A Sahlqvist theorem for subordination algebras

Laurent De Rudder and Georges Hansoul

TACL 2019 - June 2019

Sahlqvist theorem

Example

For a Kripke frame (X, R) we have

$$
(X, R) \models \square p \rightarrow \square \square p \text { iff }(X, R) \models x R \text { y } \wedge y R z \rightarrow x R z .
$$

Sahlqvist theorem

Example

For a Kripke frame (X, R) we have

$$
(X, R) \models \square p \rightarrow \square \square p \text { iff }(X, R) \models x R \text { y } \wedge y R z \rightarrow x R z
$$

Theorem
If φ is a Sahlqvist formula φ then there exists a first order formula $\alpha(\varphi)$ (in the language of the accessibility relation) such that, for a Kripke frame (X, R),

$$
(X, R) \models \varphi \text { iff }(X, R) \models \alpha(\varphi) .
$$

Sahlqvist theorem

Example

For a Kripke frame (X, R) we have

$$
(X, R) \models \square p \rightarrow \square \square p \text { iff }(X, R) \models x R \text { y } \wedge y R z \rightarrow x R z
$$

Theorem
If φ is a Sahlqvist formula φ then there exists a first order formula $\alpha(\varphi)$ (in the language of the accessibility relation) such that, for a Kripke frame (X, R),

$$
(X, R) \models \varphi \text { iff }(X, R) \models \alpha(\varphi) .
$$

Example
$p \rightarrow \Delta p$ (reflexivity), $p \rightarrow \square \diamond p$ (symmetry), $\square p \rightarrow \diamond p$ (right unboundness), ...

Subordination algebras

Definition

A subordination algebra is a pair (B, \prec) where B is a Boolean algebra and \prec a binary relation on B such that :

- $0 \prec 0$ and $1 \prec 1$,
- $a \prec b, c$ implies $a \prec b \wedge c$,
- $a, b \prec c$ implies $a \vee b \prec c$,
- $a \leq b \prec c \leq d$ implies $a \prec d$.

Subordination algebras as generalisation of modal algebras

Definition (Option 1)

Let (B, \diamond) be a modal algebra. Define on B the relation

$$
a \prec_{\diamond} b \text { iff } \diamond a \leq b .
$$

Then, $\left(B, \prec_{\diamond}\right)$ is a subordination algebra.

Subordination algebras as generalisation of modal algebras

Definition (Option 1)

Let (B, \diamond) be a modal algebra. Define on B the relation

$$
a \prec_{\diamond} b \text { iff } \diamond a \leq b .
$$

Then, $\left(B, \prec_{\diamond}\right)$ is a subordination algebra.
Definition (Option 2)
Let (B, \downarrow) be a modal algebra. Define on B the relation

$$
a \prec b \text { iff } a \leq \llbracket b .
$$

Then $\left(B, \prec_{\bullet}\right)$ is a subordination algebra.

Subordination morphisms

Definition

Let B, C be subordination algebras and $h: B \longrightarrow C$ a Boolean morphism. Consider the following axioms :
(w) $a \prec b$ implies $h(a) \prec h(b)$,
$(\diamond) h(a) \prec c$ implies $a \prec b$ and $h(b) \leq c$ for some b,
$(\downarrow) a \prec h(c)$ implies $b \prec c$ and $a \leq h(b)$ for some b.

Subordination algebras as generalisation of modal algebras

Proposition

If $h:(B, \diamond) \longrightarrow(C, \diamond)$ is a modal morphism, then
$h:\left(B, \prec_{\diamond}\right) \longrightarrow\left(C, \prec_{\diamond}\right)$ is a Boolean morphism verifying (w) and (\diamond).

Subordination algebras as generalisation of modal algebras

Proposition

If $h:(B, \diamond) \longrightarrow(C, \diamond)$ is a modal morphism, then
$h:\left(B, \prec_{\diamond}\right) \longrightarrow\left(C, \prec_{\diamond}\right)$ is a Boolean morphism verifying (w) and (\diamond).
Proposition
If $h:(B, \downarrow) \longrightarrow(C, \downarrow)$ is a modal morphism, then
$h:(B, \prec) \longrightarrow(C, \prec \diamond)$ is a Boolean morphism verifying (w) and (\downarrow)

Subordination spaces

Definition
A subordination space is a pair (X, R) where X a Stone space and R a closed binary relation on X.

Subordination spaces

Definition

A subordination space is a pair (X, R) where X a Stone space and R a closed binary relation on X.

Definition
Let X, Y be subordination spaces and $f: X \longrightarrow C$ a continuous function. Consider the following axioms :
(w) $x R y$ implies $f(x) R f(y)$,
$(\diamond) f(x) R y$ implies $x R z$ and $f(z)=y$ for some z,
$(\checkmark) x R f(y)$ implies $z R y$ and $f(z)=x$ for some z.

Dual of a subordination algebra

Let (B, \prec) be a subordination algebra. We denote

1. $X_{B}=\operatorname{Ult}(B)$ the Stone dual of B, that is the set of ultrafilters of B equipped with the topology generated by the set

$$
\eta(a)=\{x \in \operatorname{Ult}(B) \mid x \ni a\},
$$

Dual of a subordination algebra

Let (B, \prec) be a subordination algebra. We denote

1. $X_{B}=\operatorname{Ult}(B)$ the Stone dual of B, that is the set of ultrafilters of B equipped with the topology generated by the set

$$
\eta(a)=\{x \in \operatorname{Ult}(B) \mid x \ni a\}
$$

2. R_{\prec} the binary relation on X_{B} defined by

$$
x R_{\prec} y \Leftrightarrow \prec(y,-):=\{a \mid \exists b \in y: b \prec a\} \subseteq x
$$

Dual of a subordination algebra

Let (B, \prec) be a subordination algebra. We denote

1. $X_{B}=\operatorname{Ult}(B)$ the Stone dual of B, that is the set of ultrafilters of B equipped with the topology generated by the set

$$
\eta(a)=\{x \in \operatorname{Ult}(B) \mid x \ni a\}
$$

2. R_{\prec} the binary relation on X_{B} defined by

$$
x R_{\prec} y \Leftrightarrow \prec(y,-):=\{a \mid \exists b \in y: b \prec a\} \subseteq x .
$$

Proposition
The pair $\left(X_{B}, R_{\prec}\right)$ forms a subordination space.

Dual of a subordination space

Let (X, R) be a subordination space. We denote

1. $B_{X}=\operatorname{Clop}(X)$ the Stone dual of X, that is the Boolean algebra of clopen sets of X,

Dual of a subordination space

Let (X, R) be a subordination space. We denote

1. $B_{X}=\operatorname{Clop}(X)$ the Stone dual of X, that is the Boolean algebra of clopen sets of X,
2. \prec_{R} the binary relation on B_{X} defined by

$$
O \prec_{R} U \Leftrightarrow R(-, O) \subseteq U
$$

Dual of a subordination space

Let (X, R) be a subordination space. We denote

1. $B_{X}=\operatorname{Clop}(X)$ the Stone dual of X, that is the Boolean algebra of clopen sets of X,
2. \prec_{R} the binary relation on B_{X} defined by

$$
O \prec_{R} U \Leftrightarrow R(-, O) \subseteq U
$$

Proposition
The pair $\left(B_{X}, \prec_{R}\right)$ is a subordination algebra.

Duals of morphisms

Proposition

1. If $h: B \longrightarrow C$ is a Boolean morphism verifying (w) (resp. (\diamond) and (\downarrow) then

$$
\mathrm{UIt}(h): \operatorname{UIt}(C) \longrightarrow \operatorname{Ult}(B): x \longmapsto h^{-1}(x)
$$

is a continuous function that verifies (w) (resp. (\rangle) and (\downarrow))

Duals of morphisms

Proposition

1. If $h: B \longrightarrow C$ is a Boolean morphism verifying (w) (resp. (\diamond) and (\downarrow) then

$$
\operatorname{Ult}(h): \operatorname{Ult}(C) \longrightarrow \operatorname{Ult}(B): x \longmapsto h^{-1}(x)
$$

is a continuous function that verifies (w) (resp. (\rangle) and (\downarrow))
2. If $f: X \longrightarrow Y$ is a continuous function verifying (w) (resp. (\rangle) and (\downarrow) then

$$
\operatorname{Clop}(f): \operatorname{Clop}(Y) \longrightarrow \operatorname{Clop}(X): O \longmapsto f^{-1}(O)
$$

is a Boolean morphism verifying (w) (resp. (\rangle) and (\downarrow)).

Duality

Theorem

1. If (B, \prec) is a subordination algebra then

$$
\eta:(B, \prec) \longrightarrow\left(\operatorname{Clop}(\operatorname{Ult}(B)), \prec_{R_{\prec}}\right): a \longmapsto\{x \in \operatorname{Ult}(B) \mid x \ni a\}
$$

is a bijective Boolean morphism that verifies $(w),(\rangle)$ and (\checkmark) and such that

$$
\eta(a) \prec \eta(b) \Rightarrow a \prec b .
$$

Duality

Theorem

1. If (B, \prec) is a subordination algebra then

$$
\eta:(B, \prec) \longrightarrow\left(\operatorname{Clop}(\operatorname{Ult}(B)), \prec_{R_{\prec}}\right): a \longmapsto\{x \in \operatorname{Ult}(B) \mid x \ni a\}
$$

is a bijective Boolean morphism that verifies $(w),(\rangle)$ and (\rangle) and such that

$$
\eta(a) \prec \eta(b) \Rightarrow a \prec b .
$$

2. If (X, R) is a subordination space then
$\varepsilon:(X, R) \longrightarrow\left(\operatorname{Ult}(\operatorname{Clop}(X)), R_{\prec_{R}}\right): x \longmapsto\{O \in \operatorname{Clop}(X) \mid O \ni x\}$
is a bijective continuous function that verifies $(w),(\rangle)$ and (\rangle) and such that

$$
\varepsilon(x) R \varepsilon(y) \Rightarrow x R y .
$$

Validity for subordination spaces

Definition

Let (X, R) be a subordination space. A valuation on X is a map $v:$ Var $\longrightarrow \operatorname{Clop}(X)$. The valuation is then extend to bimodal formulas in the usual way:

$$
\begin{aligned}
& v(\diamond \psi)=R(-, v(\psi)) \\
& v(\forall \psi)=R(v(\psi),-)
\end{aligned}
$$

$$
v(\square \psi)=R\left(-, v(\psi)^{c}\right)^{c}
$$

$$
v(■ \psi)=R\left(v(\psi)^{c},-\right)^{c}
$$

Validity for subordination spaces

Definition

Let (X, R) be a subordination space. A valuation on X is a map $v:$ Var $\longrightarrow \operatorname{Clop}(X)$. The valuation is then extend to bimodal formulas in the usual way :

$$
\begin{aligned}
& v(\Delta \psi)=R(-, v(\psi)) \\
& v(\forall \psi)=R(v(\psi),-)
\end{aligned}
$$

$$
\begin{aligned}
& v(\square \psi)=R\left(-, v(\psi)^{c}\right)^{c} \\
& v(\square \psi)=R\left(v(\psi)^{c},-\right)^{c}
\end{aligned}
$$

A bimodal formula φ is valid in X for the valuation v, denoted by $X \not \models_{v} \varphi$, if $v(\varphi)=X$.

Remark on valuation

Remark

Since the access relation of X is solely closed, the valuation of a bimodal formula may fail to be clopen.
For instance,

$$
v(\Delta p)=R(-, v(p))=\{x \mid \exists y \in v(p): x R y\}
$$

is not guaranteed to be clopen.

Remark on valuation

Remark

Since the access relation of X is solely closed, the valuation of a bimodal formula may fail to be clopen.
For instance,

$$
v(\Delta p)=R(-, v(p))=\{x \mid \exists y \in v(p): x R y\}
$$

is not guaranteed to be clopen.
In particular, this means that we cannot extend a valuation on a subordination algebra $v:$ Var $\longrightarrow B$ to all bimodal formulas.

Canonical extension of a subordination algebra

Let B be a subordination algebra. Then $\mathrm{Ult}(B)$ is a subordination algebra, and so, in particular, a Kripke frame.
It follows that $B^{\delta}=\mathcal{P}(\operatorname{Ult}(B))$ is a complete tense bimodal algebra with for every $E \in \mathcal{P}(\operatorname{Ult}(B))$

$$
\diamond(E)=R(-, E) \text { and } \diamond(E)=R(E,-) .
$$

Canonical extension of a subordination algebra

Let B be a subordination algebra. Then $\operatorname{Ult}(B)$ is a subordination algebra, and so, in particular, a Kripke frame.
It follows that $B^{\delta}=\mathcal{P}(\operatorname{Ult}(B))$ is a complete tense bimodal algebra with for every $E \in \mathcal{P}(\operatorname{Ult}(B))$

$$
\diamond(E)=R(-, E) \text { and } \diamond(E)=R(E,-) .
$$

Proposition

The map

$$
\eta: B \longrightarrow B^{\delta}: a \longmapsto\{x \in \operatorname{Ult}(B) \mid x \ni a\}
$$

is an injective Boolean morphism such that

$$
a \prec b \Leftrightarrow \diamond \eta(a) \leq \eta(b) \Leftrightarrow \eta(a) \leq ■ \eta(b) .
$$

Validity for subordination algebra

Definition

Let (B, \prec) be a subordination algebra. A valuation on B is a map $v:$ Var $\longrightarrow B$. A valuation on B can be extended to a valuation $\eta \circ v:$ Var $\longrightarrow B^{\delta}$ on B^{δ}.

Validity for subordination algebra

Definition

Let (B, \prec) be a subordination algebra. A valuation on B is a map
$v: \operatorname{Var} \longrightarrow B$. A valuation on B can be extended to a valuation $\eta \circ v:$ Var $\longrightarrow B^{\delta}$ on B^{δ}.
A bimodal formula φ is valid in B under the valuation v if $\eta(v(\varphi))=1^{1}$, that is φ is valid in B^{δ} under the valuation $\eta \circ \mathrm{v}$.
${ }^{1}$ Remember that B and B^{δ} share the same top element.

Validity for subordination algebra

Definition

Let (B, \prec) be a subordination algebra. A valuation on B is a map
$v: \operatorname{Var} \longrightarrow B$. A valuation on B can be extended to a valuation $\eta \circ v:$ Var $\longrightarrow B^{\delta}$ on B^{δ}.
A bimodal formula φ is valid in B under the valuation v if $\eta(v(\varphi))=1^{1}$, that is φ is valid in B^{δ} under the valuation $\eta \circ \mathrm{v}$.

Proposition

Let φ be a bimodal formula. We have $B \models \varphi$ if and only if $\operatorname{Ult}(B) \models \varphi$.

Translations

There are several correspondence problems that could be studied.

1. Translation of bimodal formulas on a subordination algebra into first order formulas of the accessibility relation of the dual.

$$
(B, \prec) \models \square_{p \rightarrow} \rightarrow \text { iff }(X, R) \models(\forall x)(\exists y)(y R x) .
$$

Translations

There are several correspondence problems that could be studied.

1. Translation of bimodal formulas on a subordination algebra into first order formulas of the accessibility relation of the dual.

$$
(B, \prec) \models ■_{p \rightarrow} \rightarrow \text { iff }(X, R) \models(\forall x)(\exists y)(y R x) .
$$

2. Translation of first order properties in the language of subordination algebras into first order formulas of the accessibility relation of the dual.

$$
(B, \prec) \models p \prec 0 \rightarrow p=0 \text { iff }(X, R) \models(\forall x)(\exists y)(y R x) .
$$

Translations

There are several correspondence problems that could be studied.

1. Translation of bimodal formulas on a subordination algebra into first order formulas of the accessibility relation of the dual.

$$
(B, \prec) \models ■_{p \rightarrow} \rightarrow \text { iff }(X, R) \models(\forall x)(\exists y)(y R x) .
$$

2. Translation of first order properties in the language of subordination algebras into first order formulas of the accessibility relation of the dual.

$$
(B, \prec) \models p \prec 0 \rightarrow p=0 \text { iff }(X, R) \models(\forall x)(\exists y)(y R x) .
$$

3. Translation of bimodal formulas on a subordination algebra into first order properties in the language of subordination algebras.

$$
(B, \prec) \models \square p \rightarrow p \text { iff }(B, \prec) \models p \prec 0 \rightarrow p=0 .
$$

s-positive formulas

Definition

1. A bimodal formula is closed (resp. open) if it is obtained from constants T, \perp, propositional variables and their negations by applying only \wedge, \vee, \diamond and \downarrow (resp. \wedge, \vee, \square and $\square)$.

s-positive formulas

Definition

1. A bimodal formula is closed (resp. open) if it is obtained from constants T, \perp, propositional variables and their negations by applying only \wedge, \vee, \diamond and \downarrow (resp. \wedge, \vee, \square and $\square)$.
2. A bimodal formula is positive (resp. negative) if it is obtained from constants T, \perp and propositional variables (resp. and negation of propositional variables) by applying only $\wedge, \vee, \diamond, \square, \downarrow$ and $\boldsymbol{\square}$.

s-positive formulas

Definition

1. A bimodal formula is closed (resp. open) if it is obtained from constants T, \perp, propositional variables and their negations by applying only \wedge, \vee, \diamond and \downarrow (resp. \wedge, \vee, \square and $\square)$.
2. A bimodal formula is positive (resp. negative) if it is obtained from constants T, \perp and propositional variables (resp. and negation of propositional variables) by applying only $\wedge, \vee, \diamond, \square, \downarrow$ and $\boldsymbol{\square}$.
3. A bimodal formula is s-positive (resp. s-negative) if it is obtained from closed positive formulas (resp. open negative formulas) by applying only \wedge, \vee, \square and $■$.

s-positive formulas

Definition

1. A bimodal formula is closed (resp. open) if it is obtained from constants T, \perp, propositional variables and their negations by applying only \wedge, \vee, \diamond and \downarrow (resp. \wedge, \vee, \square and $\square)$.
2. A bimodal formula is positive (resp. negative) if it is obtained from constants T, \perp and propositional variables (resp. and negation of propositional variables) by applying only $\wedge, \vee, \diamond, \square, \downarrow$ and $\boldsymbol{\square}$.
3. A bimodal formula is s-positive (resp. s-negative) if it is obtained from closed positive formulas (resp. open negative formulas) by applying only \wedge, \vee, \square and $■$.

Remark

A s-positive formula is a positive formula where no \square or \square is under the scope of a \diamond or a and vice-versa for a s-negative formula. (Restriction needed for the intersection lemma to work)

Sahlqvist formulas

Definition

1. A strongly positive bimodal formula is a conjunction of formulas of the form

$$
\square^{\langle\mu\rangle} p=\square^{\mu_{1}} \square^{\mu_{2}} \ldots \square^{\mu_{n}} p
$$

where $p \in \operatorname{Var}, n \in \mathbb{N}$ and $\mu \in \mathbb{N}^{n}$.

Sahlqvist formulas

Definition

1. A strongly positive bimodal formula is a conjunction of formulas of the form

$$
\square^{\langle\mu\rangle} p=\square^{\mu_{1}} \square^{\mu_{2}} \ldots \square^{\mu_{n}} p
$$

where $p \in \operatorname{Var}, n \in \mathbb{N}$ and $\mu \in \mathbb{N}^{n}$.
2. A s-untied bimodal formula is a bimodal formula obtained from s-negative and strongly positive formulas by applying only \wedge, \diamond and \checkmark.

Sahlqvist formulas

Definition

1. A strongly positive bimodal formula is a conjunction of formulas of the form

$$
\square^{\langle\mu\rangle} p=\square^{\mu_{1}} \square^{\mu_{2}} \ldots \square^{\mu_{n}} p
$$

where $p \in \operatorname{Var}, n \in \mathbb{N}$ and $\mu \in \mathbb{N}^{n}$.
2. A s-untied bimodal formula is a bimodal formula obtained from s-negative and strongly positive formulas by applying only \wedge, \diamond and \checkmark.
3. A s-Sahlqvist formula is a formula of the form

$$
\square^{\langle\mu\rangle}\left(\varphi_{1} \rightarrow \varphi_{2}\right)
$$

where φ_{1} is s-untied and φ_{2} is s-positive.

Sahlqvist theorem

Theorem
Let φ be a s-Sahlqvist formula. There exists a first order formula $\alpha(\varphi)$ in the language of a binary relation such that for any subordination algebra (B, \prec) with dual (X, R) we have

$$
(B, \prec) \models \varphi \text { iff }(X, R) \models \alpha(\varphi) .
$$

Existence of a counterexample?

A remark on substitution

Let X be a Stone space with an accumulation point x_{0} and define $R \subseteq X \times X$ by

$$
x R y \text { iff } x=x_{0} \text { or } x=y .
$$

A remark on substitution

Let X be a Stone space with an accumulation point x_{0} and define $R \subseteq X \times X$ by

$$
x R y \text { iff } x=x_{0} \text { or } x=y .
$$

Then (X, R) is a subordination space such that

$$
(X, R) \models p \rightarrow \diamond \square p .
$$

A remark on substitution

Let X be a Stone space with an accumulation point x_{0} and define $R \subseteq X \times X$ by

$$
x R y \text { iff } x=x_{0} \text { or } x=y
$$

Then (X, R) is a subordination space such that

$$
(X, R) \models p \rightarrow \diamond \square p .
$$

But for $\varphi=p \wedge \neg \square p$, we have that

$$
(X, R) \not \vDash \varphi \rightarrow \diamond \square \varphi .
$$

Scheme-extensible formulas

Definition
A bimodal formula φ is said to be scheme-extensible if $\underline{B} \models \varphi(\bar{p})$ (we write $\varphi(\bar{p})$ to indicate that the variables of φ are among the tuple \bar{p}) implies $\underline{B} \models \varphi(\bar{\psi})$ for all $\bar{\psi}$.

Theorem
Any s-Sahlqvist bimodal formula is scheme-extensible.

Counterexample

The formula $\varphi \equiv p \longrightarrow \diamond \square p$ is a Sahlqvist formula (for modal algebras), corresponding to

$$
(\forall x)(\exists y)(x R y \text { and } R(y,-) \subseteq\{x\},
$$

but φ is not scheme-extensible and hence φ is not a s-Sahlqvist formula.

Sloth

Post credits slide

For a Kripke frame (X, R), we have that

$$
\begin{gathered}
(X, R) \models p \rightarrow \Delta \square p \\
(X, R) \models(\forall x)(\exists y)(x R y \text { and } R(y,-) \subseteq\{x\} .
\end{gathered}
$$

Post credits slide

For a Kripke frame (X, R), we have that

$$
\begin{gathered}
(X, R) \models p \rightarrow \Delta \square p \\
(X, R) \models(\forall x)(\exists y)(x R y \text { and } R(y,-) \subseteq\{x\} . \\
\text { hence } \\
(X, R) \text { is symmetric and }(X, R) \models p \rightarrow \square \diamond p .
\end{gathered}
$$

Post credits slide

For a Kripke frame (X, R), we have that

$$
\begin{gathered}
(X, R) \models p \rightarrow \Delta \square p \\
(X, R) \models(\forall x)(\exists y)(x R y \text { iff } \\
\text { hence } \\
(X(y,-) \subseteq\{x\} . \\
(X, R) \text { is symmetric and }(X, R) \models p \rightarrow \square \diamond p .
\end{gathered}
$$

Question : How can we deduct $p \rightarrow \square \diamond p$ from $p \rightarrow \diamond \square p$.

