verifying (w) (resp. (\Diamond) and (\blacklozenge)) then

$$\operatorname{Ult}(h):\operatorname{Ult}(C)\longrightarrow\operatorname{Ult}(B):x\longmapsto h^{-1}(x)$$

is a continuous function that verifies (w) (resp. (\Diamond) and (\blacklozenge))

2. If $f : X \longrightarrow Y$ is a continuous function verifying (w) (resp. (\Diamond) and (\blacklozenge)) then

$$\operatorname{Clop}(f):\operatorname{Clop}(Y)\longrightarrow\operatorname{Clop}(X):O\longmapsto f^{-1}(O)$$

is a Boolean morphism verifying (w) (resp. (\Diamond) and (\blacklozenge)).

Duality

Theorem

1. If (B, \prec) is a subordination algebra then

$$\eta: (B, \prec) \longrightarrow (\mathsf{Clop}(\mathsf{Ult}(B)), \prec_{R_{\prec}}) : a \longmapsto \{x \in \mathsf{Ult}(B) \mid x \ni a\}$$

is a bijective Boolean morphism that verifies (w), (\Diamond) and (\blacklozenge) and such that

$$\eta(a) \prec \eta(b) \Rightarrow a \prec b.$$

Duality

Theorem

1. If (B, \prec) is a subordination algebra then

$$\eta: (B, \prec) \longrightarrow (\mathsf{Clop}(\mathsf{Ult}(B)), \prec_{R_{\prec}}) : a \longmapsto \{x \in \mathsf{Ult}(B) \mid x \ni a\}$$

is a bijective Boolean morphism that verifies (w), (\Diamond) and (\blacklozenge) and such that

$$\eta(a) \prec \eta(b) \Rightarrow a \prec b.$$

2. If (X, R) is a subordination space then

 $\varepsilon: (X, R) \longrightarrow (\mathsf{Ult}(\mathsf{Clop}(X)), R_{\prec_R}): x \longmapsto \{ O \in \mathsf{Clop}(X) \mid O \ni x \}$

is a bijective continuous function that verifies (w), (\Diamond) and (\blacklozenge) and such that

$$\varepsilon(x) \mathrel{R} \varepsilon(y) \Rightarrow x \mathrel{R} y.$$

Validity for subordination spaces

Definition

Let (X, R) be a subordination space. A valuation on X is a map $v : Var \longrightarrow Clop(X)$. The valuation is then extend to bimodal formulas in the usual way :

$$v(\Diamond\psi) = R(-, v(\psi)) \qquad v(\Box\psi) = R(-, v(\psi)^c)^c$$
$$v(\blacklozenge\psi) = R(v(\psi), -) \qquad v(\blacksquare\psi) = R(v(\psi)^c, -)^c$$

Validity for subordination spaces

Definition

Let (X, R) be a subordination space. A valuation on X is a map $v : Var \longrightarrow Clop(X)$. The valuation is then extend to bimodal formulas in the usual way :

$$v(\Diamond\psi) = R(-, v(\psi)) \qquad v(\Box\psi) = R(-, v(\psi)^c)^c$$

$$v(\blacklozenge\psi) = R(v(\psi), -) \qquad v(\blacksquare\psi) = R(v(\psi)^c, -)^c$$

...

A bimodal formula φ is valid in X for the valuation v, denoted by $X \models_v \varphi$, if $v(\varphi) = X$.

Remark on valuation

Remark

Since the access relation of X is solely closed, the valuation of a bimodal formula may fail to be clopen.

For instance,

$$v(\Diamond p) = R(-, v(p)) = \{x \mid \exists y \in v(p) : x R y\}$$

・ロ> < 回> < 回> < 回> < 回> < 回

is not guaranteed to be clopen.

Remark on valuation

Remark

Since the access relation of X is solely closed, the valuation of a bimodal formula may fail to be clopen.

For instance,

$$v(\Diamond p) = R(-, v(p)) = \{x \mid \exists y \in v(p) : x R y\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is not guaranteed to be clopen.

In particular, this means that we cannot extend a valuation on a subordination algebra $v : Var \longrightarrow B$ to all bimodal formulas.

Canonical extension of a subordination algebra

Let B be a subordination algebra. Then Ult(B) is a subordination algebra, and so, in particular, a Kripke frame.

It follows that $B^{\delta} = \mathcal{P}(\text{Ult}(B))$ is a complete tense bimodal algebra with for every $E \in \mathcal{P}(\text{Ult}(B))$

 $\Diamond(E) = R(-,E)$ and $\blacklozenge(E) = R(E,-).$

Canonical extension of a subordination algebra

Let B be a subordination algebra. Then Ult(B) is a subordination algebra, and so, in particular, a Kripke frame.

It follows that $B^{\delta} = \mathcal{P}(\text{Ult}(B))$ is a complete tense bimodal algebra with for every $E \in \mathcal{P}(\text{Ult}(B))$

$$\Diamond(E) = R(-,E)$$
 and $\blacklozenge(E) = R(E,-).$

Proposition

The map

$$\eta: B \longrightarrow B^{\delta}: a \longmapsto \{x \in \mathsf{Ult}(B) \mid x \ni a\}$$

is an injective Boolean morphism such that

$$a \prec b \Leftrightarrow \Diamond \eta(a) \leq \eta(b) \Leftrightarrow \eta(a) \leq \blacksquare \eta(b).$$

Validity for subordination algebra

Definition

Let (B, \prec) be a subordination algebra. A valuation on B is a map $v : \operatorname{Var} \longrightarrow B$. A valuation on B can be extended to a valuation $\eta \circ v : \operatorname{Var} \longrightarrow B^{\delta}$ on B^{δ} .

¹Remember that B and B^{δ} share the same top element $B \to A \equiv A = A = A = A = A$

Validity for subordination algebra

Definition

Let (B, \prec) be a subordination algebra. A valuation on B is a map $v : \operatorname{Var} \longrightarrow B$. A valuation on B can be extended to a valuation $\eta \circ v : \operatorname{Var} \longrightarrow B^{\delta}$ on B^{δ} .

A bimodal formula φ is valid in B under the valuation v if $\eta(v(\varphi)) = 1^1$, that is φ is valid in B^{δ} under the valuation $\eta \circ v$.

¹Remember that B and B^{δ} share the same top element $B \to A \equiv A = A = A = A = A$

Validity for subordination algebra

Definition

Let (B, \prec) be a subordination algebra. A valuation on B is a map $v : \operatorname{Var} \longrightarrow B$. A valuation on B can be extended to a valuation $\eta \circ v : \operatorname{Var} \longrightarrow B^{\delta}$ on B^{δ} .

A bimodal formula φ is valid in B under the valuation v if $\eta(v(\varphi)) = 1^1$, that is φ is valid in B^{δ} under the valuation $\eta \circ v$.

Proposition

Let φ be a bimodal formula. We have $B \models \varphi$ if and only if $Ult(B) \models \varphi$.

¹Remember that B and B^{δ} share the same top element $B \to A \equiv A = A = A = A = A$

Translations

There are several correspondence problems that could be studied.

1. Translation of bimodal formulas on a subordination algebra into first order formulas of the accessibility relation of the dual.

$$(B,\prec)\models \blacksquare p \rightarrow \blacklozenge p \text{ iff } (X,R)\models (\forall x)(\exists y)(y R x).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Translations

There are several correspondence problems that could be studied.

1. Translation of bimodal formulas on a subordination algebra into first order formulas of the accessibility relation of the dual.

$$(B,\prec)\models \blacksquare p \rightarrow \blacklozenge p \text{ iff } (X,R)\models (\forall x)(\exists y)(y R x).$$

2. Translation of first order properties in the language of subordination algebras into first order formulas of the accessibility relation of the dual.

$$(B,\prec)\models p\prec 0\rightarrow p=0$$
 iff $(X,R)\models (\forall x)(\exists y)(y R x).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Translations

There are several correspondence problems that could be studied.

1. Translation of bimodal formulas on a subordination algebra into first order formulas of the accessibility relation of the dual.

$$(B,\prec)\models \blacksquare p \rightarrow \blacklozenge p \text{ iff } (X,R)\models (\forall x)(\exists y)(y R x).$$

2. Translation of first order properties in the language of subordination algebras into first order formulas of the accessibility relation of the dual.

$$(B,\prec)\models p\prec 0\rightarrow p=0$$
 iff $(X,R)\models (\forall x)(\exists y)(y R x).$

3. Translation of bimodal formulas on a subordination algebra into first order properties in the language of subordination algebras.

$$(B,\prec)\models \blacksquare p \rightarrow \blacklozenge p \text{ iff } (B,\prec)\models p\prec 0 \rightarrow p=0.$$

Definition

 A bimodal formula is closed (resp. open) if it is obtained from constants ⊤, ⊥, propositional variables and their negations by applying only ∧, ∨, ◊ and ♦ (resp. ∧, ∨, □ and ■).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition

- A bimodal formula is closed (resp. open) if it is obtained from constants ⊤, ⊥, propositional variables and their negations by applying only ∧, ∨, ◊ and ♦ (resp. ∧, ∨, □ and ■).
- A bimodal formula is positive (resp. negative) if it is obtained from constants ⊤, ⊥ and propositional variables (resp. and negation of propositional variables) by applying only ∧, ∨, ◊, □, ♦ and ■.

Definition

- A bimodal formula is closed (resp. open) if it is obtained from constants ⊤, ⊥, propositional variables and their negations by applying only ∧, ∨, ◊ and ♦ (resp. ∧, ∨, □ and ■).
- A bimodal formula is positive (resp. negative) if it is obtained from constants ⊤, ⊥ and propositional variables (resp. and negation of propositional variables) by applying only ∧, ∨, ◊, □, ♦ and ■.
- 3. A bimodal formula is s-positive (resp. s-negative) if it is obtained from closed positive formulas (resp. open negative formulas) by applying only ∧, ∨, □ and ■.

Definition

- A bimodal formula is closed (resp. open) if it is obtained from constants ⊤, ⊥, propositional variables and their negations by applying only ∧, ∨, ◊ and ♦ (resp. ∧, ∨, □ and ■).
- A bimodal formula is positive (resp. negative) if it is obtained from constants ⊤, ⊥ and propositional variables (resp. and negation of propositional variables) by applying only ∧, ∨, ◊, □, ♦ and ■.
- 3. A bimodal formula is s-positive (resp. s-negative) if it is obtained from closed positive formulas (resp. open negative formulas) by applying only ∧, ∨, □ and ■.

Remark

A *s*-positive formula is a positive formula where no \Box or \blacksquare is under the scope of a \Diamond or a \blacklozenge and vice-versa for a *s*-negative formula. (Restriction needed for the intersection lemma to work)

Sahlqvist formulas

Definition

1. A strongly positive bimodal formula is a conjunction of formulas of the form

$$\Box^{\langle \mu \rangle} p = \Box^{\mu_1} \blacksquare^{\mu_2} ... \Box^{\mu_n} p$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

where $p \in Var$, $n \in \mathbb{N}$ and $\mu \in \mathbb{N}^n$.

Sahlqvist formulas

Definition

1. A strongly positive bimodal formula is a conjunction of formulas of the form

$$\Box^{\langle \mu \rangle} p = \Box^{\mu_1} \blacksquare^{\mu_2} ... \Box^{\mu_n} p$$

where $p \in Var$, $n \in \mathbb{N}$ and $\mu \in \mathbb{N}^n$.

 A s-untied bimodal formula is a bimodal formula obtained from s-negative and strongly positive formulas by applying only ∧, ◊ and ♦.

Sahlqvist formulas

Definition

1. A strongly positive bimodal formula is a conjunction of formulas of the form

$$\Box^{\langle \mu \rangle} p = \Box^{\mu_1} \blacksquare^{\mu_2} ... \Box^{\mu_n} p$$

where $p \in Var$, $n \in \mathbb{N}$ and $\mu \in \mathbb{N}^n$.

- A s-untied bimodal formula is a bimodal formula obtained from s-negative and strongly positive formulas by applying only ∧, ◊ and ♦.
- 3. A s-Sahlqvist formula is a formula of the form

$$\Box^{\langle \mu \rangle}(\varphi_1 \to \varphi_2)$$

where φ_1 is s-untied and φ_2 is s-positive.

Theorem

Let φ be a s-Sahlqvist formula. There exists a first order formula $\alpha(\varphi)$ in the language of a binary relation such that for any subordination algebra (B, \prec) with dual (X, R) we have

$$(B,\prec)\models\varphi$$
 iff $(X,R)\models\alpha(\varphi)$.

Existence of a counterexample ?

A remark on substitution

Let X be a Stone space with an accumulation point x_0 and define $R \subseteq X \times X$ by

x R y iff $x = x_0$ or x = y.

A remark on substitution

Let X be a Stone space with an accumulation point x_0 and define $R \subseteq X \times X$ by

x R y iff $x = x_0$ or x = y.

Then (X, R) is a subordination space such that

 $(X,R)\models p\to\Diamond\Box p.$

A remark on substitution

Let X be a Stone space with an accumulation point x_0 and define $R \subseteq X imes X$ by

$$x R y$$
 iff $x = x_0$ or $x = y$.

Then (X, R) is a subordination space such that

$$(X,R)\models p\to\Diamond\Box p.$$

But for $\varphi = p \land \neg \Box p$, we have that

$$(X, R) \not\models \varphi \rightarrow \Diamond \Box \varphi.$$

Scheme-extensible formulas

Definition

A bimodal formula φ is said to be scheme-extensible if $\underline{B} \models \varphi(\overline{p})$ (we write $\varphi(\overline{p})$ to indicate that the variables of φ are among the tuple \overline{p}) implies $\underline{B} \models \varphi(\overline{\psi})$ for all $\overline{\psi}$.

Theorem

Any s-Sahlqvist bimodal formula is scheme-extensible.

The formula $\varphi \equiv p \longrightarrow \Diamond \Box p$ is a Sahlqvist formula (for modal algebras), corresponding to

$$(\forall x)(\exists y)(x R y \text{ and } R(y,-) \subseteq \{x\},$$

but φ is not scheme-extensible and hence φ is not a s-Sahlqvist formula.

${\sf Sloth}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Post credits slide

For a Kripke frame (X, R), we have that

$$(X,R) \models p \rightarrow \Diamond \Box p$$

iff
 $(X,R) \models (\forall x)(\exists y)(x R y \text{ and } R(y,-) \subseteq \{x\}.$

・ロト・4日ト・4日ト・4日・9000

For a Kripke frame (X, R), we have that

$$(X, R) \models p \to \Diamond \Box p$$

iff
$$(X, R) \models (\forall x)(\exists y)(x R y \text{ and } R(y, -) \subseteq \{x\}.$$

hence
$$(X, R) \text{ is symmetric and } (X, R) \models p \to \Box \Diamond p.$$

・ロト・4日ト・4日ト・4日・9000

For a Kripke frame (X, R), we have that

$$(X, R) \models p \to \Diamond \Box p$$

iff
$$(X, R) \models (\forall x)(\exists y)(x R y \text{ and } R(y, -) \subseteq \{x\}.$$

hence
$$(X, R) \text{ is symmetric and } (X, R) \models p \to \Box \Diamond p.$$

Question : How can we deduct $p \to \Box \Diamond p$ from $p \to \Diamond \Box p$.