Duality for b-frames and complete lattices

Guillaume Massas

UC Berkeley

June 17, 2019

Introduction

Duality

Correspondence theory

Conclusion

Motivation

- Aim of the talk:
 - Introduce the category **bFrm**, dual to the category **cLat** of complete lattices and complete lattice homomorphisms.
 - Present some preliminary results regarding a correspondence theory between lattice equations and b-frame properties. I will mostly focus on certain classes of Heyting algebras.
- Motivation: Groundwork for investigating Kripke, topological and locale completeness of intermediate logics.

Background

1. In the forcing literature: study of properties of cBA via representations as regular opens of posets, and study of forcing posets via their Boolean completions...

Background

- 1. In the forcing literature: study of properties of cBA via representations as regular opens of posets, and study of forcing posets via their Boolean completions...
- 2. Esakia duality as a framework for investigating Kripke completeness and canonicity for intermediate logics;

Background

- 1. In the forcing literature: study of properties of cBA via representations as regular opens of posets, and study of forcing posets via their Boolean completions...
- 2. Esakia duality as a framework for investigating Kripke completeness and canonicity for intermediate logics;
- Dualities between bi-topological spaces and lattices: Hartonas[1997] and Allwein[2001] dualities for bounded lattices, d-frames (Jung & Moshier [2006]), choice-free Stone duality (Bezhanishvili & Holliday[2019])...

Introduction

Duality

Correspondence theory

Conclusion

The category **bFrm**^{*}

- A *b*-frame is a bi-preordered set $\mathcal{X} = (X, \leq_1^X, \leq_2^X)$.
- A *b*-morphism f : X → Y is a map satisfying the following properties:
 - 1. (Monotonicity) $x \leq_i^X x' \Rightarrow f(x) \leq_i^Y f(x')$ for any $x, x' \in X$, $i \in \{1, 2\}$;
 - 2. (1-covering) for any $x \in X$, $y \in Y$ such that $f(x) \leq_2^Y y$, there is $x' \geq_2^X x$ such that $f(x') \geq_1^Y y$;
 - 3. (2-covering) for any $x \in X$, $y \in Y$ such that $f(x) \leq_1^Y y$, there is $x' \geq_1^X x$ such that $f(x') \geq_2^Y y$.
- **bFrm*** is the category of b-frames and b-morphisms between them.

Special cases of b-frames

Any poset (P, \leq) can be regarded as a b-frame in two distinct ways:

- As a Kripke b-frame (P, ≤, Δ_P); b-morphisms f : X → Y between Kripke b-frames coincide with p-morphisms (i.e. ↑f(x) = f[↑x] for any x ∈ X);
- As a Boolean b-frame (P, ≤, ≤); b-morphisms f : X → Y between Boolean b-frames satisfy a weaker condition than p-morphisms, namely that ↑f(x) is dense in f[↑x] for any x ∈ X.

Independence

Definition

Let $\mathcal{X} = (X, \leq_1^X, \leq_2^X)$ a b-frame, and $x, y \in X$. We say that y is *independent* from x (noted $x_2 \perp_1 y$) if there exists no $z \in X$ such that $x \leq_2 z$ and $y \leq_1 x$.

Remark

- For Kripke b-frames, y is independent from x iff $y \not\leq_1 x$.
- For Boolean b-frames, independence boils down to incompatiblity.

Introduction

Duality

Conclusion

The functor ρ

- Given a b-frame $\mathcal{X} = (X, \leq_1, \leq_2)$, let $I_1 : \mathscr{C}_2 \to \mathscr{O}_1$ and $C_2 : \mathscr{C}_2 \to \mathscr{O}_1$ be the interior and closure operators corresponding to the upset topologies induced by \leq_1 and \leq_2 respectively.
- $I_1C_2: \mathcal{O}_1 \to \mathcal{O}_1$ is a closure operator. Its fixpoints are called the *generalized regular opens* (noted $\operatorname{RO}_{12}(\mathcal{X})$), and form a complete lattice.
- This can be seen a generalization of Tarski's result that the regular opens of any topological space form a *cBA*.

The functor ρ

Lemma

Let $f : \mathcal{X} \to \mathcal{Y}$ be a b-morphism. Then $f^{-1} : \mathsf{RO}_{12}(\mathcal{Y}) \to \mathsf{RO}_{12}(\mathcal{X})$ is a complete lattice homomorphism.

Definition

The contravariant *regular open functor* ρ : **bFrm**^{*} \rightarrow **cLat** is defined as follows:

- $\rho(\mathcal{X}) = \mathsf{RO}_{12}(\mathcal{X})$ on objects;
- $\rho(f) = f^{-1} : \operatorname{RO}_{12}(\mathcal{Y}) \to \operatorname{RO}_{12}(\mathcal{X})$ for a b-morphism $f : \mathcal{X} \to \mathcal{Y}$.

From lattices to b-frames

Definition

Let *L* be a complete lattice. The *dual Allwein b-frame* of *L*, noted $\alpha(L) = (P_L, \leq_1^L, \leq_2^L)$ is defined as follows:

• $P_L = \{(a, b) \in L \times L ; a \nleq_L b\};$

•
$$(a_1, b_1) \leq_1 (a_2, b_2)$$
 iff $a_2 \leq_L a_1$;

• $(a_1, b_1) \leq_2 (a_2, b_2)$ iff $b_1 \leq_L b_2$;

Definition

Let $f: L \to M$ be a complete lattice homomorphism. Since f preserves all limits and all colimits, f has left and right adjoints $-^{f}, -_{f}: M \to L$. Let $\alpha(f): \alpha(M) \to \alpha(L)$ be defined as $\alpha(f)(a, b) = (a^{f}, b_{f})$.

From lattices to b-frames

Lemma

Let $f : L \to M$ be a complete lattice homomorphism. Then $\alpha(f) : \alpha(M) \to \alpha(L)$ is a b-morphism.

Definition

The contravariant Allwein functor $\alpha : \mathbf{cLat} \to \mathbf{bFrm}^*$ is defined as follows:

- $\alpha(L)$ is the dual Allwein b-frame of L on objects;
- α(f) : α(M) → α(L) is defined as before for any complete lattice homomorphism f : L → M.

An adjunction between **bFrm**^{*} and **cLat**

Theorem

The functors α and ρ form a contravariant adjunction:

- For any complete lattice L, the counit ε_L : L → ρα(L) is given by ε_L(a) =↑₁(a,0).
- For any b-frame \mathcal{X} , the unit $\eta_{\mathcal{X}} : X \to \alpha \rho(\mathcal{X})$ is given by $\eta_{\mathcal{X}}(x) = (U^x, V_x)$, where $U^x = I_1 C_2(\uparrow_1 x)$ and $V_x = \{y \in X ; x_2 \perp_1 y\}.$

Dense embeddings

Definition

Let $f : \mathcal{X} \to \mathcal{Y}$ a b-morphism.

- f is an *embedding* if for any $x, y \in X$, $x_2 \perp_1 y$ iff $f(x)_2 \perp_1 f(y)$.
- f is *dense* if for any $y \in Y$, there is $x \in X$ such that $f(x) \ge_{12}^{Y} y$.

Remark

- Dense embeddings between Kripke b-frames correspond to bijective p-morphisms.
- Dense embeddings between Boolean b-frames correspond to forcing equivalence for posets.

Dense embeddings

Lemma

- For any $L, M \in \mathbf{cLat}$ and $f \in \mathbf{Hom}(L, M)$:
 - f is injective iff $\alpha(f)$ is dense;
 - f is surjective iff $\alpha(f)$ is an embedding.
- For any $\mathcal{X}, \mathcal{Y} \in \mathbf{bFrm}^*$ and $f \in \mathbf{Hom}(\mathcal{X}, \mathcal{Y})$:
 - f is an embedding iff $\rho(f)$ is surjective;
 - f is dense iff $\rho(f)$ is injective.

Corollary (Allwein)

For any complete lattice L, $\epsilon_L : L \to \rho\alpha(L)$ is an isomorphism. As a consequence, α is fully faithful, and $\rho \dashv \alpha$ is an idempotent adjunction.

Proof.

The identity map on $\alpha(L)$ is a dense embedding.

Introduction

Duality

Correspondence theory

Conclusion

Towards a duality

- Conversely, for any b-frame X, η_X : X → αρ(X) is a dense embedding. In general however, it will not be an isomorphism (i.e. a bijective b-morphism reflecting both orders).
- Question: Can we characterize those b-frames for which η_X is an isomorphism, or equivalently, the range of the functor α?

Normal b-frames

Definition

Let $\mathcal{X} = (X, \leq_1^X, \leq_2^X)$ be a b-frame.

- \mathcal{X} is antisymmetric if $\leq_1^X \cap \leq_2^X$ is a partial order.
- \mathcal{X} is 1-separative iff for any $x, y \in X$, $x \leq_1^X y \Leftrightarrow \forall z(z_2 \bot_1 x \to z_2 \bot_1 y).$
- \mathcal{X} is 2-separative iff for any $x, y \in X$, $x \leq_2^X y \Leftrightarrow \forall z(x_2 \bot_1 z \to y_2 \bot_1 z).$
- \mathcal{X} has enough points iff for any $U \nsubseteq V \in RO_{12}(\mathcal{X})$, there is $z \in \mathcal{X}$ such that $U = U^z$ and $V = V_z$.

A b-frame is *separative* if it is antisymmetric and 1&2-separative. It is *normal* if it is separative and has enough points.

Normal b-frames

Theorem

Let \mathcal{X} be a b-frame. The following are equivalent:

- 1. \mathcal{X} is a normal b-frame;
- 2. $\eta_{\mathcal{X}} : \mathcal{X} \to \alpha \rho(\mathcal{X})$ is an isomorphism.

Corollary

Every b-frame densely embeds into a 1&2-separative b-frame.

• This can be seen as a generalization of the well known result that any poset is forcing equivalent to a separative poset.

Definition

bFrm is the category of normal b-frames and b-morphisms between them.

Theorem

The functors α and ρ restrict to a dual equivalence between **cLat** and **bFrm**:

 $\alpha:\mathbf{cLat}^{op}\cong\mathbf{bFrm}:\rho$

Introduction

Duality

Correspondence theory

Conclusion

Introduction

Conclusion

Correspondence theory

- Template: correspondence between equations on modal or Heyting algebras and first-order conditions on Kripke frames.
- The goal is to match equations valid in a class \mathcal{K} of lattices with conditions, preferably first-order, which hold precisely on those b-frames whose dual lattices belong to \mathcal{K} .
- In general, it is possible to find conditions on b-frames that are sufficient for the dual lattice to belong to \mathcal{K} . But for necessary and sufficient conditions, it is preferable to focus first on normal b-frames instead of arbitrary b-frames.

- Example: Given a b-frame X, if I₁C₂ is a nucleus on 𝒪₁ (i.e. preserves finite meets), then RO₁₂(X) is a cHA.
- On the other hand, for any b-frame $\mathcal{X} = (X, \leq_1^X, \leq_2^X)$ such that $\leq_1^X = \Delta_X$, RO₁₂(\mathcal{X}) is a *cHA*, but in general I_1C_2 is not a nucleus.
- However, the two conditions coincide for *normal* b-frames.

Definition

Let $\mathcal{X} = \{X, \leq_1^X, \leq_2^X\}$ be a b-frame.

- For any $x, y \in X$, let $x_{12} \perp_1 y$ iff there is no $z \in X$ such that $x \leq_{12} z$ and $y \leq_1 z$.
- A Heyting point in X is a point x ∈ X such that for any y ∈ X, x₂⊥₁y ⇔ x₁₂⊥₁y. The set of Heyting points of X is denoted H(X).
- A b-frame is *Heyting* if $H(\mathcal{X})$ is dense in \mathcal{X} .

Lemma

Let $\mathcal{X} = \{X, \leq_1^X, \leq_2^X\}$ be a b-frame. If \mathcal{X} is a Heyting b-frame, then l_1C_2 is a nucleus.

Lemma

If $\mathcal{X} = \alpha(L)$ for some cHA L, then $H(\mathcal{X})$ is dense in \mathcal{X} .

Proof.

Any point in $\alpha(L)$ is of the form (a, b), for some $a \nleq b \in L$. But then $(a, a \rightarrow b)$ is a Heyting point in $\alpha(L)$ which is a 12-successor of (a, b).

Corollary

- 1. A normal b-frame \mathcal{X} is Heyting iff $\rho(\mathcal{X})$ is a cHA.
- 2. For any b-frame \mathcal{X} , $\rho(\mathcal{X})$ is a cHA iff \mathcal{X} densely embeds into a Heyting b-frame.

Definition

A *h-morphism* is a b-morphism $f : \mathcal{X} \to \mathcal{Y}$ between two Heyting b-frames which satisfies the following extra condition:

• (12-covering) for any $x \in X$, $y \in Y$ such that $f(x) \leq_1^Y y$, there is $x' \geq_1^X$ such that $f(x') \geq_{12}^Y y$.

Lemma

- For any Heyting homomorphism $f : L \to M$, $\alpha(f) : \alpha(M) \to \alpha(L)$ is a h-morphism.
- For any h-morphism f : X → Y, ρ(f) : ρ(Y) → ρ(X) is a Heyting homomorphism.

Corollary

The category **HbFrm** of normal Heyting b-frames and h-morphisms is dual to the category **cHA**.

Similar results can be obtained for some other varieties, including distributive lattices, co-Heyting algebras, Boolean algebras...

Definition

- A Boolean point in a b-frame \mathcal{X} is a point x such that for any $y \in X$, $x_1 \perp_{12} y$ iff $x_2 \perp_{12} y$.
- A b-frame is *Boolean* if its set of Boolean points $B(\mathcal{X})$ is dense in \mathcal{X} .

Lemma

The category **BbFrm** of Boolean b-frames and h-morphisms is dual to the category **cBA**.

Introduction

Spatial and Kripke locales

Definition

- A spatial locale is a locale L such that L ≅ Ω(X) for some topological space (X, τ).
- A Kripke locale is a locale L such that L ≅ Up(X) for some pre-ordered set (X, ≤).

Every locale is isomorphic to $\text{RO}_{12}(\mathcal{X})$ for some Heyting b-frame \mathcal{X} .

Question: Can we identify conditions on b-frames that characterize spatial and Kripke locales?

Duality

Correspondence theory

Conclusion

Spatial locales

Definition

Let L be a locale. A *meet-prime element* of L is an element $b \in L$ such that for any $c, d \in L$, $b \leq c \land d \Rightarrow b \leq c$ or $b \leq d$.

Theorem (Folklore)

A locale L is spatial if and only if for any $a, b \in L$ such that $a \nleq b$, there is a meet-prime $c \in L$ such that $a \nleq c$ and $b \leq c$.

Spatial locales

Definition

Let \mathcal{X} be a Heyting b-frame. A point $x \in X$ is *meet-prime* if for any $y_1, y_2 \in X$, every diagram of the form:

can be completed as follows:

The set of meet-prime points of \mathcal{X} is noted $M(\mathcal{X})$.

Spatial locales

Lemma

- Let X be a Heyting b-frame such that M(X) is dense in X.
 Then ρ(X) is spatial.
- For any spatial locale L, $M(\alpha(L))$ is dense in $\alpha(L)$.

Corollary

For any normal Heyting b-frame \mathcal{X} , $\rho(\mathcal{X})$ is spatial iff $M(\mathcal{X})$ is dense in \mathcal{X} .

Kripke locales

Definition

Let L be a locale. A splitting pair in L is a pair $(a, b) \in L \times L$ such that $a \leq b$ and for any $c \in L$, $a \leq c$ or $c \leq b$.

Theorem

A locale L is Kripke if and only if for any pair of elements (a, b) in $L \times L$ such that $a \nleq b$, there is a splitting pair (a', b') such that $a' \leq a$ and $b \leq b'$.

Kripke locales

Definition

Let \mathcal{X} be a Heyting b-frame. A point $x \in X$ is *splitting* if for any $y_1, y_2 \in X$, every diagram of the form:

can be completed as follows:

The set of splitting points of \mathcal{X} is noted $S(\mathcal{X})$.

Kripke locales

Lemma

- Let X be a Heyting b-frame such that S(X) is dense in X.
 Then ρ(X) is Kripke.
- For any Kripke locale L, $S(\alpha(L))$ is dense in $\alpha(L)$.

Corollary

For any normal Heyting b-frame \mathcal{X} , $\rho(\mathcal{X})$ is Kripke iff $S(\mathcal{X})$ is dense in \mathcal{X} .

Introduction

Duality

Correspondence theory

Conclusion

Introduction

Conclusion

Next steps

- Transfer techniques from standard Kripke semantics to the larger setting of b-frame semantics for IPC. Goal: Make some progress towards a solution to Kuznetsov's problem.
- Extend the correspondence theory to more varieties: modular lattices, ortholattices, BAO's... Goal: Develop an analogue to Sahlqvist theory in the setting of lattice equations and b-frames.
- Explore connections with filter-ideal based dualities. Goal: Understand how b-frames fit in the larger picture of Stone-like dualities.

Duality

Conclusion

Thank You!