Pierce stalks in preprimal varieties

D. J. Vaggione ${ }^{1}$ W. J. Zuluaga Botero ${ }^{2}$

${ }^{1}$ Universidad Nacional de Córdoba
Córdoba, Argentina
${ }^{2}$ Universidad Nacional del Centro de la Provincia de Buenos Aires
Tandil, Argentina
TACL 2019
Nice, June 2019

Preliminaries

Let V be a variety (algebraic):

Preliminaries

Let \mathbf{V} be a variety (algebraic):

- V is a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ if there are 0 -ary terms $0_{1}, \ldots, 0_{n}$, $1_{1}, \ldots, 1_{n}$ such that $\mathbf{V} \models \overrightarrow{0} \approx \overrightarrow{1} \rightarrow x \approx y$, where $\overrightarrow{0}=\left(0_{1}, \ldots, 0_{n}\right)$ and $\overrightarrow{1}=\left(1_{1}, \ldots, 1_{n}\right)$.

Preliminaries

Let V be a variety (algebraic):

- \mathbf{V} is a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ if there are 0 -ary terms $0_{1}, \ldots, 0_{n}$, $1_{1}, \ldots, 1_{n}$ such that $\mathbf{V} \models \overrightarrow{0} \approx \overrightarrow{1} \rightarrow x \approx y$, where $\overrightarrow{0}=\left(0_{1}, \ldots, 0_{n}\right)$ and $\overrightarrow{1}=\left(1_{1}, \ldots, 1_{n}\right)$.
- If $\vec{a} \in A^{n}$ and $\vec{b} \in B^{n}$, we write $[\vec{a}, \vec{b}]$ for the n-uple $\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right) \in(A \times B)^{n}$.

Preliminaries

Let V be a variety (algebraic):

- \mathbf{V} is a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ if there are 0 -ary terms $0_{1}, \ldots, 0_{n}$, $1_{1}, \ldots, 1_{n}$ such that $\mathbf{V} \models \overrightarrow{0} \approx \overrightarrow{1} \rightarrow x \approx y$, where $\overrightarrow{0}=\left(0_{1}, \ldots, 0_{n}\right)$ and $\overrightarrow{1}=\left(1_{1}, \ldots, 1_{n}\right)$.
- If $\vec{a} \in A^{n}$ and $\vec{b} \in B^{n}$, we write $[\vec{a}, \vec{b}]$ for the n-uple $\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right) \in(A \times B)^{n}$.
- If $A \in \mathbf{V}$ then we say that $\vec{e}=\left(e_{1}, \ldots, e_{n}\right) \in A^{n}$ is a central element of A if there exists an isomorphism $\tau: A \rightarrow A_{1} \times A_{2}$, such that $\tau(\vec{e})=[\overrightarrow{0}, \overrightarrow{1}]$.

Preliminaries

Let V be a variety (algebraic):

- \mathbf{V} is a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ if there are 0 -ary terms $0_{1}, \ldots, 0_{n}$, $1_{1}, \ldots, 1_{n}$ such that $\mathbf{V} \models \overrightarrow{0} \approx \overrightarrow{1} \rightarrow x \approx y$, where $\overrightarrow{0}=\left(0_{1}, \ldots, 0_{n}\right)$ and $\overrightarrow{1}=\left(1_{1}, \ldots, 1_{n}\right)$.
- If $\vec{a} \in A^{n}$ and $\vec{b} \in B^{n}$, we write $[\vec{a}, \vec{b}]$ for the n-uple $\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right) \in(A \times B)^{n}$.
- If $A \in \mathbf{V}$ then we say that $\vec{e}=\left(e_{1}, \ldots, e_{n}\right) \in A^{n}$ is a central element of A if there exists an isomorphism $\tau: A \rightarrow A_{1} \times A_{2}$, such that $\tau(\vec{e})=[\overrightarrow{0}, \overrightarrow{1}]$.
- We say that \vec{e} and \vec{f} are a pair of complementary central elements of A if there exists an isomorphism $\tau: A \rightarrow A_{1} \times A_{2}$ such that $\tau(\vec{e})=[\overrightarrow{0}, \overrightarrow{1}]$ and $\tau(\vec{f})=[\overrightarrow{1}, \overrightarrow{0}]$.

Preliminaries

Let V be a variety (algebraic):

- \mathbf{V} is a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ if there are 0 -ary terms $0_{1}, \ldots, 0_{n}$, $1_{1}, \ldots, 1_{n}$ such that $\mathbf{V} \models \overrightarrow{0} \approx \overrightarrow{1} \rightarrow x \approx y$, where $\overrightarrow{0}=\left(0_{1}, \ldots, 0_{n}\right)$ and $\overrightarrow{1}=\left(1_{1}, \ldots, 1_{n}\right)$.
- If $\vec{a} \in A^{n}$ and $\vec{b} \in B^{n}$, we write $[\vec{a}, \vec{b}]$ for the n-uple $\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right) \in(A \times B)^{n}$.
- If $A \in \mathbf{V}$ then we say that $\vec{e}=\left(e_{1}, \ldots, e_{n}\right) \in A^{n}$ is a central element of A if there exists an isomorphism $\tau: A \rightarrow A_{1} \times A_{2}$, such that $\tau(\vec{e})=[\overrightarrow{0}, \overrightarrow{1}]$.
- We say that \vec{e} and \vec{f} are a pair of complementary central elements of A if there exists an isomorphism $\tau: A \rightarrow A_{1} \times A_{2}$ such that $\tau(\vec{e})=[\overrightarrow{0}, \overrightarrow{1}]$ and $\tau(\vec{f})=[\overrightarrow{1}, \overrightarrow{0}]$.
- A pair of congruences (θ, δ) of an algebra A is a pair of complementary factor congruences of A if $\theta \cap \delta=\Delta$ and $\theta \circ \delta=\nabla$.
- A pair of congruences (θ, δ) of an algebra A is a pair of complementary factor congruences of A if $\theta \cap \delta=\Delta$ and $\theta \circ \delta=\nabla$.

Theorem ([8])

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$.

- A pair of congruences (θ, δ) of an algebra A is a pair of complementary factor congruences of A if $\theta \cap \delta=\Delta$ and $\theta \circ \delta=\nabla$.

Theorem ([8])

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$. T.F.E:

- A pair of congruences (θ, δ) of an algebra A is a pair of complementary factor congruences of A if $\theta \cap \delta=\Delta$ and $\theta \circ \delta=\nabla$.

Theorem ([8])

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$. T.F.E:
(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that, for every $i=1, \ldots, n$

- A pair of congruences (θ, δ) of an algebra A is a pair of complementary factor congruences of A if $\theta \cap \delta=\Delta$ and $\theta \circ \delta=\nabla$.

Theorem ([8])

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$. T.F.E:
(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that, for every $i=1, \ldots, n$

$$
\left(e_{i}, 0_{i}\right) \in \theta \text { and }\left(e_{i}, 1_{i}\right) \in \delta \quad \text { and } \quad\left(f_{i}, 0_{i}\right) \in \delta \text { and }\left(f_{i}, 1_{i}\right) \in \theta
$$

- A pair of congruences (θ, δ) of an algebra A is a pair of complementary factor congruences of A if $\theta \cap \delta=\Delta$ and $\theta \circ \delta=\nabla$.

Theorem ([8])

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$. T.F.E:
(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that, for every $i=1, \ldots, n$

$$
\left(e_{i}, 0_{i}\right) \in \theta \text { and }\left(e_{i}, 1_{i}\right) \in \delta \quad \text { and } \quad\left(f_{i}, 0_{i}\right) \in \delta \text { and }\left(f_{i}, 1_{i}\right) \in \theta
$$

(DFC) \boldsymbol{V} has definable factor congruences; i.e, there is a first order formula $\psi(\vec{z}, x, y)$ such that for every $A, B \in V$

- A pair of congruences (θ, δ) of an algebra A is a pair of complementary factor congruences of A if $\theta \cap \delta=\Delta$ and $\theta \circ \delta=\nabla$.

Theorem ([8])

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$. T.F.E:
(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that, for every $i=1, \ldots, n$

$$
\left(e_{i}, 0_{i}\right) \in \theta \text { and }\left(e_{i}, 1_{i}\right) \in \delta \quad \text { and } \quad\left(f_{i}, 0_{i}\right) \in \delta \text { and }\left(f_{i}, 1_{i}\right) \in \theta
$$

(DFC) \boldsymbol{V} has definable factor congruences; i.e, there is a first order formula $\psi(\vec{z}, x, y)$ such that for every $A, B \in \boldsymbol{V}$

$$
A \times B \models \psi\left([\overrightarrow{0}, \overrightarrow{1}],(a, b),\left(a^{\prime}, b^{\prime}\right)\right) \text { iff } a=a^{\prime}
$$

- A pair of congruences (θ, δ) of an algebra A is a pair of complementary factor congruences of A if $\theta \cap \delta=\Delta$ and $\theta \circ \delta=\nabla$.

Theorem ([8])

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$. T.F.E:
(DP) For every pair (\vec{e}, \vec{f}) of complementary central elements, there is a unique pair (θ, δ) of complementary factor congruences such that, for every $i=1, \ldots, n$

$$
\left(e_{i}, 0_{i}\right) \in \theta \text { and }\left(e_{i}, 1_{i}\right) \in \delta \quad \text { and } \quad\left(f_{i}, 0_{i}\right) \in \delta \text { and }\left(f_{i}, 1_{i}\right) \in \theta
$$

(DFC) \boldsymbol{V} has definable factor congruences; i.e, there is a first order formula $\psi(\vec{z}, x, y)$ such that for every $A, B \in V$

$$
A \times B \models \psi\left([\overrightarrow{0}, \overrightarrow{1}],(a, b),\left(a^{\prime}, b^{\prime}\right)\right) \text { iff } a=a^{\prime}
$$

(BFC) \boldsymbol{V} has Boolean factor congruences, i.e., the set of factor congruences of any algebra in \mathcal{V} is a Boolean sublattice of its congruence lattice.
D. J. Vaggione, W. J. Zuluaga Botero Pierce stalks in preprimal varieties

Generalities about Varieties with BFC

Let \mathbf{V} a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ and suppose that has BFC.

Generalities about Varieties with BFC

Let \mathbf{V} a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ and suppose that has BFC.

- For every $A \in \mathbf{V}$, we write $Z(A)$ to denote the set of central elements of A.

Generalities about Varieties with BFC

Let V a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ and suppose that has BFC.

- For every $A \in \mathrm{~V}$, we write $Z(A)$ to denote the set of central elements of A.
- $\vec{e} \diamond_{A} \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.

Generalities about Varieties with BFC

Let \mathbf{V} a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ and suppose that has BFC.

- For every $A \in \mathrm{~V}$, we write $Z(A)$ to denote the set of central elements of A.
- $\vec{e} \diamond_{A} \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta_{\overrightarrow{0}, \vec{e}}^{A}$ and $\theta_{\overrightarrow{1}, \vec{e}}^{A}$ for the unique pair of complementary factor congruences satisfying

Generalities about Varieties with BFC

Let \mathbf{V} a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ and suppose that has BFC.

- For every $A \in \mathrm{~V}$, we write $Z(A)$ to denote the set of central elements of A.
- $\vec{e} \diamond_{A} \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta_{\overrightarrow{0}, \vec{e}}^{A}$ and $\theta_{\overrightarrow{1}, \vec{e}}^{A}$ for the unique pair of complementary factor congruences satisfying $\vec{e} \equiv \overrightarrow{0}\left(\theta_{\overrightarrow{0}, \vec{e}}^{A}\right)$

Generalities about Varieties with BFC

Let \mathbf{V} a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ and suppose that has BFC.

- For every $A \in \mathrm{~V}$, we write $Z(A)$ to denote the set of central elements of A.
- $\vec{e} \diamond_{A} \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta_{\overrightarrow{0}, \vec{e}}^{A}$ and $\theta_{\overrightarrow{1}, \vec{e}}^{A}$ for the unique pair of complementary factor congruences satisfying $\vec{e} \equiv \overrightarrow{0}\left(\theta_{\overrightarrow{0}, \vec{e}}^{A}\right)$ and

Generalities about Varieties with BFC

Let \mathbf{V} a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ and suppose that has BFC.

- For every $A \in \mathbf{V}$, we write $Z(A)$ to denote the set of central elements of A.
- $\vec{e} \diamond_{A} \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta_{\overrightarrow{0}, \vec{e}}^{A}$ and $\theta_{\overrightarrow{\vec{~}}, \vec{e}}^{A}$ for the unique pair of complementary factor congruences satisfying $\vec{e} \equiv \overrightarrow{0}\left(\theta_{\overrightarrow{0}, \vec{e}}^{A}\right)$ and $\vec{e} \equiv \overrightarrow{1}\left(\theta_{\overrightarrow{1}, \vec{e}}^{A}\right)$.

Generalities about Varieties with BFC

Let \mathbf{V} a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ and suppose that has BFC.

- For every $A \in \mathbf{V}$, we write $Z(A)$ to denote the set of central elements of A.
- $\vec{e} \diamond_{A} \vec{f}$ to denote that \vec{e} and \vec{f} are complementary central elements of A.
- If \vec{e} is a central element of A we write $\theta_{\overrightarrow{0}, \vec{e}}^{A}$ and $\theta_{\overrightarrow{\vec{~}}, \vec{e}}^{A}$ for the unique pair of complementary factor congruences satisfying $\vec{e} \equiv \overrightarrow{0}\left(\theta_{\overrightarrow{0}, \vec{e}}^{A}\right)$ and $\vec{e} \equiv \overrightarrow{1}\left(\theta_{\overrightarrow{1}, \vec{e}}^{A}\right)$.

Theorem

Let V a variety with BFC. The map $g: Z(A) \rightarrow F C(A)$, defined by $g(e)=\theta_{\overrightarrow{0}, \vec{e}}^{A}$ is a bijection and its inverse $h: F C(A) \rightarrow Z(A)$ is defined by $h(\theta)=\vec{e}$, where \vec{e} is the only $\vec{e} \in A^{n}$ such that $\vec{e} \equiv \overrightarrow{0}(\theta)$ and $\vec{e} \equiv \overrightarrow{1}\left(\theta^{*}\right)$.

Theorem

Let V a variety with BFC. The map $g: Z(A) \rightarrow F C(A)$, defined by $g(e)=\theta_{\overrightarrow{0}, \vec{e}}^{A}$ is a bijection and its inverse $h: F C(A) \rightarrow Z(A)$ is defined by $h(\theta)=\vec{e}$, where \vec{e} is the only $\vec{e} \in A^{n}$ such that $\vec{e} \equiv \overrightarrow{0}(\theta)$ and $\vec{e} \equiv \overrightarrow{1}\left(\theta^{*}\right)$.

This result allows us to define some operations in $Z(A)$ as follows:

Theorem

Let V a variety with BFC. The map $g: Z(A) \rightarrow F C(A)$, defined by $g(e)=\theta_{\overrightarrow{0}, \vec{e}}^{A}$ is a bijection and its inverse $h: F C(A) \rightarrow Z(A)$ is defined by $h(\theta)=\vec{e}$, where \vec{e} is the only $\vec{e} \in A^{n}$ such that $\vec{e} \equiv \overrightarrow{0}(\theta)$ and $\vec{e} \equiv \overrightarrow{1}\left(\theta^{*}\right)$.

This result allows us to define some operations in $Z(A)$ as follows:

- The complement $\vec{e}^{c_{A}}$ of \vec{e}, is the only solution to the equations $\vec{z} \equiv \overrightarrow{1}\left(\theta_{\overrightarrow{0}, \vec{e}}\right)$ and $\vec{z} \equiv \overrightarrow{0}\left(\theta_{\overrightarrow{1}, \vec{e}}\right)$.

Theorem

Let V a variety with BFC. The map $g: Z(A) \rightarrow F C(A)$, defined by $g(e)=\theta_{\hat{0}, \vec{e}}^{A}$ is a bijection and its inverse $h: F C(A) \rightarrow Z(A)$ is defined by $h(\theta)=\vec{e}$, where \vec{e} is the only $\vec{e} \in A^{n}$ such that $\vec{e} \equiv \overrightarrow{0}(\theta)$ and $\vec{e} \equiv \overrightarrow{1}\left(\theta^{*}\right)$.

This result allows us to define some operations in $Z(A)$ as follows:

- The complement $\vec{e}^{c_{A}}$ of \vec{e}, is the only solution to the equations $\vec{z} \equiv \overrightarrow{1}\left(\theta_{\overrightarrow{0}, \vec{e}}\right)$ and $\vec{z} \equiv \overrightarrow{0}\left(\theta_{\overrightarrow{1}, \vec{e}}\right)$.
- The infimum $\vec{e} \wedge_{A} \vec{f}$ is the only solution to the equations

$$
\vec{z} \equiv \overrightarrow{0}\left(\theta_{\overrightarrow{0}, \vec{e}} \cap \theta_{\overrightarrow{0}, \vec{f}}\right) \text { and } \vec{z} \equiv \overrightarrow{1}\left(\theta_{\overrightarrow{1}, \vec{e}} \vee \theta_{\overrightarrow{1}, \vec{f}}\right)
$$

Theorem

Let V a variety with BFC. The map $g: Z(A) \rightarrow F C(A)$, defined by $g(e)=\theta_{\hat{0}, \vec{e}}^{A}$ is a bijection and its inverse $h: F C(A) \rightarrow Z(A)$ is defined by $h(\theta)=\vec{e}$, where \vec{e} is the only $\vec{e} \in A^{n}$ such that $\vec{e} \equiv \overrightarrow{0}(\theta)$ and $\vec{e} \equiv \overrightarrow{1}\left(\theta^{*}\right)$.

This result allows us to define some operations in $Z(A)$ as follows:

- The complement $\vec{e}^{c_{A}}$ of \vec{e}, is the only solution to the equations

$$
\vec{z} \equiv \overrightarrow{1}\left(\theta_{\overrightarrow{0}, \vec{e}}\right) \text { and } \vec{z} \equiv \overrightarrow{0}\left(\theta_{\overrightarrow{1}, \vec{e}}\right) .
$$

- The infimum $\vec{e} \wedge_{A} \vec{f}$ is the only solution to the equations

$$
\vec{z} \equiv \overrightarrow{0}\left(\theta_{\overrightarrow{0}, \vec{e}} \cap \theta_{\overrightarrow{0}, \vec{f}}\right) \text { and } \vec{z} \equiv \overrightarrow{1}\left(\theta_{\overrightarrow{1}, \vec{e}} \vee \theta_{\overrightarrow{1}, \vec{f}}\right)
$$

- The supremum $\vec{e} \vee_{A} \vec{f}$ is the only solution to the equations

$$
\vec{z} \equiv \overrightarrow{0}\left(\theta_{\overrightarrow{0}, \vec{e}} \vee \theta_{\overrightarrow{0}, \vec{f}}\right) \text { and } \vec{z} \equiv \overrightarrow{1}\left(\theta_{\overrightarrow{1}, \vec{e}} \cap \theta_{\overrightarrow{1}, \vec{f}}\right)
$$

Theorem

Let V a variety with BFC. The map $g: Z(A) \rightarrow F C(A)$, defined by $g(e)=\theta_{\overrightarrow{0}, \vec{e}}^{A}$ is a bijection and its inverse $h: F C(A) \rightarrow Z(A)$ is defined by $h(\theta)=\vec{e}$, where \vec{e} is the only $\vec{e} \in A^{n}$ such that $\vec{e} \equiv \overrightarrow{0}(\theta)$ and $\vec{e} \equiv \overrightarrow{1}\left(\theta^{*}\right)$.

This result allows us to define some operations in $Z(A)$ as follows:

- The complement $\vec{e}^{c_{A}}$ of \vec{e}, is the only solution to the equations

$$
\vec{z} \equiv \overrightarrow{1}\left(\theta_{\overrightarrow{0}, \vec{e}}\right) \text { and } \vec{z} \equiv \overrightarrow{0}\left(\theta_{\overrightarrow{1}, \vec{e}}\right) .
$$

- The infimum $\vec{e} \wedge_{A} \vec{f}$ is the only solution to the equations

$$
\vec{z} \equiv \overrightarrow{0}\left(\theta_{\overrightarrow{0}, \vec{e}} \cap \theta_{\overrightarrow{0}, \vec{f}}\right) \text { and } \vec{z} \equiv \overrightarrow{1}\left(\theta_{\overrightarrow{1}, \vec{e}} \vee \theta_{\overrightarrow{1}, \vec{f}}\right)
$$

- The supremum $\vec{e} \vee_{A} \vec{f}$ is the only solution to the equations

$$
\vec{z} \equiv \overrightarrow{0}\left(\theta_{\overrightarrow{0}, \vec{e}} \vee \theta_{\overrightarrow{0}, \vec{f}}\right) \text { and } \vec{z} \equiv \overrightarrow{1}\left(\theta_{\overrightarrow{1}, \vec{e}} \cap \theta_{\overrightarrow{1}, \vec{f}}\right)
$$

$\mathbf{Z}(A)=\left(Z(A), \vee_{A}, \wedge_{A},{ }^{C_{A}}, \overrightarrow{0}, \overrightarrow{1}\right)$ is a Boolean algebra which is isomorphic to $\left(F C(A), \vee, \cap,{ }^{*}, \Delta^{A}, \nabla^{A}\right)$.

Let A be a subdirect product of $\left\{A_{i}: i \in I\right\}$.

Let A be a subdirect product of $\left\{A_{i}: i \in I\right\}$. Given $x, y \in \prod\left\{A_{i}: i \in I\right\}$, the equalizer of x and y is the set

Let A be a subdirect product of $\left\{A_{i}: i \in I\right\}$. Given $x, y \in \prod\left\{A_{i}: i \in I\right\}$, the equalizer of x and y is the set

$$
E(x, y)=\{i \in I: x(i)=y(i)\}
$$

Let A be a subdirect product of $\left\{A_{i}: i \in I\right\}$. Given $x, y \in \prod\left\{A_{i}: i \in I\right\}$, the equalizer of x and y is the set

$$
E(x, y)=\{i \in I: x(i)=y(i)\}
$$

We say that A is global if there is a topology τ on $/$ such that

Let A be a subdirect product of $\left\{A_{i}: i \in I\right\}$. Given $x, y \in \prod\left\{A_{i}: i \in I\right\}$, the equalizer of x and y is the set

$$
E(x, y)=\{i \in I: x(i)=y(i)\}
$$

We say that A is global if there is a topology τ on I such that $E(x, y) \in \tau$ for every $x, y \in A$

Let A be a subdirect product of $\left\{A_{i}: i \in I\right\}$. Given $x, y \in \prod\left\{A_{i}: i \in I\right\}$, the equalizer of x and y is the set

$$
E(x, y)=\{i \in I: x(i)=y(i)\} .
$$

We say that A is global if there is a topology τ on I such that $E(x, y) \in \tau$ for every $x, y \in A$ and the following property holds:

Let A be a subdirect product of $\left\{A_{i}: i \in I\right\}$. Given $x, y \in \prod\left\{A_{i}: i \in I\right\}$, the equalizer of x and y is the set

$$
E(x, y)=\{i \in I: x(i)=y(i)\} .
$$

We say that A is global if there is a topology τ on I such that $E(x, y) \in \tau$ for every $x, y \in A$ and the following property holds: (PP) (Patchwork Property)

Let A be a subdirect product of $\left\{A_{i}: i \in I\right\}$. Given $x, y \in \prod\left\{A_{i}: i \in I\right\}$, the equalizer of x and y is the set

$$
E(x, y)=\{i \in I: x(i)=y(i)\} .
$$

We say that A is global if there is a topology τ on I such that $E(x, y) \in \tau$ for every $x, y \in A$ and the following property holds:
(PP) (Patchwork Property) For every $\left\{F_{r}: r \in R\right\} \subseteq \tau$ such that $\bigcup\left\{F_{r}: r \in R\right\}=I$, and $\left\{x_{r}: r \in R\right\} \subseteq A$ such that for every $r, s \in R, x_{r}$ and x_{s} match in $F_{r} \cap F_{s}$,

Let A be a subdirect product of $\left\{A_{i}: i \in I\right\}$. Given $x, y \in \prod\left\{A_{i}: i \in I\right\}$, the equalizer of x and y is the set

$$
E(x, y)=\{i \in I: x(i)=y(i)\} .
$$

We say that A is global if there is a topology τ on I such that $E(x, y) \in \tau$ for every $x, y \in A$ and the following property holds:
(PP) (Patchwork Property) For every $\left\{F_{r}: r \in R\right\} \subseteq \tau$ such that $\bigcup\left\{F_{r}: r \in R\right\}=I$, and $\left\{x_{r}: r \in R\right\} \subseteq A$ such that for every $r, s \in R, x_{r}$ and x_{s} match in $F_{r} \cap F_{s}$, there exists $x \in A$ such that $x(i)=x_{r}(i)$, provided that $i \in F_{r}$ and $r \in R$.

Let A be a subdirect product of $\left\{A_{i}: i \in I\right\}$. Given $x, y \in \prod\left\{A_{i}: i \in I\right\}$, the equalizer of x and y is the set

$$
E(x, y)=\{i \in I: x(i)=y(i)\} .
$$

We say that A is global if there is a topology τ on I such that $E(x, y) \in \tau$ for every $x, y \in A$ and the following property holds:
(PP) (Patchwork Property) For every $\left\{F_{r}: r \in R\right\} \subseteq \tau$ such that $\bigcup\left\{F_{r}: r \in R\right\}=I$, and $\left\{x_{r}: r \in R\right\} \subseteq A$ such that for every $r, s \in R, x_{r}$ and x_{s} match in $F_{r} \cap F_{s}$, there exists $x \in A$ such that $x(i)=x_{r}(i)$, provided that $i \in F_{r}$ and $r \in R$.
Let \mathcal{M} be a class of algebras and let us assume that A is a global subdirect product of $\left\{A_{i}: i \in I\right\}$.

Let A be a subdirect product of $\left\{A_{i}: i \in I\right\}$. Given $x, y \in \prod\left\{A_{i}: i \in I\right\}$, the equalizer of x and y is the set

$$
E(x, y)=\{i \in I: x(i)=y(i)\} .
$$

We say that A is global if there is a topology τ on I such that $E(x, y) \in \tau$ for every $x, y \in A$ and the following property holds:
(PP) (Patchwork Property) For every $\left\{F_{r}: r \in R\right\} \subseteq \tau$ such that $\bigcup\left\{F_{r}: r \in R\right\}=I$, and $\left\{x_{r}: r \in R\right\} \subseteq A$ such that for every $r, s \in R, x_{r}$ and x_{s} match in $F_{r} \cap F_{s}$, there exists $x \in A$ such that $x(i)=x_{r}(i)$, provided that $i \in F_{r}$ and $r \in R$.
Let \mathcal{M} be a class of algebras and let us assume that A is a global subdirect product of $\left\{A_{i}: i \in I\right\}$. We say that A is a global subdirect product with factors in \mathcal{M}

Let A be a subdirect product of $\left\{A_{i}: i \in I\right\}$. Given $x, y \in \prod\left\{A_{i}: i \in I\right\}$, the equalizer of x and y is the set

$$
E(x, y)=\{i \in I: x(i)=y(i)\} .
$$

We say that A is global if there is a topology τ on I such that $E(x, y) \in \tau$ for every $x, y \in A$ and the following property holds:
(PP) (Patchwork Property) For every $\left\{F_{r}: r \in R\right\} \subseteq \tau$ such that $\bigcup\left\{F_{r}: r \in R\right\}=I$, and $\left\{x_{r}: r \in R\right\} \subseteq A$ such that for every $r, s \in R, x_{r}$ and x_{s} match in $F_{r} \cap F_{s}$, there exists $x \in A$ such that $x(i)=x_{r}(i)$, provided that $i \in F_{r}$ and $r \in R$.
Let \mathcal{M} be a class of algebras and let us assume that A is a global subdirect product of $\left\{A_{i}: i \in I\right\}$. We say that A is a global subdirect product with factors in \mathcal{M} if $A_{i} \in \mathcal{M}$, for every $i \in I$.

The Fraser-Horn Property

Given two sets A_{1}, A_{2} and a relation δ in $A_{1} \times A_{2}$,

The Fraser-Horn Property

Given two sets A_{1}, A_{2} and a relation δ in $A_{1} \times A_{2}$, we say that δ factorizes if there exist sets $\delta_{1} \subseteq A_{1} \times A_{1}$ and $\delta_{2} \subseteq A_{2} \times A_{2}$ such that $\delta=\delta_{1} \times \delta_{2}$, where

The Fraser-Horn Property

Given two sets A_{1}, A_{2} and a relation δ in $A_{1} \times A_{2}$, we say that δ factorizes if there exist sets $\delta_{1} \subseteq A_{1} \times A_{1}$ and $\delta_{2} \subseteq A_{2} \times A_{2}$ such that $\delta=\delta_{1} \times \delta_{2}$, where

$$
\delta_{1} \times \delta_{2}=\left\{((a, b),(c, d)) \mid(a, c) \in \delta_{1},(b, d) \in \delta_{2}\right\} .
$$

The Fraser-Horn Property

Given two sets A_{1}, A_{2} and a relation δ in $A_{1} \times A_{2}$, we say that δ factorizes if there exist sets $\delta_{1} \subseteq A_{1} \times A_{1}$ and $\delta_{2} \subseteq A_{2} \times A_{2}$ such that $\delta=\delta_{1} \times \delta_{2}$, where

$$
\delta_{1} \times \delta_{2}=\left\{((a, b),(c, d)) \mid(a, c) \in \delta_{1},(b, d) \in \delta_{2}\right\} .
$$

We say that a variety has the Fraser-Horn property (FHP) [4] if every congruence on a (finite) direct product of algebras factorizes.

We say that a set of first order formulas $\Sigma(\vec{z})$ defines the property " $\vec{e} \in Z(A)$ " in V

We say that a set of first order formulas $\Sigma(\vec{z})$ defines the property " $\vec{e} \in Z(A)$ " in \mathbf{V} if for every $A \in \mathbf{V}$ and $\vec{e} \in A^{n}$ it follows that $\vec{e} \in Z(A)$ if and only if $A=\sigma[\vec{e}]$, for every $\sigma \in \Sigma$.

We say that a set of first order formulas $\Sigma(\vec{z})$ defines the property " $\vec{e} \in Z(A)$ " in \mathbf{V} if for every $A \in \mathbf{V}$ and $\vec{e} \in A^{n}$ it follows that $\vec{e} \in Z(A)$ if and only if $A=\sigma[\vec{e}]$, for every $\sigma \in \Sigma$.

Lemma

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ with the FHP such that $\mathbb{P}_{u}\left(\mathcal{V}_{S I}\right) \subseteq \mathcal{V}_{D I}$. Then, the property " $\vec{e} \in Z(A)$ " is definable in \mathcal{V} with a single first order formula.

We say that a set of first order formulas $\Sigma(\vec{z})$ defines the property " $\vec{e} \in Z(A)$ " in \mathbf{V} if for every $A \in \mathbf{V}$ and $\vec{e} \in A^{n}$ it follows that $\vec{e} \in Z(A)$ if and only if $A \models \sigma[\vec{e}]$, for every $\sigma \in \Sigma$.

Lemma

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ with the FHP such that $\mathbb{P}_{u}\left(\mathcal{V}_{S I}\right) \subseteq \mathcal{V}_{D I}$. Then, the property " $\vec{e} \in Z(A)$ " is definable in \mathcal{V} with a single first order formula.

Lemma

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ with the FHP such that $\mathbb{P}_{u}\left(\mathcal{V}_{S I}\right) \subseteq \mathcal{V}_{D I}$.T.F.E:

We say that a set of first order formulas $\Sigma(\vec{z})$ defines the property " $\vec{e} \in Z(A)$ " in \mathbf{V} if for every $A \in \mathbf{V}$ and $\vec{e} \in A^{n}$ it follows that $\vec{e} \in Z(A)$ if and only if $A \models \sigma[\vec{e}]$, for every $\sigma \in \Sigma$.

Lemma

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ with the FHP such that $\mathbb{P}_{u}\left(\mathcal{V}_{S I}\right) \subseteq \mathcal{V}_{D I}$. Then, the property " $\vec{e} \in Z(A)$ " is definable in \mathcal{V} with a single first order formula.

Lemma

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ with the FHP such that $\mathbb{P}_{u}\left(\mathcal{V}_{S I}\right) \subseteq \mathcal{V}_{D I}$.T.F.E:
(1) The property " $\vec{e} \in Z(A)$ " is definable in \mathcal{V} with a ($\exists \wedge p=q$)-formula.

We say that a set of first order formulas $\Sigma(\vec{z})$ defines the property " $\vec{e} \in Z(A)$ " in \mathbf{V} if for every $A \in \mathbf{V}$ and $\vec{e} \in A^{n}$ it follows that $\vec{e} \in Z(A)$ if and only if $A \models \sigma[\vec{e}]$, for every $\sigma \in \Sigma$.

Lemma

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ with the FHP such that $\mathbb{P}_{u}\left(\mathcal{V}_{S I}\right) \subseteq \mathcal{V}_{D I}$. Then, the property " $\vec{e} \in Z(A)$ " is definable in \mathcal{V} with a single first order formula.

Lemma

Let \mathcal{V} be a variety with $\overrightarrow{0}$ and $\overrightarrow{1}$ with the FHP such that $\mathbb{P}_{u}\left(\mathcal{V}_{S I}\right) \subseteq \mathcal{V}_{D I}$. T.F.E:
(1) The property " $\vec{e} \in Z(A)$ " is definable in \mathcal{V} with a ($\exists \wedge p=q$)-formula.
(2) The homomorphisms in \mathcal{V} preserve central elements.

Theorem

Let \mathcal{L} be a language of algebras with at least a constant symbol. Let \mathcal{V} be a variety of \mathcal{L}-algebras with the FHP. Suppose that there is a universal class $\mathcal{F} \subseteq \mathcal{V}_{D I}$ such that every member of \mathcal{V} is isomorphic to a global subdirect product with factors in \mathcal{F}. Then there exists a $(n+2)$-ary term $u(x, y, \vec{z})$ and 0 -ary terms $0_{1}, \ldots, 0_{n}, 1_{1}, \ldots, 1_{n}$ such that

Theorem

Let \mathcal{L} be a language of algebras with at least a constant symbol. Let \mathcal{V} be a variety of \mathcal{L}-algebras with the FHP. Suppose that there is a universal class $\mathcal{F} \subseteq \mathcal{V}_{D I}$ such that every member of \mathcal{V} is isomorphic to a global subdirect product with factors in \mathcal{F}. Then there exists a $(n+2)$-ary term $u(x, y, \vec{z})$ and 0 -ary terms $0_{1}, \ldots, 0_{n}, 1_{1}, \ldots, 1_{n}$ such that

$$
\mathcal{V} \vDash u(x, y, \overrightarrow{0})=x \wedge u(x, y, \overrightarrow{1})=y
$$

Preprimal Varieties

An algebra P is called preprimal if P is finite and $\mathrm{Clo}(P)$ is a maximal clone.

Preprimal Varieties

An algebra P is called preprimal if P is finite and $\mathrm{Clo}(P)$ is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra.

Preprimal Varieties

An algebra P is called preprimal if P is finite and $\mathrm{Clo}(P)$ is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra.

Rosenberg's classification [7]

Preprimal Varieties

An algebra P is called preprimal if P is finite and $\mathrm{Clo}(P)$ is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra.

Rosenberg's classification [7]

(1) Permutations with cycles all the same prime length,

Preprimal Varieties

An algebra P is called preprimal if P is finite and $\mathrm{Clo}(P)$ is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra.

Rosenberg's classification [7]
(1) Permutations with cycles all the same prime length,
(2) Proper subsets,

Preprimal Varieties

An algebra P is called preprimal if P is finite and $\mathrm{Clo}(P)$ is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra.

Rosenberg's classification [7]

(1) Permutations with cycles all the same prime length,
(2) Proper subsets,
(3) Prime-affine relations,

Preprimal Varieties

An algebra P is called preprimal if P is finite and $\mathrm{Clo}(P)$ is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra.

Rosenberg's classification [7]
(1) Permutations with cycles all the same prime length,
(2) Proper subsets,
(3) Prime-affine relations,
(3) Bounded partial orders,

Preprimal Varieties

An algebra P is called preprimal if P is finite and $\mathrm{Clo}(P)$ is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra.

Rosenberg's classification [7]
(1) Permutations with cycles all the same prime length,
(2) Proper subsets,
(3) Prime-affine relations,
(9) Bounded partial orders,
(5) h-adic relations,

Preprimal Varieties

An algebra P is called preprimal if P is finite and $\mathrm{Clo}(P)$ is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra.

Rosenberg's classification [7]
(1) Permutations with cycles all the same prime length,
(2) Proper subsets,
(3) Prime-affine relations,
(9) Bounded partial orders,
(5) h-adic relations,
(c) Central relations $h \geq 2$,

Preprimal Varieties

An algebra P is called preprimal if P is finite and $\mathrm{Clo}(P)$ is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra.

Rosenberg's classification [7]

(1) Permutations with cycles all the same prime length,
(2) Proper subsets,
(3) Prime-affine relations,
(9) Bounded partial orders,
(5) h-adic relations,
(Central relations $h \geq 2$,
((Proper, nontrivial equivalence relations.

Preprimal Varieties

An algebra P is called preprimal if P is finite and $\mathrm{Clo}(P)$ is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra.

Rosenberg's classification [7]

(2) Proper subsets,
(3) Prime-affine relations,
(9) Bounded partial orders,
(5) h-adic relations,
(Central relations $h \geq 2$,
(3) Proper, nontrivial equivalence relations.

Preprimal Varieties

An algebra P is called preprimal if P is finite and $\mathrm{Clo}(P)$ is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra.

Rosenberg's classification [7]

(3) Prime-affine relations,
(9) Bounded partial orders,
(5) h-adic relations,
(Central relations $h \geq 2$,
(3) Proper, nontrivial equivalence relations.

Preprimal Varieties

An algebra P is called preprimal if P is finite and $\mathrm{Clo}(P)$ is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra.

Rosenberg's classification [7]

(9) Bounded partial orders,
(5) h-adic relations,
(Central relations $h \geq 2$,
(3) Proper, nontrivial equivalence relations.

Preprimal Varieties

An algebra P is called preprimal if P is finite and $\mathrm{Clo}(P)$ is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra.

Rosenberg's classification [7]

(9) Bounded partial orders,
(5) h-adic relations,
(Central relations $h \geq 2$,
(3) Proper, nontrivial equivalence relations.

Preprimal Varieties

An algebra P is called preprimal if P is finite and $\mathrm{Clo}(P)$ is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra.

Rosenberg's classification [7]

(9) Bounded partial orders,
(5) h-adic relations,
(- Central relations $h \geq 2$,
(3) Proper, nontrivial equivalence relations.

Preprimal Varieties

An algebra P is called preprimal if P is finite and $\mathrm{Clo}(P)$ is a maximal clone. A preprimal variety is a variety generated by a preprimal algebra.

Rosenberg's classification [7]

(9) Bounded partial orders,
(5) h-adic relations,
(- Central relations $h \geq 2$,
(3) Proper, nontrivial equivalence relations.

Pierce stalks: Bounded partial orders

Let P be a finite non trivial poset:

Pierce stalks: Bounded partial orders

Let P be a finite non trivial poset:

- $\mathcal{V}\left(P_{\leq}\right)$is congruence distributive,

Pierce stalks: Bounded partial orders

Let P be a finite non trivial poset:

- $\mathcal{V}\left(P_{\leq}\right)$is congruence distributive,
- $\mathcal{V}\left(P_{\leq}\right)$is not congruence distributive.

Pierce stalks: Bounded partial orders

Let P be a finite non trivial poset:

- $\mathcal{V}\left(P_{\leq}\right)$is congruence distributive,
- $\mathcal{V}\left(P_{\leq}\right)$is not congruence distributive.

Pierce stalks: Bounded partial orders

Let P be a finite non trivial poset:

- $\mathcal{V}\left(P_{\leq}\right)$is congruence distributive,
- $\mathcal{V}\left(P_{\leq}\right)$is not congruence distributive.

Proposition
 There are Pierce stalks in $\mathcal{V}\left(P_{\leq}\right)$which are not subdirectly irreducible.

Pierce stalks: Bounded partial orders

Let P be a finite non trivial poset:

- $\mathcal{V}\left(P_{\leq}\right)$is congruence distributive,
- $\mathcal{V}\left(P_{\leq}\right)$is not congruence distributive.

Proposition

There are Pierce stalks in $\mathcal{V}\left(P_{\leq}\right)$which are not subdirectly irreducible. If $\mathcal{V}\left(P_{\leq}\right)$is congruence distributive,

Pierce stalks: Bounded partial orders

Let P be a finite non trivial poset:

- $\mathcal{V}\left(P_{\leq}\right)$is congruence distributive,
- $\mathcal{V}\left(P_{\leq}\right)$is not congruence distributive.

Proposition
There are Pierce stalks in $\mathcal{V}\left(P_{\leq}\right)$which are not subdirectly irreducible. If $\mathcal{V}\left(P_{\leq}\right)$is congruence distributive, every Pierce stalk is directly indecomposable.

Pierce stalks: Central relations

Definition

An h-ary relation σ on afinite set P is central if:

Pierce stalks: Central relations

Definition

An h-ary relation σ on afinite set P is central if:
(1) For all $\bar{a} \in \sigma$, if π is a permutation of $\{1, \ldots, h\}$, then $\left(a_{\pi(1)}, \ldots, a_{\pi(h)}\right) \in \sigma$,

Pierce stalks: Central relations

Definition

An h-ary relation σ on afinite set P is central if:
(1) For all $\bar{a} \in \sigma$, if π is a permutation of $\{1, \ldots, h\}$, then $\left(a_{\pi(1)}, \ldots, a_{\pi(h)}\right) \in \sigma$, (i.e. totally symmetric)

Pierce stalks: Central relations

Definition

An h-ary relation σ on afinite set P is central if:
(1) For all $\bar{a} \in \sigma$, if π is a permutation of $\{1, \ldots, h\}$, then $\left(a_{\pi(1)}, \ldots, a_{\pi(h)}\right) \in \sigma$, (i.e. totally symmetric)
(2) For all $\bar{a} \in P^{h}$ with at least two of the a_{i} equal, we have that $\bar{a} \in \sigma$,

Pierce stalks: Central relations

Definition

An h-ary relation σ on afinite set P is central if:
(1) For all $\bar{a} \in \sigma$, if π is a permutation of $\{1, \ldots, h\}$, then $\left(a_{\pi(1)}, \ldots, a_{\pi(h)}\right) \in \sigma$, (i.e. totally symmetric)
(2) For all $\bar{a} \in P^{h}$ with at least two of the a_{i} equal, we have that $\bar{a} \in \sigma$, (i.e. totally reflexive)

Pierce stalks: Central relations

Definition

An h-ary relation σ on afinite set P is central if:
(1) For all $\bar{a} \in \sigma$, if π is a permutation of $\{1, \ldots, h\}$, then $\left(a_{\pi(1)}, \ldots, a_{\pi(h)}\right) \in \sigma$, (i.e. totally symmetric)
(2) For all $\bar{a} \in P^{h}$ with at least two of the a_{i} equal, we have that $\bar{a} \in \sigma$, (i.e. totally reflexive)
(3) There is an a_{1} such that for all a_{2}, \ldots, a_{h} in P we have $\bar{a} \in \sigma$,

Pierce stalks: Central relations

Definition

An h-ary relation σ on afinite set P is central if:
(1) For all $\bar{a} \in \sigma$, if π is a permutation of $\{1, \ldots, h\}$, then $\left(a_{\pi(1)}, \ldots, a_{\pi(h)}\right) \in \sigma$, (i.e. totally symmetric)
(2) For all $\bar{a} \in P^{h}$ with at least two of the a_{i} equal, we have that $\bar{a} \in \sigma$, (i.e. totally reflexive)
(3) There is an a_{1} such that for all a_{2}, \ldots, a_{h} in P we have $\bar{a} \in \sigma$,
(9) $\sigma \neq P^{h}$.

Pierce stalks: Central relations

Proposition
 Let σ be a 2-ary central relation on a set P.

Pierce stalks: Central relations

Proposition

Let σ be a 2-ary central relation on a set P. Every Pierce stalk in $\mathbb{V}\left(P_{\sigma}\right)$ is directly indecomposable.

Pierce stalks: Central relations

Proposition

Let σ be a 2-ary central relation on a set P. Every Pierce stalk in $\mathbb{V}\left(P_{\sigma}\right)$ is directly indecomposable. There are Pierce stalks in $\mathbb{V}\left(P_{\sigma}\right)$ which are not subdirectly irreducible.

Pierce stalks: Central relations

Proposition

Let σ be a 2-ary central relation on a set P. Every Pierce stalk in $\mathbb{V}\left(P_{\sigma}\right)$ is directly indecomposable. There are Pierce stalks in $\mathbb{V}\left(P_{\sigma}\right)$ which are not subdirectly irreducible.

Proposition

Let σ be a h-ary central relation on P, with $h \geq 3$.

Pierce stalks: Central relations

Proposition

Let σ be a 2-ary central relation on a set P. Every Pierce stalk in $\mathbb{V}\left(P_{\sigma}\right)$ is directly indecomposable. There are Pierce stalks in $\mathbb{V}\left(P_{\sigma}\right)$ which are not subdirectly irreducible.

Proposition

Let σ be a h-ary central relation on P, with $h \geq 3$. There is no universal class $\mathcal{F} \subseteq \mathbb{V}\left(P_{\sigma}\right)_{D I}$ such that every member of $\mathbb{V}\left(P_{\sigma}\right)$ is isomorphic to a global subdirect product with factors in \mathcal{F}.

Pierce stalks: Central relations

Proposition

Let σ be a 2-ary central relation on a set P. Every Pierce stalk in $\mathbb{V}\left(P_{\sigma}\right)$ is directly indecomposable. There are Pierce stalks in $\mathbb{V}\left(P_{\sigma}\right)$ which are not subdirectly irreducible.

Proposition

Let σ be a h-ary central relation on P, with $h \geq 3$. There is no universal class $\mathcal{F} \subseteq \mathbb{V}\left(P_{\sigma}\right)_{\text {DI }}$ such that every member of $\mathbb{V}\left(P_{\sigma}\right)$ is isomorphic to a global subdirect product with factors in \mathcal{F}. There are Pierce stalks in $\mathbb{V}\left(P_{\sigma}\right)$ which are not directly indecomposable.

Pierce stalks: Proper equivalence relations

Proposition

Let σ be a non trivial proper equivalence relation on a finite set P.

Pierce stalks: Proper equivalence relations

Proposition

Let σ be a non trivial proper equivalence relation on a finite set P. Every Pierce stalk in $\mathbb{V}\left(P_{\sigma}\right)$ is directly indecomposable.

Pierce stalks: Proper equivalence relations

Proposition

Let σ be a non trivial proper equivalence relation on a finite set P. Every Pierce stalk in $\mathbb{V}\left(P_{\sigma}\right)$ is directly indecomposable. There are Pierce stalks in $\mathbb{V}\left(P_{\sigma}\right)$ which are not subdirectly irreducible.

References I

D. Bigelow and S. Burris, Boolean algebras of factor congruences, Acta Sci. Math. (Szeged) 54:1-2(1990).
\& S. Comer, Representations by algebras of sections over Boolean spaces, Pacific Journal of Mathematics 38 (1971), no. 1, 29-38.

B B. A. Davey, m-Stone lattices, Can. J. Math., Vol. XXIV, No. 6, (1972), 1027-1032.
\& G. A. Fraser \& A. Horn, Congruence relations in direct products. Proc. Amer. Math. 26, 390-394, 1970.
\& K. Keimel, Darstellung von Halbgruppen und universellen Algebren durch Schnitte in Garben; bireguläre Halbgruppen, Math. Nachrichten 45 (1970), 81-96.
A. Knoebel, Sheaves of algebras over Boolean spaces, Birkhauser, (2012).

References II

Q I. Rosenberg, Uber die funktionale Vollstandigkeit in den mehrwertigen Logiken, Rozpr. CSAV Rada Mat. Pfir. Ved, 80 (1970), 3-93.

QP. Sanchez Terraf and D. J. Vaggione, Varieties with definable factor congruences. Trans. Amer. Math. Soc. 361, 50615088, 2009.
D. J. Vaggione, Varieties in which the Pierce stalks are directly indecomposable, Journal of Algebra 184 (1996), 424-434.
© D. J. Vaggione, Central elements in varieties with the Fraser-Horn property, Advances in Mathematics 148, 193-202, 1999.
D. J. Vaggione, Varieties of shells, Algebra Universalis, 36 (1996) 483-487.

