Pierce stalks in preprimal varieties

D. J. Vaggione¹ W. J. Zuluaga Botero²

¹ Universidad Nacional de Córdoba Córdoba, Argentina

² Universidad Nacional del Centro de la Provincia de Buenos Aires Tandil, Argentina

> TACL 2019 Nice , June 2019

D. J. Vaggione, W. J. Zuluaga Botero Pierce stalks in preprimal varieties

Let **V** be a variety (algebraic):

• **V** is a variety with $\vec{0}$ and $\vec{1}$ if there are 0-ary terms 0_1 , ..., 0_n , 1_1 , ..., 1_n such that $\mathbf{V} \models \vec{0} \approx \vec{1} \rightarrow x \approx y$, where $\vec{0} = (0_1, ..., 0_n)$ and $\vec{1} = (1_1, ..., 1_n)$.

- **V** is a variety with $\vec{0}$ and $\vec{1}$ if there are 0-ary terms 0_1 , ..., 0_n , 1_1 , ..., 1_n such that $\mathbf{V} \models \vec{0} \approx \vec{1} \rightarrow x \approx y$, where $\vec{0} = (0_1, ..., 0_n)$ and $\vec{1} = (1_1, ..., 1_n)$.
- If $\vec{a} \in A^n$ and $\vec{b} \in B^n$, we write $[\vec{a}, \vec{b}]$ for the n-uple $((a_1, b_1), ..., (a_n, b_n)) \in (A \times B)^n$.

- **V** is a variety with $\vec{0}$ and $\vec{1}$ if there are 0-ary terms 0_1 , ..., 0_n , 1_1 , ..., 1_n such that $\mathbf{V} \models \vec{0} \approx \vec{1} \rightarrow x \approx y$, where $\vec{0} = (0_1, ..., 0_n)$ and $\vec{1} = (1_1, ..., 1_n)$.
- If $\vec{a} \in A^n$ and $\vec{b} \in B^n$, we write $[\vec{a}, \vec{b}]$ for the n-uple $((a_1, b_1), ..., (a_n, b_n)) \in (A \times B)^n$.
- If A ∈ V then we say that e = (e₁, ..., e_n) ∈ Aⁿ is a central element of A if there exists an isomorphism τ : A → A₁ × A₂, such that τ(e) = [0, 1].

- **V** is a variety with $\vec{0}$ and $\vec{1}$ if there are 0-ary terms 0_1 , ..., 0_n , 1_1 , ..., 1_n such that $\mathbf{V} \models \vec{0} \approx \vec{1} \rightarrow x \approx y$, where $\vec{0} = (0_1, ..., 0_n)$ and $\vec{1} = (1_1, ..., 1_n)$.
- If $\vec{a} \in A^n$ and $\vec{b} \in B^n$, we write $[\vec{a}, \vec{b}]$ for the n-uple $((a_1, b_1), ..., (a_n, b_n)) \in (A \times B)^n$.
- If A ∈ V then we say that e = (e₁, ..., e_n) ∈ Aⁿ is a central element of A if there exists an isomorphism τ : A → A₁ × A₂, such that τ(e) = [0, 1].
- We say that *e* and *f* are a pair of complementary central elements of A if there exists an isomorphism τ : A → A₁ × A₂ such that τ(*e*) = [0, 1] and τ(*f*) = [1, 0].

- **V** is a variety with $\vec{0}$ and $\vec{1}$ if there are 0-ary terms 0_1 , ..., 0_n , 1_1 , ..., 1_n such that $\mathbf{V} \models \vec{0} \approx \vec{1} \rightarrow x \approx y$, where $\vec{0} = (0_1, ..., 0_n)$ and $\vec{1} = (1_1, ..., 1_n)$.
- If $\vec{a} \in A^n$ and $\vec{b} \in B^n$, we write $[\vec{a}, \vec{b}]$ for the n-uple $((a_1, b_1), ..., (a_n, b_n)) \in (A \times B)^n$.
- If A ∈ V then we say that e = (e₁, ..., e_n) ∈ Aⁿ is a central element of A if there exists an isomorphism τ : A → A₁ × A₂, such that τ(e) = [0, 1].
- We say that *e* and *f* are a pair of complementary central elements of A if there exists an isomorphism τ : A → A₁ × A₂ such that τ(*e*) = [0, 1] and τ(*f*) = [1, 0].

Theorem ([8])

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$.

Theorem ([8])

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$. T.F.E:

D. J. Vaggione, W. J. Zuluaga Botero Pierce stalks in preprimal varieties

Theorem ([8])

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$. T.F.E:

(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that, for every i = 1, ..., n

Theorem ([8])

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$. T.F.E:

(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that, for every i = 1, ..., n

 $(e_i, 0_i) \in \theta$ and $(e_i, 1_i) \in \delta$ and $(f_i, 0_i) \in \delta$ and $(f_i, 1_i) \in \theta$

Theorem ([8])

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$. T.F.E:

(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that, for every i = 1, ..., n

 $(e_i, 0_i) \in \theta$ and $(e_i, 1_i) \in \delta$ and $(f_i, 0_i) \in \delta$ and $(f_i, 1_i) \in \theta$ (DFC) V has definable factor congruences; i.e, there is a first order formula $\psi(\vec{z}, x, y)$ such that for every $A, B \in V$

Theorem ([8])

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$. T.F.E:

(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that, for every i = 1, ..., n

 $\begin{array}{l} (\mathbf{e}_{i},\mathbf{0}_{i}) \in \theta \text{ and } (\mathbf{e}_{i},1_{i}) \in \delta \quad \text{and} \quad (f_{i},\mathbf{0}_{i}) \in \delta \text{ and } (f_{i},1_{i}) \in \theta \\ \\ \textbf{(DFC)} \quad \textbf{V} \text{ has definable factor congruences; i.e, there is a first order } \\ formula \ \psi(\vec{z},x,y) \text{ such that for every } A, B \in \textbf{V} \\ \qquad A \times B \models \psi([\vec{0},\vec{1}],(a,b),(a',b')) \text{ iff } a = a' \end{array}$

Theorem ([8])

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$. T.F.E:

(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that, for every i = 1, ..., n

 $(e_i, 0_i) \in \theta$ and $(e_i, 1_i) \in \delta$ and $(f_i, 0_i) \in \delta$ and $(f_i, 1_i) \in \theta$ (DFC) \mathbf{V} has definable factor congruences; i.e, there is a first order formula $\psi(\vec{z}, x, y)$ such that for every $A, B \in \mathbf{V}$ $A \times B \models \psi([\vec{0}, \vec{1}], (a, b), (a', b'))$ iff a = a'(BFC) \mathbf{V} has Boolean factor congruences, i.e., the set of factor congruences of any algebra in \mathcal{V} is a Boolean sublattice of its

congruence lattice.

D. J. Vaggione, W. J. Zuluaga Botero Pierce stalks in preprimal varieties

Generalities about Varieties with BFC

For every A ∈ V, we write Z(A) to denote the set of central elements of A.

- For every A ∈ V, we write Z(A) to denote the set of central elements of A.
- $\vec{e} \diamond_A \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.

- For every A ∈ V, we write Z(A) to denote the set of central elements of A.
- $\vec{e} \diamond_A \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If *e* is a central element of A we write θ^A_{0,e} and θ^A_{1,e} for the unique pair of complementary factor congruences satisfying

- For every A ∈ V, we write Z(A) to denote the set of central elements of A.
- $\vec{e} \diamond_A \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta^{A}_{\vec{0},\vec{e}}$ and $\theta^{A}_{\vec{1},\vec{e}}$ for the unique pair of complementary factor congruences satisfying $\vec{e} \equiv \vec{0}(\theta^{A}_{\vec{0},\vec{e}})$

- For every A ∈ V, we write Z(A) to denote the set of central elements of A.
- $\vec{e} \diamond_A \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta^{A}_{\vec{0},\vec{e}}$ and $\theta^{A}_{\vec{1},\vec{e}}$ for the unique pair of complementary factor congruences satisfying $\vec{e} \equiv \vec{0}(\theta^{A}_{\vec{0},\vec{e}})$ and

- For every A ∈ V, we write Z(A) to denote the set of central elements of A.
- $\vec{e} \diamond_A \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta^{A}_{\vec{0},\vec{e}}$ and $\theta^{A}_{\vec{1},\vec{e}}$ for the unique pair of complementary factor congruences satisfying $\vec{e} \equiv \vec{0}(\theta^{A}_{\vec{0},\vec{e}})$ and $\vec{e} \equiv \vec{1}(\theta^{A}_{\vec{1},\vec{e}})$.

- For every A ∈ V, we write Z(A) to denote the set of central elements of A.
- $\vec{e} \diamond_A \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta^{A}_{\vec{0},\vec{e}}$ and $\theta^{A}_{\vec{1},\vec{e}}$ for the unique pair of complementary factor congruences satisfying $\vec{e} \equiv \vec{0}(\theta^{A}_{\vec{0},\vec{e}})$ and $\vec{e} \equiv \vec{1}(\theta^{A}_{\vec{1},\vec{e}})$.

Let **V** a variety with BFC. The map $g : Z(A) \to FC(A)$, defined by $g(e) = \theta^{A}_{\vec{0},\vec{e}}$ is a bijection and its inverse $h : FC(A) \to Z(A)$ is defined by $h(\theta) = \vec{e}$, where \vec{e} is the only $\vec{e} \in A^{n}$ such that $\vec{e} \equiv \vec{0}(\theta)$ and $\vec{e} \equiv \vec{1}(\theta^{*})$.

Let **V** a variety with BFC. The map $g : Z(A) \to FC(A)$, defined by $g(e) = \theta^{A}_{\vec{0},\vec{e}}$ is a bijection and its inverse $h : FC(A) \to Z(A)$ is defined by $h(\theta) = \vec{e}$, where \vec{e} is the only $\vec{e} \in A^{n}$ such that $\vec{e} \equiv \vec{0}(\theta)$ and $\vec{e} \equiv \vec{1}(\theta^{*})$.

This result allows us to define some operations in Z(A) as follows:

Let **V** a variety with BFC. The map $g : Z(A) \to FC(A)$, defined by $g(e) = \theta^{A}_{\vec{0},\vec{e}}$ is a bijection and its inverse $h : FC(A) \to Z(A)$ is defined by $h(\theta) = \vec{e}$, where \vec{e} is the only $\vec{e} \in A^{n}$ such that $\vec{e} \equiv \vec{0}(\theta)$ and $\vec{e} \equiv \vec{1}(\theta^{*})$.

This result allows us to define some operations in Z(A) as follows:

• The complement \vec{e}^{c_A} of \vec{e} , is the only solution to the equations $\vec{z} \equiv \vec{1}(\theta_{\vec{0},\vec{e}})$ and $\vec{z} \equiv \vec{0}(\theta_{\vec{1},\vec{e}})$.

Let **V** a variety with BFC. The map $g : Z(A) \to FC(A)$, defined by $g(e) = \theta^{A}_{\vec{0},\vec{e}}$ is a bijection and its inverse $h : FC(A) \to Z(A)$ is defined by $h(\theta) = \vec{e}$, where \vec{e} is the only $\vec{e} \in A^{n}$ such that $\vec{e} \equiv \vec{0}(\theta)$ and $\vec{e} \equiv \vec{1}(\theta^{*})$.

This result allows us to define some operations in Z(A) as follows:

- The complement \vec{e}^{C_A} of \vec{e} , is the only solution to the equations $\vec{z} \equiv \vec{1}(\theta_{\vec{0},\vec{e}})$ and $\vec{z} \equiv \vec{0}(\theta_{\vec{1},\vec{e}})$.
- The infimum $\vec{e} \wedge_A \vec{f}$ is the only solution to the equations $\vec{z} \equiv \vec{0}(\theta_{\vec{0},\vec{e}} \cap \theta_{\vec{0},\vec{f}})$ and $\vec{z} \equiv \vec{1}(\theta_{\vec{1},\vec{e}} \vee \theta_{\vec{1},\vec{f}})$

Let **V** a variety with BFC. The map $g : Z(A) \to FC(A)$, defined by $g(e) = \theta^{A}_{\vec{0},\vec{e}}$ is a bijection and its inverse $h : FC(A) \to Z(A)$ is defined by $h(\theta) = \vec{e}$, where \vec{e} is the only $\vec{e} \in A^{n}$ such that $\vec{e} \equiv \vec{0}(\theta)$ and $\vec{e} \equiv \vec{1}(\theta^{*})$.

This result allows us to define some operations in Z(A) as follows:

- The complement \vec{e}^{C_A} of \vec{e} , is the only solution to the equations $\vec{z} \equiv \vec{1}(\theta_{\vec{0},\vec{e}})$ and $\vec{z} \equiv \vec{0}(\theta_{\vec{1},\vec{e}})$.
- The infimum $\vec{e} \wedge_A \vec{f}$ is the only solution to the equations $\vec{z} \equiv \vec{0}(\theta_{\vec{0},\vec{e}} \cap \theta_{\vec{0},\vec{f}})$ and $\vec{z} \equiv \vec{1}(\theta_{\vec{1},\vec{e}} \vee \theta_{\vec{1},\vec{f}})$
- The supremum $\vec{e} \vee_A \vec{f}$ is the only solution to the equations $\vec{z} \equiv \vec{0}(\theta_{\vec{0},\vec{e}} \vee \theta_{\vec{0},\vec{f}})$ and $\vec{z} \equiv \vec{1}(\theta_{\vec{1},\vec{e}} \cap \theta_{\vec{1},\vec{f}})$.

Let **V** a variety with BFC. The map $g : Z(A) \to FC(A)$, defined by $g(e) = \theta^{A}_{\vec{0},\vec{e}}$ is a bijection and its inverse $h : FC(A) \to Z(A)$ is defined by $h(\theta) = \vec{e}$, where \vec{e} is the only $\vec{e} \in A^{n}$ such that $\vec{e} \equiv \vec{0}(\theta)$ and $\vec{e} \equiv \vec{1}(\theta^{*})$.

This result allows us to define some operations in Z(A) as follows:

- The complement \vec{e}^{c_A} of \vec{e} , is the only solution to the equations $\vec{z} \equiv \vec{1}(\theta_{\vec{0},\vec{e}})$ and $\vec{z} \equiv \vec{0}(\theta_{\vec{1},\vec{e}})$.
- The infimum $\vec{e} \wedge_A \vec{f}$ is the only solution to the equations $\vec{z} \equiv \vec{0}(\theta_{\vec{0},\vec{e}} \cap \theta_{\vec{0},\vec{f}})$ and $\vec{z} \equiv \vec{1}(\theta_{\vec{1},\vec{e}} \vee \theta_{\vec{1},\vec{f}})$
- The supremum $\vec{e} \vee_A \vec{f}$ is the only solution to the equations $\vec{z} \equiv \vec{0}(\theta_{\vec{0},\vec{e}} \vee \theta_{\vec{0},\vec{f}})$ and $\vec{z} \equiv \vec{1}(\theta_{\vec{1},\vec{e}} \cap \theta_{\vec{1},\vec{f}})$.

 $\mathbf{Z}(A) = (Z(A), \lor_A, \land_A, \overset{c_A}{,}, \vec{0}, \vec{1})$ is a Boolean algebra which is isomorphic to $(FC(A), \lor, \cap, ^*, \Delta^A, \nabla^A)$.

Let A be a subdirect product of $\{A_i : i \in I\}$.

$$E(x, y) = \{i \in I : x(i) = y(i)\}.$$

$$E(x, y) = \{i \in I : x(i) = y(i)\}.$$

We say that A is global if there is a topology τ on I such that

$$E(x, y) = \{i \in I : x(i) = y(i)\}.$$

We say that A is global if there is a topology τ on I such that $E(x, y) \in \tau$ for every $x, y \in A$

$$E(x, y) = \{i \in I : x(i) = y(i)\}.$$

We say that A is global if there is a topology τ on I such that $E(x, y) \in \tau$ for every $x, y \in A$ and the following property holds:

$$E(x, y) = \{i \in I : x(i) = y(i)\}.$$

We say that A is global if there is a topology τ on I such that $E(x, y) \in \tau$ for every $x, y \in A$ and the following property holds: (PP) (Patchwork Property)
$$E(x, y) = \{i \in I : x(i) = y(i)\}.$$

We say that A is global if there is a topology τ on I such that $E(x, y) \in \tau$ for every $x, y \in A$ and the following property holds: (PP) (Patchwork Property) For every $\{F_r : r \in R\} \subseteq \tau$ such that $\bigcup \{F_r : r \in R\} = I$, and $\{x_r : r \in R\} \subseteq A$ such that for every $r, s \in R, x_r$ and x_s match in $F_r \cap F_s$,

$$E(x, y) = \{i \in I : x(i) = y(i)\}.$$

We say that A is global if there is a topology τ on I such that $E(x, y) \in \tau$ for every $x, y \in A$ and the following property holds: (PP) (Patchwork Property) For every $\{F_r : r \in R\} \subseteq \tau$ such that $\bigcup \{F_r : r \in R\} = I$, and $\{x_r : r \in R\} \subseteq A$ such that for every $r, s \in R, x_r$ and x_s match in $F_r \cap F_s$, there exists $x \in A$ such that $x(i) = x_r(i)$, provided that $i \in F_r$ and $r \in R$.

$$E(x, y) = \{i \in I : x(i) = y(i)\}.$$

We say that A is global if there is a topology τ on I such that $E(x, y) \in \tau$ for every $x, y \in A$ and the following property holds: (PP) (Patchwork Property) For every $\{F_r : r \in R\} \subseteq \tau$ such that $\bigcup \{F_r : r \in R\} = I$, and $\{x_r : r \in R\} \subseteq A$ such that for every $r, s \in R, x_r$ and x_s match in $F_r \cap F_s$, there exists $x \in A$ such that $x(i) = x_r(i)$, provided that $i \in F_r$ and $r \in R$.

Let \mathcal{M} be a class of algebras and let us assume that A is a global subdirect product of $\{A_i : i \in I\}$.

$$E(x, y) = \{i \in I : x(i) = y(i)\}.$$

We say that A is global if there is a topology τ on I such that $E(x, y) \in \tau$ for every $x, y \in A$ and the following property holds: (PP) (Patchwork Property) For every $\{F_r : r \in R\} \subseteq \tau$ such that $\bigcup \{F_r : r \in R\} = I$, and $\{x_r : r \in R\} \subseteq A$ such that for every $r, s \in R, x_r$ and x_s match in $F_r \cap F_s$, there exists $x \in A$ such that $x(i) = x_r(i)$, provided that $i \in F_r$ and $r \in R$.

Let \mathcal{M} be a class of algebras and let us assume that A is a global subdirect product of $\{A_i : i \in I\}$. We say that A is a global subdirect product with factors in \mathcal{M}

$$E(x, y) = \{i \in I : x(i) = y(i)\}.$$

We say that A is global if there is a topology τ on I such that $E(x, y) \in \tau$ for every $x, y \in A$ and the following property holds: (PP) (Patchwork Property) For every $\{F_r : r \in R\} \subseteq \tau$ such that $\bigcup \{F_r : r \in R\} = I$, and $\{x_r : r \in R\} \subseteq A$ such that for every $r, s \in R, x_r$ and x_s match in $F_r \cap F_s$, there exists $x \in A$ such that $x(i) = x_r(i)$, provided that $i \in F_r$ and $r \in R$.

Let \mathcal{M} be a class of algebras and let us assume that A is a global subdirect product of $\{A_i : i \in I\}$. We say that A is a global subdirect product with factors in \mathcal{M} if $A_i \in \mathcal{M}$, for every $i \in I$.

Given two sets A_1, A_2 and a relation δ in $A_1 \times A_2$,

D. J. Vaggione, W. J. Zuluaga Botero Pierce stalks in preprimal varieties

Given two sets A_1, A_2 and a relation δ in $A_1 \times A_2$, we say that δ factorizes if there exist sets $\delta_1 \subseteq A_1 \times A_1$ and $\delta_2 \subseteq A_2 \times A_2$ such that $\delta = \delta_1 \times \delta_2$, where Given two sets A_1, A_2 and a relation δ in $A_1 \times A_2$, we say that δ factorizes if there exist sets $\delta_1 \subseteq A_1 \times A_1$ and $\delta_2 \subseteq A_2 \times A_2$ such that $\delta = \delta_1 \times \delta_2$, where

$$\delta_1 \times \delta_2 = \{((a, b), (c, d)) \mid (a, c) \in \delta_1, (b, d) \in \delta_2\}.$$

Given two sets A_1, A_2 and a relation δ in $A_1 \times A_2$, we say that δ factorizes if there exist sets $\delta_1 \subseteq A_1 \times A_1$ and $\delta_2 \subseteq A_2 \times A_2$ such that $\delta = \delta_1 \times \delta_2$, where

$$\delta_1 \times \delta_2 = \{((a,b),(c,d)) \mid (a,c) \in \delta_1, (b,d) \in \delta_2\}.$$

We say that a variety has the Fraser-Horn property (FHP) [4] if every congruence on a (finite) direct product of algebras factorizes. We say that a set of first order formulas $\Sigma(\vec{z})$ defines the property " $\vec{e} \in Z(A)$ " in **V**

Lemma

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$ with the FHP such that $\mathbb{P}_{u}(\mathcal{V}_{SI}) \subseteq \mathcal{V}_{DI}$. Then, the property " $\vec{e} \in Z(A)$ " is definable in \mathcal{V} with a single first order formula.

Lemma

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$ with the FHP such that $\mathbb{P}_{u}(\mathcal{V}_{SI}) \subseteq \mathcal{V}_{DI}$. Then, the property " $\vec{e} \in Z(A)$ " is definable in \mathcal{V} with a single first order formula.

Lemma

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$ with the FHP such that $\mathbb{P}_{u}(\mathcal{V}_{SI}) \subseteq \mathcal{V}_{DI}$. T.F.E:

Lemma

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$ with the FHP such that $\mathbb{P}_{u}(\mathcal{V}_{SI}) \subseteq \mathcal{V}_{DI}$. Then, the property " $\vec{e} \in Z(A)$ " is definable in \mathcal{V} with a single first order formula.

Lemma

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$ with the FHP such that $\mathbb{P}_{u}(\mathcal{V}_{SI}) \subseteq \mathcal{V}_{DI}$. T.F.E:

Lemma

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$ with the FHP such that $\mathbb{P}_{u}(\mathcal{V}_{SI}) \subseteq \mathcal{V}_{DI}$. Then, the property " $\vec{e} \in Z(A)$ " is definable in \mathcal{V} with a single first order formula.

Lemma

Let \mathcal{V} be a variety with $\vec{0}$ and $\vec{1}$ with the FHP such that $\mathbb{P}_{u}(\mathcal{V}_{SI}) \subseteq \mathcal{V}_{DI}$. T.F.E:

- The property "e ∈ Z(A)" is definable in V with a (∃ ∧ p = q)-formula.
- **2** The homomorphisms in \mathcal{V} preserve central elements.

Theorem

Let \mathcal{L} be a language of algebras with at least a constant symbol. Let \mathcal{V} be a variety of \mathcal{L} -algebras with the FHP. Suppose that there is a universal class $\mathcal{F} \subseteq \mathcal{V}_{DI}$ such that every member of \mathcal{V} is isomorphic to a global subdirect product with factors in \mathcal{F} . Then there exists a (n + 2)-ary term $u(x, y, \vec{z})$ and 0-ary terms $0_1, \ldots, 0_n, 1_1, \ldots, 1_n$ such that

Theorem

Let \mathcal{L} be a language of algebras with at least a constant symbol. Let \mathcal{V} be a variety of \mathcal{L} -algebras with the FHP. Suppose that there is a universal class $\mathcal{F} \subseteq \mathcal{V}_{DI}$ such that every member of \mathcal{V} is isomorphic to a global subdirect product with factors in \mathcal{F} . Then there exists a (n + 2)-ary term $u(x, y, \vec{z})$ and 0-ary terms $0_1, \ldots, 0_n, 1_1, \ldots, 1_n$ such that

$$\mathcal{V}\vDash u(x,y,\vec{0})=x\wedge u(x,y,\vec{1})=y$$

Preprimal Varieties

An algebra P is called preprimal if P is finite and Clo(P) is a maximal clone.

Preprimal Varieties

An algebra P is called preprimal if P is finite and Clo(P) is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra.

Rosenberg's classification [7]

O Permutations with cycles all the same prime length,

- Permutations with cycles all the same prime length,
- Proper subsets,

- Permutations with cycles all the same prime length,
- Proper subsets,
- Oprime-affine relations,

- Permutations with cycles all the same prime length,
- Proper subsets,
- Oprime-affine relations,
- Bounded partial orders,

- Permutations with cycles all the same prime length,
- Proper subsets,
- Oprime-affine relations,
- Bounded partial orders,
- In-adic relations,

- Permutations with cycles all the same prime length,
- Proper subsets,
- Oprime-affine relations,
- Bounded partial orders,
- In-adic relations,
- Central relations $h \ge 2$,

- Permutations with cycles all the same prime length,
- Proper subsets,
- Prime-affine relations,
- Bounded partial orders,
- In-adic relations,
- Central relations $h \ge 2$,
- Proper, nontrivial equivalence relations.

- Proper subsets,
- Prime-affine relations,
- Bounded partial orders,
- In-adic relations,
- Central relations $h \ge 2$,
- Proper, nontrivial equivalence relations.

- ② P/v/\$/v/\$/v/\$/v/\$(6],
- Prime-affine relations,
- Bounded partial orders,
- In-adic relations,
- Central relations $h \ge 2$,
- Proper, nontrivial equivalence relations.

- ② P/v/\$/v/\$/v/\$/v/\$(6],
- Interpretation of the second secon
- Bounded partial orders,
- In-adic relations,
- Central relations $h \ge 2$,
- Proper, nontrivial equivalence relations.

- ② P/#ø/###/\$#/ø\$e/ts [6],
- Interpretation of the second secon
- Bounded partial orders,
- In-adic relations,
- Central relations $h \ge 2$,
- Proper, nontrivial equivalence relations.

- ② P/v/\$/v/\$/v/\$/v/\$(6],
- Interpretation of the second secon
- Bounded partial orders,
- In-adic relations,
- Central relations $h \ge 2$,
- Proper, nontrivial equivalence relations.

- ② P/#ø/###/\$#/ø\$e/ts [6],
- Pythytetaffynet kenatuchta [6],
- Bounded partial orders,
- In-adic relations,
- Central relations $h \ge 2$,
- Proper, nontrivial equivalence relations.

Let P be a finite non trivial poset:

Let P be a finite non trivial poset:

• $\mathcal{V}(P_{\leq})$ is congruence distributive,
Pierce stalks: Bounded partial orders

Let P be a finite non trivial poset:

- $\mathcal{V}(P_{\leq})$ is congruence distributive,
- $\mathcal{V}(P_{\leq})$ is not congruence distributive.

Pierce stalks: Bounded partial orders

Let P be a finite non trivial poset:

- $\mathcal{V}(P_{\leq})$ is congruence distributive,
- $\mathcal{V}(P_{\leq})$ is not congruence distributive.

Let P be a finite non trivial poset:

- $\mathcal{V}(P_{\leq})$ is congruence distributive,
- $\mathcal{V}(P_{\leq})$ is not congruence distributive.

Proposition

There are Pierce stalks in $\mathcal{V}(P_{\leq})$ which are not subdirectly irreducible.

Let P be a finite non trivial poset:

- $\mathcal{V}(P_{\leq})$ is congruence distributive,
- $\mathcal{V}(P_{\leq})$ is not congruence distributive.

Proposition

There are Pierce stalks in $\mathcal{V}(P_{\leq})$ which are not subdirectly irreducible. If $\mathcal{V}(P_{\leq})$ is congruence distributive,

Let P be a finite non trivial poset:

- $\mathcal{V}(P_{\leq})$ is congruence distributive,
- $\mathcal{V}(P_{\leq})$ is not congruence distributive.

Proposition

There are Pierce stalks in $\mathcal{V}(P_{\leq})$ which are not subdirectly irreducible. If $\mathcal{V}(P_{\leq})$ is congruence distributive, every Pierce stalk is directly indecomposable.

An h-ary relation σ on a finite set P is central if:

D. J. Vaggione, W. J. Zuluaga Botero Pierce stalks in preprimal varieties

An h-ary relation σ on afinite set P is central if:

For all ā ∈ σ, if π is a permutation of {1,..., h}, then (a_{π(1)},..., a_{π(h)}) ∈ σ,

An h-ary relation σ on afinite set P is central if:

• For all $\bar{a} \in \sigma$, if π is a permutation of $\{1, \ldots, h\}$, then $(a_{\pi(1)}, \ldots, a_{\pi(h)}) \in \sigma$, (i.e. totally symmetric)

- For all ā ∈ σ, if π is a permutation of {1,..., h}, then (a_{π(1)},..., a_{π(h)}) ∈ σ, (i.e. totally symmetric)
- Sor all ā ∈ P^h with at least two of the a_i equal, we have that ā ∈ σ,

- For all $\bar{a} \in \sigma$, if π is a permutation of $\{1, \ldots, h\}$, then $(a_{\pi(1)}, \ldots, a_{\pi(h)}) \in \sigma$, (i.e. totally symmetric)
- Sor all ā ∈ P^h with at least two of the a_i equal, we have that ā ∈ σ, (i.e. totally reflexive)

- For all $\bar{a} \in \sigma$, if π is a permutation of $\{1, \ldots, h\}$, then $(a_{\pi(1)}, \ldots, a_{\pi(h)}) \in \sigma$, (i.e. totally symmetric)
- Sor all ā ∈ P^h with at least two of the a_i equal, we have that ā ∈ σ, (i.e. totally reflexive)
- **3** There is an a_1 such that for all a_2, \ldots, a_h in P we have $\bar{a} \in \sigma$,

- For all $\bar{a} \in \sigma$, if π is a permutation of $\{1, \ldots, h\}$, then $(a_{\pi(1)}, \ldots, a_{\pi(h)}) \in \sigma$, (i.e. totally symmetric)
- Sor all ā ∈ P^h with at least two of the a_i equal, we have that ā ∈ σ, (i.e. totally reflexive)
- There is an a₁ such that for all a₂,..., a_h in P we have ā ∈ σ,
 σ ≠ P^h.

Let σ be a 2-ary central relation on a set P.

Let σ be a 2-ary central relation on a set *P*. Every Pierce stalk in $\mathbb{V}(P_{\sigma})$ is directly indecomposable.

Let σ be a 2-ary central relation on a set P. Every Pierce stalk in $\mathbb{V}(P_{\sigma})$ is directly indecomposable. There are Pierce stalks in $\mathbb{V}(P_{\sigma})$ which are not subdirectly irreducible.

Let σ be a 2-ary central relation on a set P. Every Pierce stalk in $\mathbb{V}(P_{\sigma})$ is directly indecomposable. There are Pierce stalks in $\mathbb{V}(P_{\sigma})$ which are not subdirectly irreducible.

Proposition

Let σ be a h-ary central relation on P, with $h \ge 3$.

Let σ be a 2-ary central relation on a set P. Every Pierce stalk in $\mathbb{V}(P_{\sigma})$ is directly indecomposable. There are Pierce stalks in $\mathbb{V}(P_{\sigma})$ which are not subdirectly irreducible.

Proposition

Let σ be a h-ary central relation on P, with $h \ge 3$. There is no universal class $\mathcal{F} \subseteq \mathbb{V}(P_{\sigma})_{DI}$ such that every member of $\mathbb{V}(P_{\sigma})$ is isomorphic to a global subdirect product with factors in \mathcal{F} .

Let σ be a 2-ary central relation on a set P. Every Pierce stalk in $\mathbb{V}(P_{\sigma})$ is directly indecomposable. There are Pierce stalks in $\mathbb{V}(P_{\sigma})$ which are not subdirectly irreducible.

Proposition

Let σ be a h-ary central relation on P, with $h \ge 3$. There is no universal class $\mathcal{F} \subseteq \mathbb{V}(P_{\sigma})_{DI}$ such that every member of $\mathbb{V}(P_{\sigma})$ is isomorphic to a global subdirect product with factors in \mathcal{F} . There are Pierce stalks in $\mathbb{V}(P_{\sigma})$ which are not directly indecomposable.

Pierce stalks: Proper equivalence relations

Proposition

Let σ be a non trivial proper equivalence relation on a finite set P.

Let σ be a non trivial proper equivalence relation on a finite set P. Every Pierce stalk in $\mathbb{V}(P_{\sigma})$ is directly indecomposable.

Let σ be a non trivial proper equivalence relation on a finite set P. Every Pierce stalk in $\mathbb{V}(P_{\sigma})$ is directly indecomposable. There are Pierce stalks in $\mathbb{V}(P_{\sigma})$ which are not subdirectly irreducible.

References I

D. Bigelow and S. Burris, Boolean algebras of factor congruences, Acta Sci. Math. (Szeged) 54:1-2(1990).

S. Comer, Representations by algebras of sections over Boolean spaces, Pacific Journal of Mathematics 38 (1971), no. 1, 29–38.

- 🛸 B. A. Davey, *m-Stone lattices*, Can. J. Math., Vol. XXIV, No. 6, (1972), 1027-1032.
- 📎 G. A. Fraser & A. Horn, Congruence relations in direct products. Proc. Amer. Math. 26, 390-394, 1970.

嗪 K. Keimel, Darstellung von Halbgruppen und universellen Algebren durch Schnitte in Garben; bireguläre Halbgruppen, Math. Nachrichten 45 (1970), 81-96.

A. Knoebel, Sheaves of algebras over Boolean spaces, Birkhauser, (2012).

References II

- 🛸 I. Rosenberg, Uber die funktionale Vollstandigkeit in den mehrwertigen Logiken, Rozpr. CSAV Rada Mat. Pfir. Ved, 80 (1970), 3-93.
- 📎 P. Sanchez Terraf and D. J. Vaggione, Varieties with definable factor congruences. Trans. Amer. Math. Soc. 361, 50615088, 2009.
- D. J. Vaggione, Varieties in which the Pierce stalks are directly indecomposable, Journal of Algebra 184 (1996), 424-434.
- D. J. Vaggione, Central elements in varieties with the Fraser-Horn property, Advances in Mathematics 148, 193-202. 1999.
- 📎 D. J. Vaggione, *Varieties of shells,* Algebra Universalis, **36** (1996) 483-487.