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Preliminaries

Let V be a variety (algebraic):

V is a variety with ~0 and ~1 if there are 0-ary terms 01 , ..., 0n ,
11 , ..., 1n such that V |= ~0 ≈ ~1→ x ≈ y , where
~0 = (01, ..., 0n) and ~1 = (11, ..., 1n).
If ~a ∈ An and ~b ∈ Bn, we write [~a, ~b] for the n-uple
((a1, b1), ..., (an, bn)) ∈ (A× B)n.
If A ∈ V then we say that ~e = (e1, ..., en) ∈ An is a central
element of A if there exists an isomorphism τ : A→ A1 × A2,
such that τ(~e) = [~0,~1].
We say that ~e and ~f are a pair of complementary central
elements of A if there exists an isomorphism τ : A→ A1 × A2
such that τ(~e) = [~0,~1] and τ(~f ) = [~1,~0].
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A pair of congruences (θ, δ) of an algebra A is a pair of
complementary factor congruences of A if θ ∩ δ = ∆ and
θ ◦ δ = ∇.

Theorem ([8])

Let V be a variety with ~0 and ~1. T.F.E:
(DP) For every pair (~e, ~f ) of complementary central elements, there

is a unique pair (θ, δ) of complementary factor congruences
such that, for every i = 1, ..., n

(ei , 0i ) ∈ θ and (ei , 1i ) ∈ δ and (fi , 0i ) ∈ δ and (fi , 1i ) ∈ θ
(DFC) V has definable factor congruences; i.e, there is a first order

formula ψ(~z , x , y) such that for every A,B ∈ V
A× B |= ψ([~0,~1], (a, b), (a′, b′)) iff a = a′

(BFC) V has Boolean factor congruences, i.e., the set of factor
congruences of any algebra in V is a Boolean sublattice of its
congruence lattice.
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Generalities about Varieties with BFC

Let V a variety with ~0 and ~1 and suppose that has BFC.

For every A ∈ V, we write Z (A) to denote the set of central
elements of A.
~e �A ~f to denote that ~e and ~f are complementary central
elements of A.
If ~e is a central element of A we write θA~0,~e and θA~1,~e for the
unique pair of complementary factor congruences satisfying
~e ≡ ~0(θA~0,~e) and ~e ≡ ~1(θA~1,~e).
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Theorem
Let V a variety with BFC. The map g : Z (A)→ FC (A), defined by
g(e) = θA~0,~e is a bijection and its inverse h : FC (A)→ Z (A) is

defined by h(θ) = ~e, where ~e is the only ~e ∈ An such that ~e ≡ ~0(θ)
and ~e ≡ ~1(θ∗).

This result allows us to define some operations in Z (A) as follows:
The complement ~ecA of ~e, is the only solution to the equations
~z ≡ ~1(θ~0,~e) and ~z ≡ ~0(θ~1,~e).

The infimum ~e ∧A ~f is the only solution to the equations
~z ≡ ~0(θ~0,~e ∩ θ~0,~f ) and ~z ≡ ~1(θ~1,~e ∨ θ~1,~f )

The supremum ~e ∨A ~f is the only solution to the equations
~z ≡ ~0(θ~0,~e ∨ θ~0,~f ) and ~z ≡ ~1(θ~1,~e ∩ θ~1,~f ).

Z(A) = (Z (A),∨A,∧A,cA ,~0,~1) is a Boolean algebra which is
isomorphic to (FC (A),∨,∩,∗ ,∆A,∇A).
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Let A be a subdirect product of {Ai : i ∈ I}.

Given
x , y ∈

∏
{Ai : i ∈ I}, the equalizer of x and y is the set

E (x , y) = {i ∈ I : x(i) = y(i)}.

We say that A is global if there is a topology τ on I such that
E (x , y) ∈ τ for every x , y ∈ A and the following property holds:

(PP) (Patchwork Property) For every {Fr : r ∈ R} ⊆ τ such that⋃
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The Fraser-Horn Property

Given two sets A1,A2 and a relation δ in A1 × A2,

we say that δ
factorizes if there exist sets δ1 ⊆ A1 × A1 and δ2 ⊆ A2 × A2 such
that δ = δ1 × δ2, where

δ1 × δ2 = {((a, b), (c , d)) | (a, c) ∈ δ1, (b, d) ∈ δ2}.

We say that a variety has the Fraser-Horn property (FHP) [4] if
every congruence on a (finite) direct product of algebras factorizes.
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We say that a set of first order formulas Σ(~z) defines the property
“~e ∈ Z (A)” in V

if for every A ∈ V and ~e ∈ An it follows that
~e ∈ Z (A) if and only if A |= σ[~e], for every σ ∈ Σ.

Lemma

Let V be a variety with ~0 and ~1 with the FHP such that
Pu(VSI ) ⊆ VDI . Then, the property “~e ∈ Z (A)” is definable in V
with a single first order formula.

Lemma

Let V be a variety with ~0 and ~1 with the FHP such that
Pu(VSI ) ⊆ VDI . T.F.E:

1 The property “~e ∈ Z (A)” is definable in V with a
(∃

∧
p = q)−formula.

2 The homomorphisms in V preserve central elements.
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Theorem

Let L be a language of algebras with at least a constant symbol.
Let V be a variety of L-algebras with the FHP. Suppose that there
is a universal class F ⊆ VDI such that every member of V is
isomorphic to a global subdirect product with factors in F . Then

there exists a (n + 2)-ary term u(x , y , ~z) and 0-ary terms
01, . . . , 0n, 11, . . . , 1n such that

V � u(x , y ,~0) = x ∧ u(x , y ,~1) = y
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Preprimal Varieties

An algebra P is called preprimal if P is finite and Clo(P) is a
maximal clone.

A preprimal variety is a variety generated by a
preprimal algebra.

Rosenberg’s classification [7]
1 Permutations with cycles all the same prime length,
2 Proper subsets,
3 Prime-affine relations,
4 Bounded partial orders,
5 h-adic relations,
6 Central relations h ≥ 2,
7 Proper, nontrivial equivalence relations.
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Pierce stalks: Bounded partial orders

Let P be a finite non trivial poset:

V(P≤) is congruence distributive,
V(P≤) is not congruence distributive.

Proposition

There are Pierce stalks in V(P≤) which are not subdirectly
irreducible. If V(P≤) is congruence distributive,every Pierce stalk is
directly indecomposable.
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Pierce stalks: Central relations

Definition
An h-ary relation σ on afinite set P is central if:

1 For all ā ∈ σ, if π is a permutation of {1, . . . , h}, then
(aπ(1), . . . , aπ(h)) ∈ σ, (i.e. totally symmetric)

2 For all ā ∈ Ph with at least two of the ai equal, we have that
ā ∈ σ, (i.e. totally reflexive)

3 There is an a1 such that for all a2, . . . , ah in P we have ā ∈ σ,
4 σ 6= Ph.
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4 σ 6= Ph.

D. J. Vaggione, W. J. Zuluaga Botero Pierce stalks in preprimal varieties



Pierce stalks: Central relations

Proposition
Let σ be a 2-ary central relation on a set P .

Every Pierce stalk in
V(Pσ) is directly indecomposable. There are Pierce stalks in V(Pσ)
which are not subdirectly irreducible.

Proposition
Let σ be a h-ary central relation on P , with h ≥ 3. There is no
universal class F ⊆ V(Pσ)DI such that every member of V(Pσ) is
isomorphic to a global subdirect product with factors in F . There
are Pierce stalks in V(Pσ) which are not directly indecomposable.
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Pierce stalks: Proper equivalence relations

Proposition
Let σ be a non trivial proper equivalence relation on a finite set P .

Every Pierce stalk in V(Pσ) is directly indecomposable. There are
Pierce stalks in V(Pσ) which are not subdirectly irreducible.
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