Divisibility and diagonals in many-valued logic

Isar Stubbe

Université du Littoral, France

TACL in Nice, June 17-22, 2019

1. Divisibility

1. Divisibility

Divisibility (1)
Modus Ponens ...

Divisibility (1)

Modus Ponens ..

in a Heyting algebra:

Divisibility (1)

Modus Ponens ...
in a Heyting algebra:

$$
a \wedge(a \Rightarrow b) \leq b
$$

Divisibility (1)

Modus Ponens ...
in a Heyting algebra:

$$
a \wedge(a \Rightarrow b) \leq a \wedge b
$$

Divisibility (1)

Modus Ponens ...

in a Heyting algebra:

$$
a \wedge b \leq a \wedge(a \Rightarrow b) \leq a \wedge b
$$

$$
(\text { from } a \wedge b \leq b \text { get } b \leq(a \Rightarrow b))
$$

Divisibility (1)

Modus Ponens ...
in a Heyting algebra:

$$
a \wedge(a \Rightarrow b) \quad=\quad a \wedge b
$$

Divisibility (1)

Modus Ponens ...

in a Heyting algebra:

$$
a \wedge(a \Rightarrow b)=a \wedge b
$$

\ldots in $([0,1], \cdot, 1)$ with residuation $a \rightarrow b=\left\{\begin{array}{ll}1 & \text { if } a \leq b \\ a^{-1} \cdot b & \text { if } a>b\end{array}\right.$:

Divisibility (1)

Modus Ponens ...

in a Heyting algebra:

$$
a \wedge(a \Rightarrow b)=a \wedge b
$$

\ldots in $([0,1], \cdot, 1)$ with residuation $a \rightarrow b=\left\{\begin{array}{ll}1 & \text { if } a \leq b \\ a^{-1} \cdot b & \text { if } a>b\end{array}\right.$:

$$
a \cdot(a \rightarrow b) \leq b
$$

Divisibility (1)

Modus Ponens ...

in a Heyting algebra:

$$
a \wedge(a \Rightarrow b)=a \wedge b
$$

\ldots in $([0,1], \cdot, 1)$ with residuation $a \rightarrow b=\left\{\begin{array}{ll}1 & \text { if } a \leq b \\ a^{-1} \cdot b & \text { if } a>b\end{array}\right.$:

$$
\begin{gathered}
\qquad a \cdot(a \rightarrow b) \leq a \wedge b \\
\text { because } a \cdot(a \rightarrow b) \leq a \cdot 1=a
\end{gathered}
$$

Divisibility (1)

Modus Ponens ...

... in a Heyting algebra:

$$
a \wedge(a \Rightarrow b)=a \wedge b
$$

\ldots in $([0,1], \cdot, 1)$ with residuation $a \rightarrow b=\left\{\begin{array}{ll}1 & \text { if } a \leq b \\ a^{-1} \cdot b & \text { if } a>b\end{array}\right.$:

$$
a \cdot(a \rightarrow b)=a \wedge b
$$

because $\left\{\begin{array}{l}\text { if } a \leq b \text { then } a \wedge b=a=a \cdot 1=a \cdot(a \rightarrow b) \\ \text { if } a>b \text { then } a \wedge b=b=a \cdot a^{-1} \cdot b=a \cdot(a \rightarrow b)\end{array}\right.$

Divisibility (1)

Modus Ponens ...
... in a Heyting algebra:

$$
a \wedge(a \Rightarrow b)=a \wedge b
$$

\ldots in $([0,1], \cdot, 1)$ with residuation $a \rightarrow b=\left\{\begin{array}{ll}1 & \text { if } a \leq b \\ a^{-1} \cdot b & \text { if } a>b\end{array}\right.$:

$$
a \cdot(a \rightarrow b)=a \wedge b
$$

But there are many examples of residuated monoids in which this formula connecting multiplication, residuation and infimum does not hold:

Divisibility (1)

Modus Ponens ...
... in a Heyting algebra:

$$
a \wedge(a \Rightarrow b)=a \wedge b
$$

\ldots in $([0,1], \cdot, 1)$ with residuation $a \rightarrow b=\left\{\begin{array}{ll}1 & \text { if } a \leq b \\ a^{-1} \cdot b & \text { if } a>b\end{array}\right.$:

$$
a \cdot(a \rightarrow b)=a \wedge b
$$

But there are many examples of residuated monoids in which this formula connecting multiplication, residuation and infimum does not hold:
... in the powerset of a monoid with pointwise multiplication,

Divisibility (1)

Modus Ponens ...
... in a Heyting algebra:

$$
a \wedge(a \Rightarrow b)=a \wedge b
$$

\ldots in $([0,1], \cdot, 1)$ with residuation $a \rightarrow b=\left\{\begin{array}{ll}1 & \text { if } a \leq b \\ a^{-1} \cdot b & \text { if } a>b\end{array}\right.$:

$$
a \cdot(a \rightarrow b)=a \wedge b
$$

But there are many examples of residuated monoids in which this formula connecting multiplication, residuation and infimum does not hold:
... in the powerset of a monoid with pointwise multiplication,
... in the monoid of relations on a set with usual relational composition,

Divisibility (1)

Modus Ponens ...
... in a Heyting algebra:

$$
a \wedge(a \Rightarrow b)=a \wedge b
$$

\ldots in $([0,1], \cdot, 1)$ with residuation $a \rightarrow b=\left\{\begin{array}{ll}1 & \text { if } a \leq b \\ a^{-1} \cdot b & \text { if } a>b\end{array}\right.$:

$$
a \cdot(a \rightarrow b)=a \wedge b
$$

But there are many examples of residuated monoids in which this formula connecting multiplication, residuation and infimum does not hold:
... in the powerset of a monoid with pointwise multiplication,
... in the monoid of relations on a set with usual relational composition,
... in the monoid of sup-morphisms on a complete lattice with usual composition.

Divisibility (2)

A residuated monoid $(M, \cdot, 1, \searrow, \swarrow)$ is divisible if

$$
a \cdot(a \searrow b)=a \wedge b=(b \swarrow a) \cdot a
$$

holds for all $a, b \in M$.

Divisibility (2)

A residuated monoid $(M, \cdot, 1, \searrow, \swarrow)$ is divisible if

$$
a \cdot(a \searrow b)=a \wedge b=(b \swarrow a) \cdot a
$$

holds for all $a, b \in M$.
In what follows, all residuated monoids will be complete-i.e. they are quantales.

Divisibility (2)

A residuated monoid $(M, \cdot, 1, \searrow, \swarrow)$ is divisible if

$$
a \cdot(a \searrow b)=a \wedge b=(b \swarrow a) \cdot a
$$

holds for all $a, b \in M$.
In what follows, all residuated monoids will be complete-i.e. they are quantales.
We also need to consider quantaloids-because they arise from universal constructions on quantales.

Divisibility (2)

A residuated monoid $(M, \cdot, 1, \searrow, \swarrow)$ is divisible if

$$
a \cdot(a \searrow b)=a \wedge b=(b \swarrow a) \cdot a
$$

holds for all $a, b \in M$.
In what follows, all residuated monoids will be complete-i.e. they are quantales.
We also need to consider quantaloids-because they arise from universal constructions on quantales.

A quantaloid Q is a category with hom-sup-lattices $Q(X, Y)$ such that all $-\circ f$ and $g \circ-$ preserve suprema; it is therefore also residuated:

$$
g \circ f \leq h \Longleftrightarrow f \leq(g \searrow h) \Longleftrightarrow g \leq(h \swarrow f)
$$

Divisibility (2)

A residuated monoid $(M, \cdot, 1, \searrow, \swarrow)$ is divisible if

$$
a \cdot(a \searrow b)=a \wedge b=(b \swarrow a) \cdot a
$$

holds for all $a, b \in M$.
In what follows, all residuated monoids will be complete-i.e. they are quantales.
We also need to consider quantaloids-because they arise from universal constructions on quantales.

A quantaloid Q is a category with hom-sup-lattices $\mathcal{Q}(X, Y)$ such that all $-\circ f$ and $g \circ-$ preserve suprema; it is therefore also residuated:

$$
g \circ f \leq h \Longleftrightarrow f \leq(g \searrow h) \Longleftrightarrow g \leq(h \swarrow f)
$$

It now makes perfect sense to say that a quantaloid Q is divisible if

$$
g \circ(g \searrow f)=f \wedge g=(f \swarrow g) \circ g
$$

for every pair $f, g: X \rightarrow Y$ of parallel arrows in Q.

Divisibility (3)

Some (easy) consequences and examples:

Divisibility (3)

Some (easy) consequences and examples:

- If Q is divisible then it is integral (each 1_{X} is top element in $Q(X, X)$).

Divisibility (3)

Some (easy) consequences and examples:

- If Q is divisible then it is integral (each 1_{X} is top element in $Q(X, X)$).
- If \mathbb{Q} is divisible then it is locally localic (each sup-lattice $Q(X, Y)$ is a locale).

Divisibility (3)

Some (easy) consequences and examples:

- If Q is divisible then it is integral (each 1_{X} is top element in $Q(X, X)$).
- If \mathbb{Q} is divisible then it is locally localic (each sup-lattice $Q(X, Y)$ is a locale).
- Any locale is divisible.

Divisibility (3)

Some (easy) consequences and examples:

- If Q is divisible then it is integral (each 1_{X} is top element in $Q(X, X)$).
- If \mathbb{Q} is divisible then it is locally localic (each sup-lattice $Q(X, Y)$ is a locale).
- Any locale is divisible.
- A left-continuous t-norm $([0,1], \star, 1$) is (by definition) a commutative, integral, ordered monoid with left-continuous multiplication; this is precisely an integral, commutative quantale on $([0,1], \bigvee)$. Such a left-continuous t-norm is (also right-)continuous if and only if (as a quantale) it is divisible.

Divisibility (3)

Some (easy) consequences and examples:

- If Q is divisible then it is integral (each 1_{X} is top element in $Q(X, X)$).
- If Q is divisible then it is locally localic (each sup-lattice $\mathcal{Q}(X, Y)$ is a locale).
- Any locale is divisible.
- A left-continuous t-norm $([0,1], \star, 1$) is (by definition) a commutative, integral, ordered monoid with left-continuous multiplication; this is precisely an integral, commutative quantale on $([0,1], \bigvee)$. Such a left-continuous t-norm is (also right-)continuous if and only if (as a quantale) it is divisible.
- Lawvere's quantale of real numbers $([0, \infty], \Lambda,+, 0)$ is divisible; it is isomorphic to the (obviously continuous) product t-norm ($[0,1], \bigvee, \cdot, 1$).

Divisibility (3)

Some (easy) consequences and examples:

- If Q is divisible then it is integral (each 1_{X} is top element in $Q(X, X)$).
- If \mathbb{Q} is divisible then it is locally localic (each sup-lattice $Q(X, Y)$ is a locale).
- Any locale is divisible.
- A left-continuous t-norm $([0,1], \star, 1)$ is (by definition) a commutative, integral, ordered monoid with left-continuous multiplication; this is precisely an integral, commutative quantale on $([0,1], \bigvee)$. Such a left-continuous t-norm is (also right-)continuous if and only if (as a quantale) it is divisible.
- Lawvere's quantale of real numbers $([0, \infty], \bigwedge,+, 0)$ is divisible; it is isomorphic to the (obviously continuous) product t-norm $([0,1], \bigvee, \cdot, 1)$.
- Any non-(right-)continuous left-continuous t-norm thus provides an example of an integral and localic quantale which is not divisible (e.g. the "nilpotent minimum t-norm').

2. Diagonals
3. Diagonals

Diagonals (1)

New mathematical structures often arise from known ones by universal constructions.

Diagonals (1)

New mathematical structures often arise from known ones by universal constructions.
As a well-known case in point, in any category \mathcal{C}, if $f^{2}=f$ and $g^{2}=g$ are two idempotents, then we say that m is a map from f to g if

Diagonals (1)

New mathematical structures often arise from known ones by universal constructions.
As a well-known case in point, in any category \mathcal{C}, if $f^{2}=f$ and $g^{2}=g$ are two idempotents, then we say that m is a map from f to g if

A new category $\mathcal{J}(\mathcal{C})$ of maps between idempotents in \mathcal{C} is defined by the obvious composition rule

Diagonals (1)

New mathematical structures often arise from known ones by universal constructions.
As a well-known case in point, in any category \mathcal{C}, if $f^{2}=f$ and $g^{2}=g$ are two idempotents, then we say that m is a map from f to g if

A new category $\mathcal{J}(\mathcal{C})$ of maps between idempotent in \mathcal{C} is defined by the obvious composition rule

with identities

Diagonals (2)

There is a full embedding

Diagonals (2)

There is a full embedding
displaying $\mathcal{J}(\mathcal{C})$ to be the universal "split-idempotent" completion of \mathcal{C} :

Diagonals (2)

There is a full embedding
displaying $\mathcal{J}(\mathcal{C})$ to be the universal "split-idempotent" completion of \mathcal{C} :

$$
\text { if } f^{2}=f \text { in } \mathcal{C} \text { then } 1_{A} \xrightarrow{f} 1_{A}=1_{A} \xrightarrow{f} f \nvdash \xrightarrow{f} 1_{A} \text { in } \mathcal{J}(\mathcal{C})
$$

Diagonals (2)

There is a full embedding
displaying $\mathcal{J}(\mathcal{C})$ to be the universal "split-idempotent" completion of \mathcal{C} :

$$
\text { if } f^{2}=f \text { in } \mathcal{C} \text { then } 1_{A} \xrightarrow{f} 1_{A}=1_{A} \xrightarrow{f} f \nvdash \xrightarrow{f} 1_{A} \text { in } \mathcal{J}(\mathcal{C})
$$

(Actually, all idempotents split in $\mathcal{J}(\mathcal{C})$. .)

Diagonals (2)

There is a full embedding
displaying $\mathcal{J}(\mathcal{C})$ to be the universal "split-idempotent" completion of \mathcal{C} :

$$
\text { if } f^{2}=f \text { in } \mathcal{C} \text { then } 1_{A} \xrightarrow{f} 1_{A}=1_{A} \xrightarrow{f} f \succcurlyeq \xrightarrow{f} 1_{A} \text { in } \mathcal{J}(\mathcal{C})
$$

(Actually, all idempotents split in $\mathcal{J}(\mathcal{C})$. .)
The "bigger" category $\mathcal{J}(\mathcal{C})$ has many virtues that \mathcal{C} may lack ...

Diagonals (2)

There is a full embedding
displaying $\mathcal{J}(\mathcal{C})$ to be the universal "split-idempotent" completion of \mathcal{C} :

$$
\text { if } f^{2}=f \text { in } \mathcal{C} \text { then } 1_{A} \xrightarrow{f} 1_{A}=1_{A} \xrightarrow{f} f \nvdash \xrightarrow{f} 1_{A} \text { in } \mathcal{J}(\mathcal{C})
$$

(Actually, all idempotents split in $\mathcal{J}(\mathcal{C})$.)
The "bigger" category $\mathcal{J}(\mathcal{C})$ has many virtues that \mathcal{C} may lack ...
... but for our purposes, it is not yet big enough.

Diagonals (3)

In any category \mathcal{C}, say that d is a diagonal from f to g
A_{0}
$f \downarrow$
A_{1}

${ }^{d}$
B_{1}

Diagonals (3)

In any category \mathcal{C}, say that d is a diagonal from f to g if

Diagonals (3)

In any category \mathcal{C}, say that d is a diagonal from f to g if

A new category $\mathcal{D}(\mathcal{C})$ of diagonals in \mathcal{C} is defined by the composition rule

Diagonals (3)

In any category \mathcal{C}, say that d is a diagonal from f to g if

A new category $\mathcal{D}(\mathcal{C})$ of diagonals in \mathcal{C} is defined by the composition rule

$$
f \downarrow_{\downarrow} e \circ_{g} d h=\text { any path from UL to LR in }\left.f \downarrow_{\downarrow}^{d}\right|_{\downarrow} e
$$

with identities

$$
f \downarrow^{\backslash} f \downarrow \downarrow_{\downarrow} .
$$

Diagonals (4)

There is a full embedding

$$
I: \mathcal{C} \rightarrow \mathcal{D}(\mathcal{C}):(A \xrightarrow{f} B) \mapsto\left(\begin{array}{cc}
A & \\
1_{A} \downarrow & f_{\searrow} \\
& \underset{\sim}{\downarrow} \\
& 1_{B}
\end{array}\right)
$$

Diagonals (4)

There is a full embedding

$$
I: \mathcal{C} \rightarrow \mathcal{D}(\mathcal{C}):(A \xrightarrow{f} B) \mapsto\left(\begin{array}{ccc}
A & & B \\
1_{A} \downarrow & f_{\searrow}^{\downarrow} 1_{B} \\
A & & B
\end{array}\right)
$$

displaying $\mathcal{D}(\mathcal{C})$ to be the universal "split-everything (properly)" completion of \mathcal{C} :

Diagonals (4)

There is a full embedding

$$
I: \mathcal{C} \rightarrow \mathcal{D}(\mathcal{C}):(A \xrightarrow{f} B) \mapsto\left(\begin{array}{ccc}
A & & B \\
1_{A} \downarrow & f_{\searrow}^{\downarrow} 1_{B} \\
A & & B
\end{array}\right)
$$

displaying $\mathcal{D}(\mathcal{C})$ to be the universal "split-everything (properly)" completion of \mathcal{C} :

$$
\text { for any } f \text { in } \mathcal{C}, 1_{A} \xrightarrow{f} 1_{B}=1_{A} \xrightarrow{f} f \succ \xrightarrow{f} 1_{B} \text { in } \mathcal{D}(\mathcal{C})
$$

Diagonals (4)

There is a full embedding

$$
I: \mathcal{C} \rightarrow \mathcal{D}(\mathcal{C}):(A \xrightarrow{f} B) \mapsto\left(\begin{array}{ccc}
A & & B \\
1_{A} \downarrow & f_{\searrow}^{\downarrow} 1_{B} \\
A & & B
\end{array}\right)
$$

displaying $\mathcal{D}(\mathcal{C})$ to be the universal "split-everything (properly)" completion of \mathcal{C} :

$$
\text { for any } f \text { in } \mathcal{C}, 1_{A} \xrightarrow{f} 1_{B}=1_{A} \xrightarrow{f} f \succ \xrightarrow{f} 1_{B} \text { in } \mathcal{D}(\mathcal{C})
$$

(Actually all arrows in $\mathcal{D}(\mathcal{C})$ have an image factorisation; this leads to a monadic characterisation of proper factorisation systems.)

Diagonals (4)

There is a full embedding

$$
I: \mathcal{C} \rightarrow \mathcal{D}(\mathcal{C}):(A \xrightarrow{f} B) \mapsto\left(\begin{array}{ccc}
A & & B \\
1_{A} \downarrow & f_{\searrow}^{\downarrow} 1_{B} \\
A & & B
\end{array}\right)
$$

displaying $\mathcal{D}(\mathcal{C})$ to be the universal "split-everything (properly)" completion of \mathcal{C} :

$$
\text { for any } f \text { in } \mathcal{C}, 1_{A} \xrightarrow{f} 1_{B}=1_{A} \xrightarrow{f} f \succ \xrightarrow{f} 1_{B} \text { in } \mathcal{D}(\mathcal{C})
$$

(Actually all arrows in $\mathcal{D}(\mathcal{C})$ have an image factorisation; this leads to a monadic characterisation of proper factorisation systems.)

The splitting of idempotents in \mathcal{C} is a full subcategory of $\mathcal{D}(\mathcal{C})$:

$$
\mathfrak{C} \longrightarrow \mathcal{J}(\mathcal{C}) \longrightarrow \mathcal{D}(\mathcal{C})
$$

Diagonals (4)

There is a full embedding

$$
I: \mathcal{C} \rightarrow \mathcal{D}(\mathcal{C}):(A \xrightarrow{f} B) \mapsto\left(\begin{array}{ccc}
A & & B \\
1_{A} \downarrow & f_{\searrow}^{\downarrow} 1_{B} \\
A & & B
\end{array}\right)
$$

displaying $\mathcal{D}(\mathcal{C})$ to be the universal "split-everything (properly)" completion of \mathcal{C} :

$$
\text { for any } f \text { in } \mathcal{C}, 1_{A} \xrightarrow{f} 1_{B}=1_{A} \xrightarrow{f} f \succ \xrightarrow{f} 1_{B} \text { in } \mathcal{D}(\mathcal{C})
$$

(Actually all arrows in $\mathcal{D}(\mathcal{C})$ have an image factorisation; this leads to a monadic characterisation of proper factorisation systems.)

The splitting of idempotents in \mathcal{C} is a full subcategory of $\mathcal{D}(\mathcal{C})$:

$$
\mathcal{C} \longrightarrow \mathcal{J}(\mathcal{C}) \longrightarrow \mathcal{D}(\mathcal{C})
$$

Note: even for a monoid M, both $\mathcal{J}(M)$ and $\mathcal{D}(M)$ are (many-object) categories.

Diagonals (5)

In any quantaloid Q, making use of residuation,

Diagonals (5)

In any quantaloid Q, making use of residuation,

Diagonals (5)

In any quantaloid Q, making use of residuation,

That is, if $d: f \rightarrow g$ is a diagonal in Q, then its square can be filled in a canonical way.

Diagonals (5)

In any quantaloid Q, making use of residuation,

That is, if $d: f \rightarrow g$ is a diagonal in Q, then its square can be filled in a canonical way.
The category $\mathcal{D}(Q)$ is actually a quantaloid too (with local suprema "as in $Q^{\prime \prime}$), in which the composition rule can be made explicit as

Diagonals (5)

In any quantaloid Q, making use of residuation,

That is, if $d: f \rightarrow g$ is a diagonal in Q, then its square can be filled in a canonical way.
The category $\mathcal{D}(Q)$ is actually a quantaloid too (with local suprema "as in $Q^{\prime \prime}$), in which the composition rule can be made explicit as

This holds a fortiori for $\mathcal{J}(Q)$ too, and the full embeddings are indeed quantaloid homomorphisms:

$$
\mathcal{Q} \longrightarrow \mathcal{J}(Q) \longrightarrow \mathcal{D}(\mathbb{Q})
$$

Diagonals (6)

Recall, a quantaloid Q is divisible if, for every $f, g: X \rightarrow Y$,

$$
g \circ(g \searrow f)=f \wedge g=(f \swarrow g) \circ g .
$$

Diagonals (6)

Recall, a quantaloid Q is divisible if, for every $f, g: X \rightarrow Y$,

$$
g \circ(g \searrow f)=f \wedge g=(f \swarrow g) \circ g .
$$

And d is a diagonal from f to g precisely when

Diagonals (6)

Recall, a quantaloid Q is divisible if, for every $f, g: X \rightarrow Y$,

$$
g \circ(g \searrow f)=f \wedge g=(f \swarrow g) \circ g .
$$

And d is a diagonal from f to g precisely when

It is not very difficult to prove now that:
Q is divisible iff $\quad \mathcal{D}(Q)(f, g)=\downarrow f \wedge g$.

Diagonals (6)

Recall, a quantaloid Q is divisible if, for every $f, g: X \rightarrow Y$,

$$
g \circ(g \searrow f)=f \wedge g=(f \swarrow g) \circ g
$$

And d is a diagonal from f to g precisely when

It is not very difficult to prove now that:

$$
Q \text { is divisible } \quad \text { iff } \quad \mathcal{D}(\mathbb{Q})(f, g)=\downarrow f \wedge g
$$

Proof:
\Rightarrow If Q is divisible then it is integral; so when $g \circ x=d=y \circ f$ then surely $d \leq f \wedge g$; and conversely, from $d \leq f \wedge g \leq f$ we get $d=d \wedge f=(d \swarrow f) \circ f$ and similarly $d=g \circ(g \searrow d)$.
\Leftarrow If $\mathcal{D}(Q)(f, g)=\downarrow f \wedge g$ then Q is integral because $\mathcal{Q}(X, X)=\mathcal{D}(Q)\left(1_{X}, 1_{X}\right)=\downarrow 1_{X}$; but also $g \circ x=f \wedge g=y \circ f$, which implies $x \leq g \searrow f$ and $y \leq g \swarrow f$ and from that also $f \wedge g \leq g(g \searrow f)$ and $f \wedge g \leq(f \swarrow g) g$; the other inequation holds by integrality, so $g(g \searrow f)=f \wedge g=(f \swarrow g) g$.

Diagonals (6)

Recall, a quantaloid Q is divisible if, for every $f, g: X \rightarrow Y$,

$$
g \circ(g \searrow f)=f \wedge g=(f \swarrow g) \circ g
$$

And d is a diagonal from f to g precisely when

It is not very difficult to prove now that:
Q is divisible iff $\quad \mathcal{D}(Q)(f, g)=\downarrow f \wedge g$.
Moreover, \mathcal{Q} is divisible iff $\mathcal{D}(Q)$ is divisible.

Diagonals (6)

Recall, a quantaloid Q is divisible if, for every $f, g: X \rightarrow Y$,

$$
g \circ(g \searrow f)=f \wedge g=(f \swarrow g) \circ g
$$

And d is a diagonal from f to g precisely when

It is not very difficult to prove now that:
Q is divisible iff $\quad \mathcal{D}(Q)(f, g)=\downarrow f \wedge g$.
Moreover, Q is divisible iff $\mathcal{D}(Q)$ is divisible.
Computations with $\mathcal{D}(Q)$ thus simplify a great deal whenever Q is a divisible quantaloid: because the hom-sup-lattices are easy, because the composition law is easy!

Diagonals (6)

Recall, a quantaloid Q is divisible if, for every $f, g: X \rightarrow Y$,

$$
g \circ(g \searrow f)=f \wedge g=(f \swarrow g) \circ g
$$

And d is a diagonal from f to g precisely when

It is not very difficult to prove now that:
Q is divisible iff $\quad \mathcal{D}(Q)(f, g)=\downarrow f \wedge g$.
Moreover, Q is divisible iff $\mathcal{D}(Q)$ is divisible.
Computations with $\mathcal{D}(Q)$ thus simplify a great deal whenever Q is a divisible quantaloid: because the hom-sup-lattices are easy, because the composition law is easy!

This applies to any divisible quantale Q-which is of use in many-valued logic.
3. Many-valued logic
3. Many-valued logic

Many-valued logic (1)
An order $\mathbb{X}=(X, \leq)$ is a set together with a binary predicate

$$
\mathbb{X}: X \times X \rightarrow\{\perp, \top\}:(x, y) \mapsto\left\{\begin{array}{l}
\top \text { if } x \leq y \\
\perp \text { if } x \not \leq y
\end{array}\right.
$$

such that

$$
\left\{\begin{array}{l}
\mathbb{X}(x, y) \wedge \mathbb{X}(y, z) \leq \mathbb{X}(x, z) \\
\top \leq \mathbb{X}(x, x)
\end{array}\right.
$$

Many-valued logic (1)
A $(Q, \bigvee, \cdot, 1)$-valued order \mathbb{X} is a set together with a binary predicate

$$
\mathbb{X}: X \times X \rightarrow\{\perp, \top\}:(x, y) \mapsto\left\{\begin{array}{l}
\top \text { if } x \leq y \\
\perp \text { if } x \not \leq y
\end{array}\right.
$$

such that

$$
\left\{\begin{array}{l}
\mathbb{X}(x, y) \wedge \mathbb{X}(y, z) \leq \mathbb{X}(x, z) \\
\top \leq \mathbb{X}(x, x)
\end{array}\right.
$$

Many-valued logic (1)
A $(Q, \bigvee, \cdot, 1)$-valued order \mathbb{X} is a set together with a binary predicate

$$
\mathbb{X}: X \times X \rightarrow Q
$$

such that

$$
\left\{\begin{array}{l}
\mathbb{X}(x, y) \wedge \mathbb{X}(y, z) \leq \mathbb{X}(x, z) \\
\top \leq \mathbb{X}(x, x)
\end{array}\right.
$$

Many-valued logic (1)
A $(Q, \bigvee, \cdot, 1)$-valued order \mathbb{X} is a set together with a binary predicate

$$
\mathbb{X}: X \times X \rightarrow Q
$$

such that

$$
\left\{\begin{array}{l}
\mathbb{X}(x, y) \cdot \mathbb{X}(y, z) \leq \mathbb{X}(x, z) \\
\top \leq \mathbb{X}(x, x)
\end{array}\right.
$$

Many-valued logic (1)
A $(Q, \bigvee, \cdot, 1)$-valued order \mathbb{X} is a set together with a binary predicate

$$
\mathbb{X}: X \times X \rightarrow Q
$$

such that

$$
\left\{\begin{array}{l}
\mathbb{X}(x, y) \cdot \mathbb{X}(y, z) \leq \mathbb{X}(x, z) \\
1 \leq \mathbb{X}(x, x)
\end{array}\right.
$$

Many-valued logic (1)
A $(Q, \bigvee, \cdot, 1)$-valued order \mathbb{X} is a set together with a binary predicate

$$
\mathbb{X}: X \times X \rightarrow Q
$$

such that

$$
\left\{\begin{array}{l}
\mathbb{X}(x, y) \cdot \mathbb{X}(y, z) \leq \mathbb{X}(x, z) \\
1 \leq \mathbb{X}(x, x)
\end{array}\right.
$$

This is exactly the definition of a Q-enriched category \mathbb{X}.

Many-valued logic (1)

A $(Q, \bigvee, \cdot, 1)$-valued order \mathbb{X} is a set together with a binary predicate

$$
\mathbb{X}: X \times X \rightarrow Q
$$

such that

$$
\left\{\begin{array}{l}
\mathbb{X}(x, y) \cdot \mathbb{X}(y, z) \leq \mathbb{X}(x, z) \\
1 \leq \mathbb{X}(x, x)
\end{array}\right.
$$

This is exactly the definition of a Q-enriched category \mathbb{X}.
There is a very rich theory of Q-enriched categories, functors and distributors, which thus - at first sight - caters for a theory of "many-valued orders".

Many-valued logic (1)

A $(Q, \bigvee, \cdot, 1)$-valued order \mathbb{X} is a set together with a binary predicate

$$
\mathbb{X}: X \times X \rightarrow Q
$$

such that

$$
\left\{\begin{array}{l}
\mathbb{X}(x, y) \cdot \mathbb{X}(y, z) \leq \mathbb{X}(x, z) \\
1 \leq \mathbb{X}(x, x)
\end{array}\right.
$$

This is exactly the definition of a Q-enriched category \mathbb{X}.
There is a very rich theory of Q-enriched categories, functors and distributors, which thus - at first sight - caters for a theory of "many-valued orders".

However...

Many-valued logic (2)
Let A be a set and (P, \leq) an order, and consider the set

$$
X=\{f: S \rightarrow P \text { is a function } \mid S \subseteq A\}
$$

of partial functions from A to P.

Many-valued logic (2)
Let A be a set and (P, \leq) an order, and consider the set

$$
X=\{f: S \rightarrow P \text { is a function } \mid S \subseteq A\}
$$

of partial functions from A to P.
To compare partial functions f and g, it is most natural to compute the "extent to which f is smaller than g ":

$$
\mathbb{X}(f, g)=\{x \in \operatorname{dom}(f) \cap \operatorname{dom}(g) \mid f x \leq g x \text { in } P\}
$$

Many-valued logic (2)
Let A be a set and (P, \leq) an order, and consider the set

$$
X=\{f: S \rightarrow P \text { is a function } \mid S \subseteq A\}
$$

of partial functions from A to P.
To compare partial functions f and g, it is most natural to compute the "extent to which f is smaller than g ":

$$
\mathbb{X}(f, g)=\{x \in \operatorname{dom}(f) \cap \operatorname{dom}(g) \mid f x \leq g x \text { in } P\}
$$

This makes up a $(\mathcal{P}(A), \bigcup, \cap, A)$-valued predicate

$$
\mathbb{X}: X \times X \rightarrow \mathcal{P}(A)
$$

Many-valued logic (2)
Let A be a set and (P, \leq) an order, and consider the set

$$
X=\{f: S \rightarrow P \text { is a function } \mid S \subseteq A\}
$$

of partial functions from A to P.
To compare partial functions f and g, it is most natural to compute the "extent to which f is smaller than g ":

$$
\mathbb{X}(f, g)=\{x \in \operatorname{dom}(f) \cap \operatorname{dom}(g) \mid f x \leq g x \text { in } P\}
$$

This makes up a $(\mathcal{P}(A), \bigcup, \cap, A)$-valued predicate

$$
\mathbb{X}: X \times X \rightarrow \mathcal{P}(A)
$$

for which

$$
\{\mathbb{X}(f, g) \cap \mathbb{X}(g, h) \subseteq \mathbb{X}(f, h) \text { holds }
$$

Many-valued logic (2)
Let A be a set and (P, \leq) an order, and consider the set
of partial functions from A to P.
To compare partial functions f and g, it is most natural to compute the "extent to which f is smaller than g ":

$$
\mathbb{X}(f, g)=\{x \in \operatorname{dom}(f) \cap \operatorname{dom}(g) \mid f x \leq g x \text { in } P\}
$$

This makes up a $(\mathcal{P}(A), \bigcup, \cap, A)$-valued predicate

$$
\mathbb{X}: X \times X \rightarrow \mathcal{P}(A)
$$

for which

$$
\left\{\begin{array}{l}
\mathbb{X}(f, g) \cap \mathbb{X}(g, h) \subseteq \mathbb{X}(f, h) \text { holds } \\
A \subseteq \mathbb{X}(f, f) \text { fails! }
\end{array}\right.
$$

Many-valued logic (2)
Let A be a set and (P, \leq) an order, and consider the set

$$
X=\{f: S \rightarrow P \text { is a function } \mid S \subseteq A\}
$$

of partial functions from A to P.
To compare partial functions f and g, it is most natural to compute the "extent to which f is smaller than g ":

$$
\mathbb{X}(f, g)=\{x \in \operatorname{dom}(f) \cap \operatorname{dom}(g) \mid f x \leq g x \text { in } P\}
$$

This makes up a $(\mathcal{P}(A), \bigcup, \cap, A)$-valued predicate

$$
\mathbb{X}: X \times X \rightarrow \mathcal{P}(A)
$$

for which

$$
\left\{\begin{array}{l}
\mathbb{X}(f, g) \cap \mathbb{X}(g, h) \subseteq \mathbb{X}(f, h) \text { holds } \\
A \subseteq \mathbb{X}(f, f) \text { fails! }
\end{array}\right.
$$

So \mathbb{X} is not a $\mathcal{P}(A)$-enriched category, because the quantale $\mathcal{P}(A)$ does not deal adequately with the partiality of \mathbb{X} 's elements.

Many-valued logic (2)
Let A be a set and (P, \leq) an order, and consider the set

$$
X=\{f: S \rightarrow P \text { is a function } \mid S \subseteq A\}
$$

of partial functions from A to P.
To compare partial functions f and g, it is most natural to compute the "extent to which f is smaller than g ":

$$
\mathbb{X}(f, g)=\{x \in \operatorname{dom}(f) \cap \operatorname{dom}(g) \mid f x \leq g x \text { in } P\} .
$$

This makes up a $(\mathcal{P}(A), \bigcup, \cap, A)$-valued predicate

$$
\mathbb{X}: X \times X \rightarrow \mathcal{P}(A)
$$

for which

$$
\left\{\begin{array}{l}
\mathbb{X}(f, g) \cap \mathbb{X}(g, h) \subseteq \mathbb{X}(f, h) \text { holds }, \\
A \subseteq \mathbb{X}(f, f) \text { fails! }
\end{array}\right.
$$

So \mathbb{X} is not a $\mathcal{P}(A)$-enriched category, because the quantale $\mathcal{P}(A)$ does not deal adequately with the partiality of \mathbb{X} 's elements.

Quantaloids, diagonals and divisibility to the rescue!

Many-valued logic (3)
Let Q be a (small) quantaloid. A Q-enriched category \mathbb{C} consists of:

- a set \mathbb{C}_{0},
- a unary predicate $t: \mathbb{C}_{0} \rightarrow \operatorname{obj}(Q)$,
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow \operatorname{arr}(\mathbb{Q})$ for which we have:
- $\mathbb{C}(y, x): t x \rightarrow t y$,
- $1_{t x} \leq \mathbb{C}(x, x)$,
- $\mathbb{C}(z, y) \circ \mathbb{C}(y, x) \leq \mathbb{C}(z, x)$.

Many-valued logic (3)
Let Q be a (small) quantaloid. A Q-enriched category \mathbb{C} consists of:

- a set \mathbb{C}_{0},
- a unary predicate $t: \mathbb{C}_{0} \rightarrow \operatorname{obj}(\mathbb{Q})$,
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow \operatorname{arr}(\mathbb{Q})$
 for which we have:
- $\mathbb{C}(y, x): t x \rightarrow t y$,
- $1_{t x} \leq \mathbb{C}(x, x)$,
- $\mathbb{C}(z, y) \circ \mathbb{C}(y, x) \leq \mathbb{C}(z, x)$.

There is - again - a very rich theory of Q-enriched categories, functors and distributors.

Many-valued logic (3)

Let Q be a (small) quantaloid. A Q-enriched category \mathbb{C} consists of:

- a set \mathbb{C}_{0},
- a unary predicate $t: \mathbb{C}_{0} \rightarrow \operatorname{obj}(\mathbb{Q})$,
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow \operatorname{arr}(\mathbb{Q})$

- $\mathbb{C}(y, x): t x \rightarrow t y$,
- $1_{t x} \leq \mathbb{C}(x, x)$,
- $\mathbb{C}(z, y) \circ \mathbb{C}(y, x) \leq \mathbb{C}(z, x)$. for which we have:

There is - again - a very rich theory of Q-enriched categories, functors and distributors.
But how can this help us with the previous (and other) examples?

Many-valued logic (4)
Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals.

Many-valued logic (4)
Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals.
A $\mathcal{D}(Q)$-enriched category \mathbb{C} is

- a set \mathbb{C}_{0},
- a unary predicate $t: \mathbb{C}_{0} \rightarrow \operatorname{obj}(\mathcal{D}(Q))$,
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow \operatorname{arr}(\mathcal{D}(Q))$
for which we have in $\mathcal{D}(Q)$:
- $\mathbb{C}(y, x): t x \rightarrow t y$,
- $1_{t x} \leq \mathbb{C}(x, x)$,
- $\mathbb{C}(z, y) \circ_{t y} \mathbb{C}(y, x) \leq \mathbb{C}(z, x)$.

Many-valued logic (4)
Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals.
A $\mathcal{D}(Q)$-enriched category \mathbb{C} is

- a set \mathbb{C}_{0},
- a unary predicate $t: \mathbb{C}_{0} \rightarrow Q$,
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow \operatorname{arr}(\mathcal{D}(Q))$
for which we have in $\mathcal{D}(Q)$:
- $\mathbb{C}(y, x): t x \rightarrow t y$,
- $1_{t x} \leq \mathbb{C}(x, x)$,
- $\mathbb{C}(z, y) \circ_{t y} \mathbb{C}(y, x) \leq \mathbb{C}(z, x)$.

Many-valued logic (4)
Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals.
A $\mathcal{D}(Q)$-enriched category \mathbb{C} is

- a set \mathbb{C}_{0},
- a unary predicate $t: \mathbb{C}_{0} \rightarrow Q$,
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow Q$
for which we have in $\mathcal{D}(Q)$:
- $\mathbb{C}(y, x): t x \rightarrow t y$,
- $1_{t x} \leq \mathbb{C}(x, x)$,
- $\mathbb{C}(z, y) \circ_{t y} \mathbb{C}(y, x) \leq \mathbb{C}(z, x)$.

Many-valued logic (4)
Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals.
A $\mathcal{D}(Q)$-enriched category \mathbb{C} is

- a set \mathbb{C}_{0},
- a unary predicate $t: \mathbb{C}_{0} \rightarrow Q$,
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow Q$
for which we have in Q :
- $\mathbb{C}(y, x): t x \rightarrow t y$,
- $1_{t x} \leq \mathbb{C}(x, x)$,
- $\mathbb{C}(z, y) \circ_{t y} \mathbb{C}(y, x) \leq \mathbb{C}(z, x)$.

Many-valued logic (4)
Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals.
A $\mathcal{D}(Q)$-enriched category \mathbb{C} is

- a set \mathbb{C}_{0},
- a unary predicate $t: \mathbb{C}_{0} \rightarrow Q$,
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow Q$
for which we have in Q :
- $\mathbb{C}(y, x) \leq t x \wedge t y$,
- $1_{t x} \leq \mathbb{C}(x, x)$,
- $\mathbb{C}(z, y) \circ_{t y} \mathbb{C}(y, x) \leq \mathbb{C}(z, x)$.

Many-valued logic (4)
Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals.
A $\mathcal{D}(Q)$-enriched category \mathbb{C} is

- a set \mathbb{C}_{0},
- a unary predicate $t: \mathbb{C}_{0} \rightarrow Q$,
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow Q$
for which we have in Q :
- $\mathbb{C}(y, x) \leq t x \wedge t y$,
- $t x \leq \mathbb{C}(x, x)$,
- $\mathbb{C}(z, y) \circ_{t y} \mathbb{C}(y, x) \leq \mathbb{C}(z, x)$.

Many-valued logic (4)
Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals.
A $\mathcal{D}(Q)$-enriched category \mathbb{C} is

- a set \mathbb{C}_{0},
- a unary predicate $t: \mathbb{C}_{0} \rightarrow Q$,
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow Q$
for which we have in Q :
- $\mathbb{C}(y, x) \leq t x \wedge t y$,
- $t x=\mathbb{C}(x, x)$,
- $\mathbb{C}(z, y) \circ_{t y} \mathbb{C}(y, x) \leq \mathbb{C}(z, x)$.

Many-valued logic (4)
Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals.
A $\mathcal{D}(Q)$-enriched category \mathbb{C} is

- a set \mathbb{C}_{0},
- a unary predicate $t: \mathbb{C}_{0} \rightarrow Q$,
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow Q$
for which we have in Q :
- $\mathbb{C}(y, x) \leq \mathbb{C}(x, x) \wedge \mathbb{C}(y, y)$,
- $t x=\mathbb{C}(x, x)$,
- $\mathbb{C}(z, y) \circ_{t y} \mathbb{C}(y, x) \leq \mathbb{C}(z, x)$.

Many-valued logic (4)
Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals.
A $\mathcal{D}(Q)$-enriched category \mathbb{C} is

- a set \mathbb{C}_{0},
- a unary predicate $t: \mathbb{C}_{0} \rightarrow Q$,
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow Q$
for which we have in Q :
- $\mathbb{C}(y, x) \leq \mathbb{C}(x, x) \wedge \mathbb{C}(y, y)$,
- $t x=\mathbb{C}(x, x)$,
- $\mathbb{C}(z, y) \circ_{\mathbb{C}}(y, y) \mathbb{C}(y, x) \leq \mathbb{C}(z, x)$.

Many-valued logic (4)
Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals.
A $\mathcal{D}(Q)$-enriched category \mathbb{C} is

- a set \mathbb{C}_{0},
- a unary predicate $t: \mathbb{C}_{0} \rightarrow Q$,
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow Q$
for which we have in Q :
- $\mathbb{C}(y, x) \leq \mathbb{C}(x, x) \wedge \mathbb{C}(y, y)$,
- $t x=\mathbb{C}(x, x)$,
- $\mathbb{C}(z, y) \circ_{\mathbb{C}}(y, y) \mathbb{C}(y, x) \leq \mathbb{C}(z, x)$.

Many-valued logic (4)
Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals.
A $\mathcal{D}(Q)$-enriched category \mathbb{C} is

- a set \mathbb{C}_{0},
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow Q$
for which we have in Q :
- $\mathbb{C}(y, x) \leq \mathbb{C}(x, x) \wedge \mathbb{C}(y, y)$,
- $\mathbb{C}(z, y) \circ_{\mathbb{C}(y, y)} \mathbb{C}(y, x) \leq \mathbb{C}(z, x)$.

Many-valued logic (4)
Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals.
A $\mathcal{D}(Q)$-enriched category \mathbb{C} is

- a set \mathbb{C}_{0},
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow Q$
for which we have in Q :
- $\mathbb{C}(y, x) \leq \mathbb{C}(x, x) \wedge \mathbb{C}(y, y)$,
- $[\mathbb{C}(z, y) \swarrow \mathbb{C}(y, y)] \cdot \mathbb{C}(y, y) \cdot[\mathbb{C}(y, y) \searrow \mathbb{C}(y, x)] \leq \mathbb{C}(z, x)$.

Many-valued logic (4)
Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals.
A $\mathcal{D}(Q)$-enriched category \mathbb{C} is

- a set \mathbb{C}_{0},
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow Q$
for which we have in Q :
- $\mathbb{C}(y, x) \leq \mathbb{C}(x, x) \wedge \mathbb{C}(y, y)$,
- $\mathbb{C}(z, y) \cdot[\mathbb{C}(y, y) \rightarrow \mathbb{C}(y, x)] \leq \mathbb{C}(z, x)$.

Many-valued logic (4)
Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals. A $\mathcal{D}(Q)$-enriched category \mathbb{C} is

- a set \mathbb{C}_{0},
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow Q$
for which we have in Q :
- $\mathbb{C}(y, x) \leq \mathbb{C}(x, x) \wedge \mathbb{C}(y, y)$,
- $\mathbb{C}(z, y) \cdot[\mathbb{C}(y, y) \rightarrow \mathbb{C}(y, x)] \leq \mathbb{C}(z, x)$.

Think of this as a partial Q-enriched category (or a Q-enriched partial category?).

Many-valued logic (4)

Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals.
A $\mathcal{D}(Q)$-enriched category \mathbb{C} is

- a set \mathbb{C}_{0},
- a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow Q$
for which we have in Q :
- $\mathbb{C}(y, x) \leq \mathbb{C}(x, x) \wedge \mathbb{C}(y, y)$,
- $\mathbb{C}(z, y) \cdot[\mathbb{C}(y, y) \rightarrow \mathbb{C}(y, x)] \leq \mathbb{C}(z, x)$.

Think of this as a partial Q-enriched category (or a Q-enriched partial category?).
Similar simplifications can be done for the notion of $\mathcal{D}(Q)$-enriched functor and distributor-for indeed, we have the complete quantaloid-enriched yoga at our disposal.

Many-valued logic (5)
Partial functions done right:

Many-valued logic (5)
Partial functions done right:
Recall, for A a set and (P, \leq) is order, we wish to consider the set

$$
X=\{f: S \rightarrow P \text { is a function } \mid S \subseteq A\}
$$

together with the binary predicate

$$
\mathbb{X}: X \times X \rightarrow \mathcal{P}(A):(f, g) \mapsto\{x \in \operatorname{dom}(f) \cap \operatorname{dom}(g) \mid f x \leq g x \text { in } P\}
$$

Many-valued logic (5)
Partial functions done right:
Recall, for A a set and (P, \leq) is order, we wish to consider the set

$$
X=\{f: S \rightarrow P \text { is a function } \mid S \subseteq A\}
$$

together with the binary predicate

$$
\mathbb{X}: X \times X \rightarrow \mathcal{P}(A):(f, g) \mapsto\{x \in \operatorname{dom}(f) \cap \operatorname{dom}(g) \mid f x \leq g x \text { in } P\}
$$

As any locale, $(\mathcal{P}(A), \bigcup, \cap, A)$ is a divisible, commutative quantale. Better still, because every element is idempotent in this quantale, we have $\mathcal{D}(\mathcal{P}(A))=\mathcal{J}(\mathcal{P}(A))$, making the composition of diagonals even simpler.

Many-valued logic (5)

Partial functions done right:
Recall, for A a set and (P, \leq) is order, we wish to consider the set

$$
X=\{f: S \rightarrow P \text { is a function } \mid S \subseteq A\}
$$

together with the binary predicate

$$
\mathbb{X}: X \times X \rightarrow \mathcal{P}(A):(f, g) \mapsto\{x \in \operatorname{dom}(f) \cap \operatorname{dom}(g) \mid f x \leq g x \text { in } P\}
$$

As any locale, $(\mathcal{P}(A), \bigcup, \cap, A)$ is a divisible, commutative quantale. Better still, because every element is idempotent in this quantale, we have $\mathcal{D}(\mathcal{P}(A))=\mathcal{J}(\mathcal{P}(A))$, making the composition of diagonals even simpler.

Now we find that

- $\mathbb{X}(f, g) \subseteq \mathbb{X}(f, f) \cap \mathbb{X}(g, g)$

Many-valued logic (5)

Partial functions done right:
Recall, for A a set and (P, \leq) is order, we wish to consider the set

$$
X=\{f: S \rightarrow P \text { is a function } \mid S \subseteq A\}
$$

together with the binary predicate

$$
\mathbb{X}: X \times X \rightarrow \mathcal{P}(A):(f, g) \mapsto\{x \in \operatorname{dom}(f) \cap \operatorname{dom}(g) \mid f x \leq g x \text { in } P\}
$$

As any locale, $(\mathcal{P}(A), \bigcup, \cap, A)$ is a divisible, commutative quantale. Better still, because every element is idempotent in this quantale, we have $\mathcal{D}(\mathcal{P}(A))=\mathcal{J}(\mathcal{P}(A))$, making the composition of diagonals even simpler.

Now we find that

- $\mathbb{X}(f, g) \subseteq \mathbb{X}(f, f) \cap \mathbb{X}(g, g)$
- $\mathbb{X}(f, g) \cap[\mathbb{X}(g, g) \Rightarrow \mathbb{X}(g, h)] \subseteq \mathbb{X}(f, h)$

Many-valued logic (5)

Partial functions done right:
Recall, for A a set and (P, \leq) is order, we wish to consider the set

$$
X=\{f: S \rightarrow P \text { is a function } \mid S \subseteq A\}
$$

together with the binary predicate

$$
\mathbb{X}: X \times X \rightarrow \mathcal{P}(A):(f, g) \mapsto\{x \in \operatorname{dom}(f) \cap \operatorname{dom}(g) \mid f x \leq g x \text { in } P\}
$$

As any locale, $(\mathcal{P}(A), \bigcup, \cap, A)$ is a divisible, commutative quantale. Better still, because every element is idempotent in this quantale, we have $\mathcal{D}(\mathcal{P}(A))=\mathcal{J}(\mathcal{P}(A))$, making the composition of diagonals even simpler.

Now we find that

- $\mathbb{X}(f, g) \subseteq \mathbb{X}(f, f) \cap \mathbb{X}(g, g)$
- $\mathbb{X}(f, g) \cap \mathbb{X}(g, h) \subseteq \mathbb{X}(f, h)$

Many-valued logic (5)

Partial functions done right:
Recall, for A a set and (P, \leq) is order, we wish to consider the set

$$
X=\{f: S \rightarrow P \text { is a function } \mid S \subseteq A\}
$$

together with the binary predicate

$$
\mathbb{X}: X \times X \rightarrow \mathcal{P}(A):(f, g) \mapsto\{x \in \operatorname{dom}(f) \cap \operatorname{dom}(g) \mid f x \leq g x \text { in } P\}
$$

As any locale, $(\mathcal{P}(A), \bigcup, \cap, A)$ is a divisible, commutative quantale. Better still, because every element is idempotent in this quantale, we have $\mathcal{D}(\mathcal{P}(A))=\mathcal{J}(\mathcal{P}(A))$, making the composition of diagonals even simpler.

Now we find that

- $\mathbb{X}(f, g) \subseteq \mathbb{X}(f, f) \cap \mathbb{X}(g, g)$
- $\mathbb{X}(f, g) \cap \mathbb{X}(g, h) \subseteq \mathbb{X}(f, h)$
are both satisfied.

Many-valued logic (5)

Partial functions done right:
Recall, for A a set and (P, \leq) is order, we wish to consider the set

$$
X=\{f: S \rightarrow P \text { is a function } \mid S \subseteq A\}
$$

together with the binary predicate

$$
\mathbb{X}: X \times X \rightarrow \mathcal{P}(A):(f, g) \mapsto\{x \in \operatorname{dom}(f) \cap \operatorname{dom}(g) \mid f x \leq g x \text { in } P\}
$$

As any locale, $(\mathcal{P}(A), \bigcup, \cap, A)$ is a divisible, commutative quantale. Better still, because every element is idempotent in this quantale, we have $\mathcal{D}(\mathcal{P}(A))=\mathcal{J}(\mathcal{P}(A))$, making the composition of diagonals even simpler.

Now we find that

- $\mathbb{X}(f, g) \subseteq \mathbb{X}(f, f) \cap \mathbb{X}(g, g)$
- $\mathbb{X}(f, g) \cap \mathbb{X}(g, h) \subseteq \mathbb{X}(f, h)$
are both satisfied.
This makes \mathbb{X} a partial $\mathcal{P}(A)$-category.

Many-valued logic (5)

Partial functions done right:
Recall, for A a set and (P, \leq) is order, we wish to consider the set

$$
X=\{f: S \rightarrow P \text { is a function } \mid S \subseteq A\}
$$

together with the binary predicate

$$
\mathbb{X}: X \times X \rightarrow \mathcal{P}(A):(f, g) \mapsto\{x \in \operatorname{dom}(f) \cap \operatorname{dom}(g) \mid f x \leq g x \text { in } P\}
$$

As any locale, $(\mathcal{P}(A), \bigcup, \cap, A)$ is a divisible, commutative quantale. Better still, because every element is idempotent in this quantale, we have $\mathcal{D}(\mathcal{P}(A))=\mathcal{J}(\mathcal{P}(A))$, making the composition of diagonals even simpler.

Now we find that

- $\mathbb{X}(f, g) \subseteq \mathbb{X}(f, f) \cap \mathbb{X}(g, g)$
- $\mathbb{X}(f, g) \cap \mathbb{X}(g, h) \subseteq \mathbb{X}(f, h)$
are both satisfied.
This makes \mathbb{X} a partial $\mathcal{P}(A)$-category.
With a bit more quantaloid-enriched category theory, one can deal with sheaves on a locale in this way.

Many-valued logic (6)
Partial metrics done right:

Many-valued logic (6)
Partial metrics done right:
As any continuous t-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.

Many-valued logic (6)
Partial metrics done right:
As any continuous t-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.
In what follows we shall consider its isomorphic copy $([0, \infty], \Lambda,+, 0)$, the Lawvere quantale of real numbers, in which residuation is

$$
x \rightarrow y=0 \vee(-x+y)
$$

Many-valued logic (6)
Partial metrics done right:
As any continuous t-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.
In what follows we shall consider its isomorphic copy $([0, \infty], \Lambda,+, 0)$, the Lawvere quantale of real numbers, in which residuation is

$$
x \rightarrow y=0 \vee(-x+y)
$$

Since there are no non-trivial idempotents, $\mathcal{D}[0, \infty]$ is much bigger than $\mathcal{J}[0, \infty]$.

Many-valued logic (6)
Partial metrics done right:
As any continuous t-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.
In what follows we shall consider its isomorphic copy $([0, \infty], \bigwedge,+, 0)$, the Lawvere quantale of real numbers, in which residuation is

$$
x \rightarrow y=0 \vee(-x+y)
$$

Since there are no non-trivial idempotents, $\mathcal{D}[0, \infty]$ is much bigger than $\mathcal{J}[0, \infty]$.
A partial $[0, \infty]$-category \mathbb{X} now consists of a set X together with a binary predicate

$$
\mathbb{X}: X \times X \rightarrow[0, \infty]
$$

Many-valued logic (6)
Partial metrics done right:
As any continuous t-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.
In what follows we shall consider its isomorphic copy $([0, \infty], \bigwedge,+, 0)$, the Lawvere quantale of real numbers, in which residuation is

$$
x \rightarrow y=0 \vee(-x+y)
$$

Since there are no non-trivial idempotents, $\mathcal{D}[0, \infty]$ is much bigger than $\mathcal{J}[0, \infty]$.
A partial $[0, \infty]$-category \mathbb{X} now consists of a set X together with a binary predicate

$$
\mathbb{X}: X \times X \rightarrow[0, \infty]
$$

satisfying

- $\mathbb{X}(x, y) \geq \mathbb{X}(x, x) \vee \mathbb{X}(y, y)$

Many-valued logic (6)
Partial metrics done right:
As any continuous t-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.
In what follows we shall consider its isomorphic copy $([0, \infty], \Lambda,+, 0)$, the Lawvere quantale of real numbers, in which residuation is

$$
x \rightarrow y=0 \vee(-x+y)
$$

Since there are no non-trivial idempotents, $\mathcal{D}[0, \infty]$ is much bigger than $\mathcal{J}[0, \infty]$.
A partial $[0, \infty]$-category \mathbb{X} now consists of a set X together with a binary predicate

$$
\mathbb{X}: X \times X \rightarrow[0, \infty]
$$

satisfying

- $\mathbb{X}(x, y) \geq \mathbb{X}(x, x) \vee \mathbb{X}(y, y)$
- $\mathbb{X}(x, y)+[\mathbb{X}(y, y) \rightarrow \mathbb{X}(y, z)] \geq \mathbb{X}(x, z)$

Many-valued logic (6)
Partial metrics done right:
As any continuous t-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.
In what follows we shall consider its isomorphic copy $([0, \infty], \Lambda,+, 0)$, the Lawvere quantale of real numbers, in which residuation is

$$
x \rightarrow y=0 \vee(-x+y)
$$

Since there are no non-trivial idempotents, $\mathcal{D}[0, \infty]$ is much bigger than $\mathcal{J}[0, \infty]$.
A partial $[0, \infty]$-category \mathbb{X} now consists of a set X together with a binary predicate

$$
\mathbb{X}: X \times X \rightarrow[0, \infty]
$$

satisfying

- $\mathbb{X}(x, y) \geq \mathbb{X}(x, x) \vee \mathbb{X}(y, y)$
- $\mathbb{X}(x, y)+[0 \vee(-\mathbb{X}(y, y)+\mathbb{X}(y, z))] \geq \mathbb{X}(x, z)$

Many-valued logic (6)
Partial metrics done right:
As any continuous t-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.
In what follows we shall consider its isomorphic copy $([0, \infty], \Lambda,+, 0)$, the Lawvere quantale of real numbers, in which residuation is

$$
x \rightarrow y=0 \vee(-x+y)
$$

Since there are no non-trivial idempotents, $\mathcal{D}[0, \infty]$ is much bigger than $\mathcal{J}[0, \infty]$.
A partial $[0, \infty]$-category \mathbb{X} now consists of a set X together with a binary predicate

$$
\mathbb{X}: X \times X \rightarrow[0, \infty]
$$

satisfying

- $\mathbb{X}(x, y) \geq \mathbb{X}(x, x) \vee \mathbb{X}(y, y)$
- $\mathbb{X}(x, y)-\mathbb{X}(y, y)+\mathbb{X}(y, z) \geq \mathbb{X}(x, z)$

Many-valued logic (6)

Partial metrics done right:
As any continuous t-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.
In what follows we shall consider its isomorphic copy $([0, \infty], \Lambda,+, 0)$, the Lawvere quantale of real numbers, in which residuation is

$$
x \rightarrow y=0 \vee(-x+y)
$$

Since there are no non-trivial idempotents, $\mathcal{D}[0, \infty]$ is much bigger than $\mathcal{J}[0, \infty]$.
A partial $[0, \infty]$-category \mathbb{X} now consists of a set X together with a binary predicate

$$
\mathbb{X}: X \times X \rightarrow[0, \infty]
$$

satisfying

- $\mathbb{X}(x, y) \geq \mathbb{X}(x, x) \vee \mathbb{X}(y, y)$
- $\mathbb{X}(x, y)-\mathbb{X}(y, y)+\mathbb{X}(y, z) \geq \mathbb{X}(x, z)$

That is to say, up to finiteness, symmetry and separatedness (which can all be expressed categorically!), we recover here the definition of a partial metric space.

Many-valued logic (6)

Partial metrics done right:
As any continuous t-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.
In what follows we shall consider its isomorphic copy $([0, \infty], \Lambda,+, 0)$, the Lawvere quantale of real numbers, in which residuation is

$$
x \rightarrow y=0 \vee(-x+y)
$$

Since there are no non-trivial idempotents, $\mathcal{D}[0, \infty]$ is much bigger than $\mathcal{J}[0, \infty]$.
A partial $[0, \infty]$-category \mathbb{X} now consists of a set X together with a binary predicate

$$
\mathbb{X}: X \times X \rightarrow[0, \infty]
$$

satisfying

- $\mathbb{X}(x, y) \geq \mathbb{X}(x, x) \vee \mathbb{X}(y, y)$
- $\mathbb{X}(x, y)-\mathbb{X}(y, y)+\mathbb{X}(y, z) \geq \mathbb{X}(x, z)$

That is to say, up to finiteness, symmetry and separatedness (which can all be expressed categorically!), we recover here the definition of a partial metric space.

Quantaloid-enriched category theory can be put to use here, in particular to deal with Cauchy completion, exponentiability, Hausdorff distance, and more.
4. Summary

Summary

In this talk I've tried to make the following points:

Summary

In this talk I've tried to make the following points:

- If Q is a divisible quantale, then the quantaloid $\mathcal{D}(Q)$ of diagonals in Q has a pleasant description.

Summary

In this talk I've tried to make the following points:

- If Q is a divisible quantale, then the quantaloid $\mathcal{D}(Q)$ of diagonals in Q has a pleasant description.
- If Q is a divisible commutative quantale, then a $\mathcal{D}(Q)$-enriched category \mathbb{C} is a set \mathbb{C}_{0} together with a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow Q$ satisfying

$$
\left\{\begin{array}{l}
\mathbb{C}(x, y) \leq \mathbb{C}(x, x) \wedge \mathbb{C}(y, y) \\
\mathbb{C}(x, y) \circ(\mathbb{C}(y, y) \rightarrow \mathbb{C}(y, z)) \leq \mathbb{C}(x, z)
\end{array}\right.
$$

Summary

In this talk I've tried to make the following points:

- If Q is a divisible quantale, then the quantaloid $\mathcal{D}(Q)$ of diagonals in Q has a pleasant description.
- If Q is a divisible commutative quantale, then a $\mathcal{D}(Q)$-enriched category \mathbb{C} is a set \mathbb{C}_{0} together with a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow Q$ satisfying

$$
\left\{\begin{array}{l}
\mathbb{C}(x, y) \leq \mathbb{C}(x, x) \wedge \mathbb{C}(y, y) \\
\mathbb{C}(x, y) \circ(\mathbb{C}(y, y) \rightarrow \mathbb{C}(y, z)) \leq \mathbb{C}(x, z)
\end{array}\right.
$$

- Such a "partial Q-category" is a many-valued order relation on a set of partially defined elements.

Summary

In this talk I've tried to make the following points:

- If Q is a divisible quantale, then the quantaloid $\mathcal{D}(Q)$ of diagonals in Q has a pleasant description.
- If Q is a divisible commutative quantale, then a $\mathcal{D}(Q)$-enriched category \mathbb{C} is a set \mathbb{C}_{0} together with a binary predicate $\mathbb{C}: \mathbb{C}_{0} \times \mathbb{C}_{0} \rightarrow Q$ satisfying

$$
\left\{\begin{array}{l}
\mathbb{C}(x, y) \leq \mathbb{C}(x, x) \wedge \mathbb{C}(y, y) \\
\mathbb{C}(x, y) \circ(\mathbb{C}(y, y) \rightarrow \mathbb{C}(y, z)) \leq \mathbb{C}(x, z)
\end{array}\right.
$$

- Such a "partial Q-category" is a many-valued order relation on a set of partially defined elements.
- Applied to a continuous t-norm, this seems to provide a useful notion of "fuzzy (pre)order" (on "fuzzy elements"!), but only further research and more examples can tell.

