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Sahlqvist theorem

Example
For a Kripke frame (X ,R) we have

(X ,R) |= �p → ��p i� (X ,R) |= x R y ∧ y R z → x R z .

Theorem
If ϕ is a Sahlqvist formula ϕ then there exists a �rst order formula α(ϕ)
(in the language of the accessibility relation) such that, for a Kripke
frame (X ,R),

(X ,R) |= ϕ i� (X ,R) |= α(ϕ).

Example
p → ♦p (re�exivity), p → �♦p (symmetry), �p → ♦p (right
unboundness), ...
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Subordination algebras

De�nition
A subordination algebra is a pair (B,≺) where B is a Boolean algebra
and ≺ a binary relation on B such that :

I 0 ≺ 0 and 1 ≺ 1,

I a ≺ b, c implies a ≺ b ∧ c ,

I a, b ≺ c implies a ∨ b ≺ c ,

I a ≤ b ≺ c ≤ d implies a ≺ d .



Subordination algebras as generalisation of modal algebras

De�nition (Option 1)
Let (B,♦) be a modal algebra. De�ne on B the relation

a ≺♦ b i� ♦a ≤ b.

Then, (B,≺♦) is a subordination algebra.

De�nition (Option 2)
Let (B,�) be a modal algebra. De�ne on B the relation

a ≺� b i� a ≤ �b.

Then (B,≺�) is a subordination algebra.
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Subordination morphisms

De�nition
Let B,C be subordination algebras and h : B −→ C a Boolean
morphism. Consider the following axioms :

(w) a ≺ b implies h(a) ≺ h(b),

(♦) h(a) ≺ c implies a ≺ b and h(b) ≤ c for some b,

(�) a ≺ h(c) implies b ≺ c and a ≤ h(b) for some b.



Subordination algebras as generalisation of modal algebras

Proposition
If h : (B,♦) −→ (C ,♦) is a modal morphism, then
h : (B,≺♦) −→ (C ,≺♦) is a Boolean morphism verifying (w) and (♦).

Proposition
If h : (B,�) −→ (C ,�) is a modal morphism, then
h : (B,≺�) −→ (C ,≺�) is a Boolean morphism verifying (w) and (�)
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Subordination spaces

De�nition
A subordination space is a pair (X ,R) where X a Stone space and R a
closed binary relation on X .

De�nition
Let X ,Y be subordination spaces and f : X −→ C a continuous
function. Consider the following axioms :

(w) x R y implies f (x) R f (y),

(♦) f (x) R y implies x R z and f (z) = y for some z ,

(�) x R f (y) implies z R y and f (z) = x for some z .
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Dual of a subordination algebra

Let (B,≺) be a subordination algebra. We denote

1. XB = Ult(B) the Stone dual of B, that is the set of ultra�lters of B
equipped with the topology generated by the set

η(a) = {x ∈ Ult(B) | x 3 a},

2. R≺ the binary relation on XB de�ned by

x R≺ y ⇔ ≺ (y ,−) := {a | ∃b ∈ y : b ≺ a} ⊆ x .

Proposition
The pair (XB ,R≺) forms a subordination space.
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Dual of a subordination space

Let (X ,R) be a subordination space. We denote

1. BX = Clop(X ) the Stone dual of X , that is the Boolean algebra of
clopen sets of X ,

2. ≺R the binary relation on BX de�ned by

O ≺R U ⇔ R(−,O) ⊆ U.

Proposition
The pair (BX ,≺R) is a subordination algebra.
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Duals of morphisms

Proposition

1. If h : B −→ C is a Boolean morphism verifying (w) (resp. (♦) and
(�)) then

Ult(h) : Ult(C ) −→ Ult(B) : x 7−→ h−1(x)

is a continuous function that veri�es (w) (resp. (♦) and (�))

2. If f : X −→ Y is a continuous function verifying (w) (resp. (♦) and
(�)) then

Clop(f ) : Clop(Y ) −→ Clop(X ) : O 7−→ f −1(O)

is a Boolean morphism verifying (w) (resp. (♦) and (�)).
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Duality

Theorem

1. If (B,≺) is a subordination algebra then

η : (B,≺) −→ (Clop(Ult(B)),≺R≺) : a 7−→ {x ∈ Ult(B) | x 3 a}

is a bijective Boolean morphism that veri�es (w), (♦) and (�) and
such that

η(a) ≺ η(b)⇒ a ≺ b.

2. If (X ,R) is a subordination space then

ε : (X ,R) −→ (Ult(Clop(X )),R≺R
) : x 7−→ {O ∈ Clop(X ) | O 3 x}

is a bijective continuous function that veri�es (w), (♦) and (�) and
such that

ε(x) R ε(y)⇒ x R y .
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Validity for subordination spaces

De�nition
Let (X ,R) be a subordination space. A valuation on X is a map
v : Var −→ Clop(X ). The valuation is then extend to bimodal formulas
in the usual way :

v(♦ψ) = R(−, v(ψ)) v(�ψ) = R(−, v(ψ)c)c

v(�ψ) = R(v(ψ),−) v(�ψ) = R(v(ψ)c ,−)c

· · ·

A bimodal formula ϕ is valid in X for the valuation v , denoted by
X |=v ϕ, if v(ϕ) = X .
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Remark on valuation

Remark
Since the access relation of X is solely closed, the valuation of a bimodal
formula may fail to be clopen.
For instance,

v(♦p) = R(−, v(p)) = {x | ∃y ∈ v(p) : x R y}

is not guaranteed to be clopen.

In particular, this means that we cannot extend a valuation on a
subordination algebra v : Var −→ B to all bimodal formulas.
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Canonical extension of a subordination algebra

Let B be a subordination algebra. Then Ult(B) is a subordination
algebra, and so, in particular, a Kripke frame.

It follows that Bδ = P(Ult(B)) is a complete tense bimodal algebra with
for every E ∈ P(Ult(B))

♦(E ) = R(−,E ) and �(E ) = R(E ,−).

Proposition
The map

η : B −→ Bδ : a 7−→ {x ∈ Ult(B) | x 3 a}

is an injective Boolean morphism such that

a ≺ b ⇔ ♦η(a) ≤ η(b)⇔ η(a) ≤ �η(b).
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Validity for subordination algebra

De�nition
Let (B,≺) be a subordination algebra. A valuation on B is a map
v : Var −→ B. A valuation on B can be extended to a valuation
η ◦ v : Var −→ Bδ on Bδ.

A bimodal formula ϕ is valid in B under the valuation v if η(v(ϕ)) = 11,
that is ϕ is valid in Bδ under the valuation η ◦ v .

Proposition
Let ϕ be a bimodal formula. We have B |= ϕ if and only if Ult(B) |= ϕ.

1Remember that B and Bδ share the same top element.
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Translations
There are several correspondence problems that could be studied.

1. Translation of bimodal formulas on a subordination algebra into �rst
order formulas of the accessibility relation of the dual.

(B,≺) |= �p → �p i� (X ,R) |= (∀x)(∃y)(y R x).

2. Translation of �rst order properties in the language of subordination
algebras into �rst order formulas of the accessibility relation of the
dual.

(B,≺) |= p ≺ 0→ p = 0 i� (X ,R) |= (∀x)(∃y)(y R x).

3. Translation of bimodal formulas on a subordination algebra into �rst
order properties in the language of subordination algebras.

(B,≺) |= �p → �p i� (B,≺) |= p ≺ 0→ p = 0.
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s-positive formulas

De�nition

1. A bimodal formula is closed (resp. open) if it is obtained from
constants >, ⊥, propositional variables and their negations by
applying only ∧, ∨, ♦ and � (resp. ∧, ∨, � and �).

2. A bimodal formula is positive (resp. negative) if it is obtained from
constants >, ⊥ and propositional variables (resp. and negation of
propositional variables) by applying only ∧, ∨, ♦, �, � and �.

3. A bimodal formula is s-positive (resp. s-negative) if it is obtained
from closed positive formulas (resp. open negative formulas) by
applying only ∧, ∨, � and �.

Remark
A s-positive formula is a positive formula where no � or � is under the
scope of a ♦ or a � and vice-versa for a s-negative formula. (Restriction
needed for the intersection lemma to work)
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Sahlqvist formulas

De�nition

1. A strongly positive bimodal formula is a conjunction of formulas of
the form

�〈µ〉p = �µ1�µ2 ...�µnp

where p ∈ Var, n ∈ N and µ ∈ Nn.

2. A s-untied bimodal formula is a bimodal formula obtained from
s-negative and strongly positive formulas by applying only ∧, ♦ and
�.

3. A s-Sahlqvist formula is a formula of the form

�〈µ〉(ϕ1 → ϕ2)

where ϕ1 is s-untied and ϕ2 is s-positive.
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Sahlqvist theorem

Theorem
Let ϕ be a s-Sahlqvist formula. There exists a �rst order formula α(ϕ) in
the language of a binary relation such that for any subordination algebra
(B,≺) with dual (X ,R) we have

(B,≺) |= ϕ i� (X ,R) |= α(ϕ).



Existence of a counterexample ?



A remark on substitution

Let X be a Stone space with an accumulation point x0 and de�ne
R ⊆ X × X by

x R y i� x = x0 or x = y .

Then (X ,R) is a subordination space such that

(X ,R) |= p → ♦�p.

But for ϕ = p ∧ ¬�p, we have that

(X ,R) 6|= ϕ→ ♦�ϕ.
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Scheme-extensible formulas

De�nition
A bimodal formula ϕ is said to be scheme-extensible if B |= ϕ(p) (we
write ϕ(p) to indicate that the variables of ϕ are among the tuple p)
implies B |= ϕ(ψ) for all ψ.

Theorem
Any s-Sahlqvist bimodal formula is scheme-extensible.



Counterexample

The formula ϕ ≡ p −→ ♦�p is a Sahlqvist formula (for modal algebras),
corresponding to

(∀x)(∃y)(x R y and R(y ,−) ⊆ {x},

but ϕ is not scheme-extensible and hence ϕ is not a s-Sahlqvist formula.



Sloth



Post credits slide

For a Kripke frame (X ,R), we have that

(X ,R) |= p → ♦�p
i�

(X ,R) |= (∀x)(∃y)(x R y and R(y ,−) ⊆ {x}.

hence
(X ,R) is symmetric and (X ,R) |= p → �♦p.

Question : How can we deduct p → �♦p from p → ♦�p.
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