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Classical Uniformities

I Familiar concepts from metric spaces, e.g. uniform continuity,
completion etc., can be generalised to uniform spaces.

I Following Tukey (1940), a uniformity is just a family of
‘uniform’ covers on a set X satisfying certain conditions.

I These covers determine a canonical topology, specifically
where the ‘stars’ of x ∈ X form a neighbourhood base at x .

Theorem
A topological space X is uniformisable iff X is completely regular.

I To extend to regular and even T1 spaces, Morita (1951)
weakened the star-refinement axiom for the covers.

I Katětov (1963) and Herrlich (1974) independently came up
with equivalent versions of Morita’s generalised uniformities.

I These are now usually called nearness spaces, i.e. a nearness
is again just a special family of ‘uniform’ covers of a set X .



Nearness Frames

I More recently, people have considered point-free nearnesses.

I First, take a frame L, i.e. a complete lattice which we think
of as representing the open sets of a topological space.

I Again, a nearness is a family of covers, which are now subsets
C ⊆ L each with

∨
C = 1, again subject to some conditions.

I However, we can already see a key difference between this
approach and the classical pointy notion of a nearness –
Now the nearness is placed on top of a pre-existing topological
structure, rather than defining it like in the classical case.

Question
What if we instead replace the lattice structure with covers?

I So we would instead start with just a set S together with
some distinguished family of subsets Θ ⊆ P(S), nothing more.

I Here we could even consider S to represent a more general
basis or even just a subbasis of open sets of some space.



Recovering Spaces from Covers
I First question – can we recover a space X from such a weak

abstract covering structure? Yes, as long as X is T1.
I To see this, take a subbasis S of a T1 space X with covers

Θ = {C ⊆ S : X ⊆
⋃

S}.

I For each x ∈ X , consider its subbasic neighbourhoods

Nx = {s ∈ S : x ∈ s}.

I As each C ∈ Θ covers X , each Nx is Θ-Cauchy, i.e.

C ∈ Θ ⇒ Nx ∩ C 6= ∅. (Θ-Cauchy)

I As X is T1, each Nx is minimal Θ-Cauchy, i.e.

s ∈ Nx ⇒ ∃C ∈ Θ (Nx ∩ C = {s}).
I Moreover, there are no other minimal Θ-Cauchy subsets:

I Say M ⊆ S does not contain any Nx .
I Then X ⊆

⋃
S \M ∈ Θ so M is not Θ-Cauchy.



The Spectrum

Definition
Given Θ ⊆ P(S), the spectrum is the space

Θ̂ = {N ⊆ S : N is minimal Θ-Cauchy}

with the topology generated by the sets Θ̂s = {N ∈ Θ̂ : s ∈ N}.

I So what we just proved is the following.

Proposition

If S is a subbasis of a T1 space X and Θ = {C ⊆ S : X ⊆
⋃
S} is

the family of all S-covers of X then Θ̂ is homeomorphic to X .

I Conversely, say we start with abstract Θ ⊆ P(S).

I By minimality, Θ̂ is a T1 space.

I By Cauchyness, each C ∈ Θ yields a cover (Θ̂c)c∈C of Θ̂.

I However, there could be many other covers, e.g. if C ∈ Θ
then any D ⊇ C also covers Θ̂, even when D /∈ Θ.

I Also, we could have Θ̂s = Θ̂t even when s 6= t.



The Canonical Order

I Any Θ ⊆ P(S) defines a preorder on S by

s ≤Θ t ⇔ Θs ⊆ Θt ,

where Θs = {D ⊆ S : {s} ∪ D ∈ Θ}.
I If S is a concrete subbasis of some T1 space X and Θ is the

family of all covers then ≤Θ coincides with containment, i.e.

s ≤Θ t ⇔ s ⊆ t.

I For abstract S and Θ, we do at least have

s ≤Θ t ⇒ Θ̂s ⊆ Θ̂t .

I So if we hope to represent S faithfully as a subbasis on the
spectrum then, at the very least, ≤Θ should be a partial order.

I In this case, let us call (S ,≤Θ,Θ) a nearness poset.



Finitary Nearness Posets
I Call Θ finitary if every C ∈ Θ is finite and, for all finite F ⊆ S ,

F ⊇ C ∈ Θ ⇒ F ∈ Θ.

I We can now reformulate a classical result due to Wallman.

Theorem (Wallman 1938)

If (S ,≤,Θ) is a finitary nearness poset then Θ̂ is compact,

s ≤ t ⇔ Θ̂s ⊆ Θ̂t

and Θ = {F ⊆ S : F is finite and Θ̂ ⊆
⋃
s∈F

Θ̂s}.

I Conversely, if S is a subbasis of compact T1 X and Θ is the
family of all finite covers, (S ,⊆,Θ) is a finitary nearness poset.

I So we have a kind of duality

Finitary Nearness Posets ↔ Compact T1 Spaces.



Extensions

I It is then natural to investigate potential Wallman-type
dualities for non-compact nearness spaces, e.g.

Star-Finitary Nearness Posets ↔ Locally Compact T1 Spaces.

I Using the Arhangelskii-Stone metrisation theorem, we also
have have an analog for completely metrisable spaces,
via regular Θ with a countable filter base (w.r.t. refinement).

I For the details see ArXiv:1902.07948 ‘Nearness Posets’.

I Aside: compact metric spaces are supercompact, i.e. they
have a subbasis s.t. every cover has a 2-element subcover.

I Thus these correspond to 2-ary nearness posets.

I So all compact metric spaces arise as the spectrum of a
countable graph, which could be worth exploring further.



Graded Posets

I Graded/ranked posets have a natural nearness structure
coming from the rank levels, i.e. taking these as a base for Θ.

I Many natural examples of arise in this way.

I E.g. the standard basis of the Cantor space {0, 1}N coming
from finite initial sequences yields the complete binary tree:



The Arc

I Similarly, the arc/interval [0, 1], with the dyadic basis

{(k−1
2n , k+1

2n ) : k , n ∈ N and 1 < k < 2n − 1}

and {[0, 1
2n ) : n ∈ N} ∪ {(1− 1

2n , 1] : n ∈ N} ∪ {[0, 1]} yields



Graded Posets ↔ Compact T1 Spaces

Theorem
Every second countable compact T1 space is the spectrum of a
countable graded poset with finite levels.

I Analogous to the fact compact Hausdorff spaces are all
inverse limits of simplicial complexes (Freudanthal 1937).

I But this is not merely of theoretical interest - it suggests we
could actually construct interesting spaces by first
constructing an appropriate graded poset, e.g. by recursively
defining the levels and the relations between them.

I E.g. for the pseudoarc, we could consider the category of
finite paths/linear graphs, where the morphisms are relations
between them that preserve and reflect the graph structure.

I This category has the amalgamation property and hence a
Fräıssé sequence, which we combine to form a graded poset.

I The spectrum of this poset is precisely the pseudoarc.

I To obtain the Lelek fan, replace paths with rooted trees.


