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Sahlqvist theorem

Example
For a Kripke frame (X, R) we have

(X,R)EOp—-0O0piff ( X,R)YExRyAyRz— xRz
Theorem

If v is a Sahlqvist formula ¢ then there exists a first order formula a(p)
(in the language of the accessibility relation) such that, for a Kripke

frame (X, R),
(X, R) = ¢ iff (X, R) |= a(¢).

Example

p — Op (reflexivity), p — OOp (symmetry), Op — Op (right
unboundness), ...



Subordination algebras

Definition
A subordination algebra is a pair (B, <) where B is a Boolean algebra
and < a binary relation on B such that :

» 0<0and 1 <1,

» a < b,cimpliesa<bAc,
> a,b<cimpliesaVvb-<c,
>

a<b=<c<dimplies a<d.



Subordination algebras as generalisation of modal algebras

Definition (Option 1)
Let (B, ) be a modal algebra. Define on B the relation

a <o biff 0a < b.

Then, (B, <) is a subordination algebra.



Subordination algebras as generalisation of modal algebras

Definition (Option 1)
Let (B, ) be a modal algebra. Define on B the relation

a <o biff 0a < b.
Then, (B, <) is a subordination algebra.

Definition (Option 2)
Let (B, #) be a modal algebra. Define on B the relation

a=<e biff 2 < Wb.

Then (B, <¢) is a subordination algebra.



Subordination morphisms

Definition
Let B, C be subordination algebras and h: B — C a Boolean
morphism. Consider the following axioms :

(w) a = bimplies h(a) < h(b),
(0) h(a) < c implies a < b and h(b) < ¢ for some b,
(#) a < h(c) implies b < ¢ and a < h(b) for some b.



Subordination algebras as generalisation of modal algebras

Proposition
Ifh:(B,0) — (C,0) is a modal morphism, then
h:(B,=<¢) — (C,=<¢) is a Boolean morphism verifying (w) and ().



Subordination algebras as generalisation of modal algebras

Proposition
Ifh:(B,0) — (C,0) is a modal morphism, then
h:(B,=<¢) — (C,=<¢) is a Boolean morphism verifying (w) and ().

Proposition
Ifh: (B, %) — (C,#) is a modal morphism, then
h:(B,<¢) —> (C,=<¢) is a Boolean morphism verifying (w) and ()
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Definition
A subordination space is a pair (X, R) where X a Stone space and R a
closed binary relation on X.



Subordination spaces

Definition
A subordination space is a pair (X, R) where X a Stone space and R a
closed binary relation on X.

Definition
Let X, Y be subordination spaces and ¥ : X — C a continuous
function. Consider the following axioms :

(w) xRy implies f(x) R f(y),
(0) f(x) Ry implies xR z and f(z) = y for some z,
(#) xR f(y) implies z R y and f(z) = x for some z.



Dual of a subordination algebra

Let (B, <) be a subordination algebra. We denote

1. Xg = Ult(B) the Stone dual of B, that is the set of ultrafilters of B
equipped with the topology generated by the set

n(a) = {x € Ul(B) | x > a},
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Dual of a subordination algebra

Let (B, <) be a subordination algebra. We denote

1. Xg = Ult(B) the Stone dual of B, that is the set of ultrafilters of B
equipped with the topology generated by the set

n(a) = {x € Ul(B) | x > a},
2. R the binary relation on Xg defined by
xRiy & <(y,—):={a|3bey:b=<a} Cx

Proposition
The pair (Xg, R<) forms a subordination space.
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Dual of a subordination space

Let (X, R) be a subordination space. We denote

1. Bx = Clop(X) the Stone dual of X, that is the Boolean algebra of
clopen sets of X,

2. <pg the binary relation on Bx defined by

O<r U< R(—,0)CU.

Proposition
The pair (Bx, <Rr) is a subordination algebra.



Duals of morphisms

Proposition

1. If h: B— C is a Boolean morphism verifying (w) (resp. (¢) and
(¢)) then

Ult(h) : Ut(C) — Ult(B) : x — h™(x)

is a continuous function that verifies (w) (resp. () and (¢))



Duals of morphisms

Proposition

1. If h: B— C is a Boolean morphism verifying (w) (resp. (¢) and
(¢)) then

Ult(h) : Ut(C) — Ult(B) : x — h™(x)

is a continuous function that verifies (w) (resp. () and (¢))

2. If f : X — Y s a continuous function verifying (w) (resp. (¢) and
(¢)) then

Clop(f) : Clop(Y) — Clop(X) : O — f~1(0)

is a Boolean morphism verifying (w) (resp. (0) and (4)).



Duality

Theorem
1. If (B, =) is a subordination algebra then
n:(B,<) — (Clop(Ult(B)), <r.) :ar— {x € Ult(B) | x > a}

is a bijective Boolean morphism that verifies (w), () and (¢) and
such that
n(a) < n(b) = a < b.



Duality

Theorem
1. If (B, =) is a subordination algebra then
n:(B,<) — (Clop(Ult(B)), <r.) :ar— {x € Ult(B) | x > a}

is a bijective Boolean morphism that verifies (w), () and (¢) and
such that
n(a) < n(b) = a < b.

2. If (X, R) is a subordination space then
e : (X, R) — (Ult(Clop(X)), R<,) : x — {0 € Clop(X) | O > x}

is a bijective continuous function that verifies (w), (¢) and (¢) and
such that
e(x) Re(y)=xRy.



Validity for subordination spaces

Definition

Let (X, R) be a subordination space. A valuation on X is a map

v : Var — Clop(X). The valuation is then extend to bimodal formulas
in the usual way :

v(09) = R(=, v(¥)) v(09) = R(=, v(¥)9)*
v(#v) = R(v(), ) V(W) = R(v(¥)%, -)°



Validity for subordination spaces

Definition

Let (X, R) be a subordination space. A valuation on X is a map

v : Var — Clop(X). The valuation is then extend to bimodal formulas
in the usual way :

v(09) = R(=, v(¥)) v(09) = R(=, v(¥)9)*
v(#v) = R(v(), ) V(W) = R(v(¥)%, -)°

A bimodal formula ¢ is valid in X for the valuation v, denoted by
X Ev e if v(p) = X.



Remark on valuation

Remark
Since the access relation of X is solely closed, the valuation of a bimodal

formula may fail to be clopen.
For instance,

v(Op) = R(—,v(p)) ={x| 3y e v(p) : xRy}

is not guaranteed to be clopen.



Remark on valuation

Remark
Since the access relation of X is solely closed, the valuation of a bimodal

formula may fail to be clopen.
For instance,

v(Op) = R(—,v(p)) ={x| 3y e v(p) : xRy}
is not guaranteed to be clopen.

In particular, this means that we cannot extend a valuation on a
subordination algebra v : Var — B to all bimodal formulas.



Canonical extension of a subordination algebra

Let B be a subordination algebra. Then Ult(B) is a subordination
algebra, and so, in particular, a Kripke frame.

It follows that B® = P(UIt(B)) is a complete tense bimodal algebra with
for every E € P(Ult(B))

O(E) = R(~,E) and #(E) = R(E, -).



Canonical extension of a subordination algebra

Let B be a subordination algebra. Then Ult(B) is a subordination
algebra, and so, in particular, a Kripke frame.

It follows that B® = P(UIt(B)) is a complete tense bimodal algebra with
for every E € P(Ult(B))

O(E) = R(~,E) and #(E) = R(E, -).

Proposition

The map
n:B— B’:ar— {xcUt(B)|x>a}

is an injective Boolean morphism such that

a = b On(a) < n(b) & n(a) < My(b).



Validity for subordination algebra

Definition
Let (B, <) be a subordination algebra. A valuation on B is a map
v : Var — B. A valuation on B can be extended to a valuation

nov:Var — B% on B°.

'Remember that B and B’ share the same top element.
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Validity for subordination algebra

Definition

Let (B, <) be a subordination algebra. A valuation on B is a map

v : Var — B. A valuation on B can be extended to a valuation
nov:Var — B% on B°.

A bimodal formula ¢ is valid in B under the valuation v if n(v(y)) = 1%,
that is ¢ is valid in B? under the valuation 70 v.

Proposition
Let ¢ be a bimodal formula. We have B |= ¢ if and only if Ult(B) = ¢.

'Remember that B and B’ share the same top element.



Translations

There are several correspondence problems that could be studied.

1. Translation of bimodal formulas on a subordination algebra into first
order formulas of the accessibility relation of the dual.

(B.<) = Mp — #p iff (X, R) |= (vx)(3y)(y R x).
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Translations

There are several correspondence problems that could be studied.

1. Translation of bimodal formulas on a subordination algebra into first
order formulas of the accessibility relation of the dual.

(B.<) = Mp — #p iff (X, R) |= (vx)(3y)(y R x).

2. Translation of first order properties in the language of subordination
algebras into first order formulas of the accessibility relation of the
dual.

(B,<)Ep=<0—=p=0iff (X,R) = (VX)(3y)(y R x).

3. Translation of bimodal formulas on a subordination algebra into first
order properties in the language of subordination algebras.

(B,<)=Mp — #piff (B,<)=p<0—p=0.
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Definition

1. A bimodal formula is closed (resp. open) if it is obtained from
constants T, L, propositional variables and their negations by
applying only A, V, O and ¢ (resp. A, V, O and H).
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s-positive formulas

Definition

1. A bimodal formula is closed (resp. open) if it is obtained from
constants T, L, propositional variables and their negations by
applying only A, V, O and ¢ (resp. A, V, O and H).

2. A bimodal formula is positive (resp. negative) if it is obtained from
constants T, L and propositional variables (resp. and negation of
propositional variables) by applying only A, Vv, ¢, O, ¢ and .

3. A bimodal formula is s-positive (resp. s-negative) if it is obtained
from closed positive formulas (resp. open negative formulas) by
applying only A, v, (0 and B

Remark

A s-positive formula is a positive formula where no [J or B is under the
scope of a ¢ or a ¢ and vice-versa for a s-negative formula. (Restriction
needed for the intersection lemma to work)
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Sahlqvist formulas

Definition

1. A strongly positive bimodal formula is a conjunction of formulas of
the form
D<”>p =[O m@,. OMp

where p € Var, n€ N and p € N",

2. A s-untied bimodal formula is a bimodal formula obtained from
s-negative and strongly positive formulas by applying only A, ¢ and
¢

3. A s-Sahlqvist formula is a formula of the form

O (o1 — 2)

where ¢ is s-untied and ¢, is s-positive.



Sahlqvist theorem

Theorem

Let ¢ be a s-Sahlqvist formula. There exists a first order formula o(y) in

the language of a binary relation such that for any subordination algebra
(B, <) with dual (X, R) we have

(B, <) = ¢ iff (X, R) = a(y).



Existence of a counterexample ?

Sahlqvist

sSahlqvist



A remark on substitution

Let X be a Stone space with an accumulation point xg and define
RC X x X by
xRyiff x=xpo0orx=y.
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A remark on substitution

Let X be a Stone space with an accumulation point xg and define
RC X x X by
xRyiff x=xpo0orx=y.

Then (X, R) is a subordination space such that
(X,R) E p— OOp.

But for ¢ = p A =p, we have that

(X, R) = ¢ — OO



Scheme-extensible formulas

Definition
A bimodal formula ¢ is said to be scheme-extensible if B = ¢(p) (we
write (p) to indicate that the variables of ¢ are among the tuple p)

implies B = (1) for all 1.

Theorem
Any s-Sahlqvist bimodal formula is scheme-extensible.



Counterexample

The formula ¢ = p — OOp is a Sahlqvist formula (for modal algebras),
corresponding to

(VX)(EU/)(X R y and R(ya 7) g {X}a

but ¢ is not scheme-extensible and hence ¢ is not a s-Sahlqvist formula.



Sloth




Post credits slide

For a Kripke frame (X, R), we have that
(X;R)Ep—00p
iff
(X, R) = (+)(3)(x R y and R(y,~) € {x}.
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Post credits slide

For a Kripke frame (X, R), we have that

(X,R)Ep— 00p
iff
(X.R) k= (%)(3y)(x R y and R(y, —) C {x}.
hence
(X, R) is symmetric and (X, R) E p — O0p.

Question : How can we deduct p — OOp from p — OOp.



