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A residuated monoid (M, ·, 1,↘,↙) is divisible if

a · (a↘ b) = a ∧ b = (b↙ a) · a

holds for all a, b ∈M .

In what follows, all residuated monoids will be complete—i.e. they are quantales.

We also need to consider quantaloids—because they arise from universal constructions
on quantales.

A quantaloid Q is a category with hom-sup-lattices Q(X,Y ) such that all − ◦ f and
g ◦ − preserve suprema; it is therefore also residuated:

g ◦ f ≤ h ⇐⇒ f ≤ (g ↘ h) ⇐⇒ g ≤ (h↙ f)

It now makes perfect sense to say that a quantaloid Q is divisible if

g ◦ (g ↘ f) = f ∧ g = (f ↙ g) ◦ g

for every pair f, g : X → Y of parallel arrows in Q.
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I If Q is divisible then it is integral (each 1X is top element in Q(X,X)).
I If Q is divisible then it is locally localic (each sup-lattice Q(X,Y ) is a locale).
I Any locale is divisible.
I A left-continuous t-norm ([0, 1], ?, 1) is (by definition) a commutative, integral,

ordered monoid with left-continuous multiplication; this is precisely an integral,
commutative quantale on ([0, 1],

∨
). Such a left-continuous t-norm is (also

right-)continuous if and only if (as a quantale) it is divisible.
I Lawvere’s quantale of real numbers ([0,∞],

∧
,+, 0) is divisible; it is isomorphic to

the (obviously continuous) product t-norm ([0, 1],
∨
, ·, 1).

I Any non-(right-)continuous left-continuous t-norm thus provides an example of an
integral and localic quantale which is not divisible (e.g. the “nilpotent minimum
t-norm”).
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New mathematical structures often arise from known ones by universal constructions.

As a well-known case in point, in any category C, if f2 = f and g2 = g are two
idempotents, then we say that m is a map from f to g if

A

f
��

m //

m
  

B

g
��

A
m
// B

A new category I(C) of maps between idempotents in C is defined by the obvious
composition rule

f
��
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''
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h
��

n ◦m
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= f
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m
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with identities f
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displaying I(C) to be the universal “split-idempotent” completion of C:

(Actually, all idempotents split in I(C).)

The “bigger” category I(C) has many virtues that C may lack ...

... but for our purposes, it is not yet big enough.
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(Actually all arrows in D(C) have an image factorisation; this leads to a monadic
characterisation of proper factorisation systems.)

The splitting of idempotents in C is a full subcategory of D(C):

C // I(C) // D(C)

Note: even for a monoid M , both I(M) and D(M) are (many-object) categories.
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In any quantaloid Q, making use of residuation,

∃d0, d1 :

A0

f
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d
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g
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A1
d1
// B1
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A0

f
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d
!!

g ↘ d
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��
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d↙ f

// B1

That is, if d : f → g is a diagonal in Q, then its square can be filled in a canonical way.

The category D(Q) is actually a quantaloid too (with local suprema “as in Q”), in which
the composition rule can be made explicit as

f
��

d
��

//

g

��

e
��

//

h
��// //

= f
��

(e↙ g) ◦ g ◦ (g ↘ d)

++

h
��

This holds a fortiori for I(Q) too, and the full embeddings are indeed quantaloid
homomorphisms:

Q // I(Q) // D(Q)
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Recall, a quantaloid Q is divisible if, for every f, g : X → Y ,

g ◦ (g ↘ f) = f ∧ g = (f ↙ g) ◦ g.

And d is a diagonal from f to g precisely when

A0

f
��

d
!!

g ↘ d
// B0

g
��

A1
d↙ f

// B1

.

It is not very difficult to prove now that:

Q is divisible iff D(Q)(f, g) = ↓f ∧ g.

Moreover, Q is divisible iff D(Q) is divisible.

Computations with D(Q) thus simplify a great deal whenever Q is a divisible quantaloid:
because the hom-sup-lattices are easy, because the composition law is easy!

This applies to any divisible quantale Q—which is of use in many-valued logic.
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Many-valued logic (1)

An order X = (X,≤) is a set together with a binary predicate

X : X ×X → {⊥,>} : (x, y) 7→
{
> if x ≤ y
⊥ if x 6≤ y

such that {
X(x, y) ∧ X(y, z) ≤ X(x, z)
> ≤ X(x, x)
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This is exactly the definition of a Q-enriched category X.

There is a very rich theory of Q-enriched categories, functors and distributors, which
thus – at first sight – caters for a theory of “many-valued orders”.

However...



Many-valued logic (2)

A = R

P = R

f g

Let A be a set and (P,≤) an order, and consider the set

X = {f : S → P is a function | S ⊆ A}

of partial functions from A to P .

To compare partial functions f and g, it is most natural
to compute the “extent to which f is smaller than g”:

X(f, g) = {x ∈ dom(f) ∩ dom(g) | fx ≤ gx in P}.

This makes up a (P(A),
⋃
,∩, A)-valued predicate

X : X ×X → P(A)

for which {
X(f, g) ∩ X(g, h) ⊆ X(f, h) holds,

So X is not a P(A)-enriched category, because the quantale P(A) does not deal
adequately with the partiality of X’s elements.

Quantaloids, diagonals and divisibility to the rescue!
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Many-valued logic (3)

Let Q be a (small) quantaloid. A Q-enriched
category C consists of:

I a set C0,
I a unary predicate t : C0 → obj(Q),
I a binary predicate C : C0 × C0 → arr(Q)

for which we have:

I C(y, x) : tx→ ty,
I 1tx ≤ C(x, x),
I C(z, y) ◦ C(y, x) ≤ C(z, x).

. . .

tz

ty

tx

. . .

•

•
•z

...

•

•
•
y

...

•

••
•x

...

C0

Q

C(z, x)

C(y, x)C(z, y) ≤

There is – again – a very rich theory of Q-enriched categories, functors and distributors.

But how can this help us with the previous (and other) examples?
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for which we have in Q:

I C(y, x) ≤ C(x, x) ∧ C(y, y),
I C(z, y) · [C(y, y)→ C(y, x)] ≤ C(z, x).

Think of this as a partial Q-enriched category (or a Q-enriched partial category?).

Similar simplifications can be done for the notion of D(Q)-enriched functor and
distributor—for indeed, we have the complete quantaloid-enriched yoga at our disposal.



Many-valued logic (5)

Partial functions done right:

Recall, for A a set and (P,≤) is order, we wish to consider the set

X = {f : S → P is a function | S ⊆ A}

together with the binary predicate

X : X ×X → P(A) : (f, g) 7→ {x ∈ dom(f) ∩ dom(g) | fx ≤ gx in P}.

As any locale, (P(A),
⋃
,∩, A) is a divisible, commutative quantale. Better still, because

every element is idempotent in this quantale, we have D(P(A)) = I(P(A)), making the
composition of diagonals even simpler.

Now we find that
I X(f, g) ⊆ X(f, f) ∩ X(g, g)
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I X(f, g) ∩ X(g, h) ⊆ X(f, h)

are both satisfied.

This makes X a partial P(A)-category.

With a bit more quantaloid-enriched category theory, one can deal with sheaves on a
locale in this way.



Many-valued logic (6)

Partial metrics done right:

As any continuous t-norm, ([0, 1],
∨
, ·, 1) is a divisible, commutative quantale.

In what follows we shall consider its isomorphic copy ([0,∞],
∧
,+, 0), the Lawvere

quantale of real numbers, in which residuation is

x→ y = 0 ∨ (−x+ y).

Since there are no non-trivial idempotents, D[0,∞] is much bigger than I[0,∞].

A partial [0,∞]-category X now consists of a set X together with a binary predicate

X : X ×X → [0,∞]

satisfying
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That is to say, up to finiteness, symmetry and separatedness (which can all be expressed
categorically!), we recover here the definition of a partial metric space.
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That is to say, up to finiteness, symmetry and separatedness (which can all be expressed
categorically!), we recover here the definition of a partial metric space.

Quantaloid-enriched category theory can be put to use here, in particular to deal with
Cauchy completion, exponentiability, Hausdorff distance, and more.



4. Summary



Summary
In this talk I’ve tried to make the following points:

I If Q is a divisible quantale, then the quantaloid D(Q) of diagonals in Q has a
pleasant description.

I If Q is a divisible commutative quantale, then a D(Q)-enriched category C is a set
C0 together with a binary predicate C : C0 × C0 → Q satisfying{

C(x, y) ≤ C(x, x) ∧ C(y, y)
C(x, y) ◦ (C(y, y)→ C(y, z)) ≤ C(x, z)

I Such a “partial Q-category” is a many-valued order relation on a set of partially
defined elements.

I Applied to a continuous t-norm, this seems to provide a useful notion of “fuzzy
(pre)order” (on “fuzzy elements”!), but only further research and more examples
can tell.
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