Divisibility and diagonals in many-valued logic

Isar Stubbe

Université du Littoral, France

TACL in Nice, June 17-22, 2019

1. Divisibility

1. Divisibility

Modus Ponens ...

Modus Ponens in a Heyting algebra:

 $a \wedge (a \Rightarrow b) \leq b$

Modus Ponens in a Heyting algebra:

 $a \wedge (a \Rightarrow b) \leq a \wedge b$

Modus Ponens in a Heyting algebra:

$$a \wedge b \leq a \wedge (a \Rightarrow b) \leq a \wedge b$$

(from $a \wedge b \leq b$ get $b \leq (a \Rightarrow b)$)

$$a \wedge (a \Rightarrow b) = a \wedge b$$

$$a \wedge (a \Rightarrow b) = a \wedge b$$

... in
$$([0,1],\cdot,1)$$
 with residuation $a \to b = \begin{cases} 1 & \text{if } a \le b \\ a^{-1} \cdot b & \text{if } a > b \end{cases}$:

$$a \wedge (a \Rightarrow b) = a \wedge b$$

$$\begin{array}{ll} \dots \mbox{ in } ([0,1],\cdot,1) \mbox{ with residuation } a \to b = \left\{ \begin{array}{ll} 1 & \mbox{ if } a \leq b \\ a^{-1} \cdot b & \mbox{ if } a > b \end{array} \right. : \\ a \cdot (a \to b) & \leq b \end{array} \right.$$

$$a \wedge (a \Rightarrow b) = a \wedge b$$

... in
$$([0,1],\cdot,1)$$
 with residuation $a \to b = \begin{cases} 1 & \text{if } a \leq b \\ a^{-1} \cdot b & \text{if } a > b \end{cases}$:
 $a \cdot (a \to b) \leq a \wedge b$

because
$$a \cdot (a \to b) \le a \cdot 1 = a$$

$$a \wedge (a \Rightarrow b) = a \wedge b$$

... in
$$([0,1],\cdot,1)$$
 with residuation $a \to b = \begin{cases} 1 & \text{if } a \le b \\ a^{-1} \cdot b & \text{if } a > b \end{cases}$:
 $a \cdot (a \to b) = a \wedge b$

because
$$\begin{cases} \text{if } a \leq b \text{ then } a \wedge b = a = a \cdot 1 = a \cdot (a \to b) \\ \text{if } a > b \text{ then } a \wedge b = b = a \cdot a^{-1} \cdot b = a \cdot (a \to b) \end{cases}$$

Modus Ponens in a Heyting algebra:

$$a \wedge (a \Rightarrow b) = a \wedge b$$

... in
$$([0,1],\cdot,1)$$
 with residuation $a \to b = \begin{cases} 1 & \text{if } a \le b \\ a^{-1} \cdot b & \text{if } a > b \end{cases}$:
 $a \cdot (a \to b) = a \wedge b$

But there are many examples of **residuated monoids** in which this formula connecting multiplication, residuation and infimum does not hold:

Modus Ponens in a Heyting algebra:

$$a \wedge (a \Rightarrow b) = a \wedge b$$

... in
$$([0,1],\cdot,1)$$
 with residuation $a \to b = \begin{cases} 1 & \text{if } a \le b \\ a^{-1} \cdot b & \text{if } a > b \end{cases}$:
 $a \cdot (a \to b) = a \wedge b$

But there are many examples of **residuated monoids** in which this formula connecting multiplication, residuation and infimum does not hold:

... in the powerset of a monoid with pointwise multiplication,

Modus Ponens in a Heyting algebra:

$$a \wedge (a \Rightarrow b) = a \wedge b$$

... in
$$([0,1],\cdot,1)$$
 with residuation $a \to b = \begin{cases} 1 & \text{if } a \leq b \\ a^{-1} \cdot b & \text{if } a > b \end{cases}$:
 $a \cdot (a \to b) = a \wedge b$

But there are many examples of **residuated monoids** in which this formula connecting multiplication, residuation and infimum does not hold:

... in the powerset of a monoid with pointwise multiplication,

... in the monoid of relations on a set with usual relational composition,

Modus Ponens in a Heyting algebra:

$$a \wedge (a \Rightarrow b) = a \wedge b$$

... in
$$([0,1],\cdot,1)$$
 with residuation $a \to b = \begin{cases} 1 & \text{if } a \le b \\ a^{-1} \cdot b & \text{if } a > b \end{cases}$:
 $a \cdot (a \to b) = a \wedge b$

But there are many examples of **residuated monoids** in which this formula connecting multiplication, residuation and infimum does not hold:

- ... in the powerset of a monoid with pointwise multiplication,
- ... in the monoid of relations on a set with usual relational composition,
- ... in the monoid of sup-morphisms on a complete lattice with usual composition.

A residuated monoid $(M,\cdot,1,\searrow,\swarrow)$ is divisible if

$$a \cdot (a \searrow b) = a \wedge b = (b \swarrow a) \cdot a$$

holds for all $a, b \in M$.

A residuated monoid $(M,\cdot,1,\searrow,\swarrow)$ is divisible if

$$a \cdot (a \searrow b) = a \wedge b = (b \swarrow a) \cdot a$$

holds for all $a, b \in M$.

In what follows, all residuated monoids will be complete-i.e. they are quantales.

A residuated monoid $(M,\cdot,1,\searrow,\swarrow)$ is divisible if

$$a \cdot (a \searrow b) = a \wedge b = (b \swarrow a) \cdot a$$

holds for all $a, b \in M$.

In what follows, all residuated monoids will be complete-i.e. they are quantales.

We also need to consider **quantaloids**—because they arise from universal constructions on quantales.

A residuated monoid $(M,\cdot,1,\searrow,\swarrow)$ is divisible if

$$a \cdot (a \searrow b) = a \wedge b = (b \swarrow a) \cdot a$$

holds for all $a, b \in M$.

In what follows, all residuated monoids will be complete-i.e. they are quantales.

We also need to consider **quantaloids**—because they arise from universal constructions on quantales.

A quantaloid Ω is a category with hom-sup-lattices $\Omega(X, Y)$ such that all $-\circ f$ and $g \circ -$ preserve suprema; it is therefore also residuated:

$$g \circ f \leq h \iff f \leq (g \searrow h) \iff g \leq (h \swarrow f)$$

A residuated monoid $(M,\cdot,1,\searrow,\swarrow)$ is divisible if

$$a \cdot (a \searrow b) = a \wedge b = (b \swarrow a) \cdot a$$

holds for all $a, b \in M$.

In what follows, all residuated monoids will be complete—i.e. they are quantales.

We also need to consider **quantaloids**—because they arise from universal constructions on quantales.

A quantaloid Ω is a category with hom-sup-lattices $\Omega(X, Y)$ such that all $-\circ f$ and $g \circ -$ preserve suprema; it is therefore also residuated:

$$g \circ f \leq h \iff f \leq (g \searrow h) \iff g \leq (h \swarrow f)$$

It now makes perfect sense to say that a quantaloid $\ensuremath{\mathfrak{Q}}$ is divisible if

$$g \circ (g \searrow f) = f \wedge g = (f \swarrow g) \circ g$$

for every pair $f, g \colon X \to Y$ of parallel arrows in Ω .

Some (easy) consequences and examples:

• If Ω is divisible then it is integral (each 1_X is top element in $\Omega(X, X)$).

- If Ω is divisible then it is integral (each 1_X is top element in $\Omega(X, X)$).
- If Q is divisible then it is locally localic (each sup-lattice Q(X, Y) is a locale).

- If Ω is divisible then it is integral (each 1_X is top element in $\Omega(X, X)$).
- If Ω is divisible then it is locally localic (each sup-lattice $\Omega(X, Y)$ is a locale).
- Any locale is divisible.

- If Ω is divisible then it is integral (each 1_X is top element in $\Omega(X, X)$).
- If Q is divisible then it is locally localic (each sup-lattice Q(X, Y) is a locale).
- Any locale is divisible.
- ► A left-continuous t-norm ([0,1],*,1) is (by definition) a commutative, integral, ordered monoid with left-continuous multiplication; this is precisely an integral, commutative quantale on ([0,1], V). Such a left-continuous t-norm is (also right-)continuous if and only if (as a quantale) it is divisible.

- If Ω is divisible then it is integral (each 1_X is top element in $\Omega(X, X)$).
- If Q is divisible then it is locally localic (each sup-lattice Q(X, Y) is a locale).
- Any locale is divisible.
- ► A left-continuous t-norm ([0,1], *, 1) is (by definition) a commutative, integral, ordered monoid with left-continuous multiplication; this is precisely an integral, commutative quantale on ([0,1], V). Such a left-continuous t-norm is (also right-)continuous if and only if (as a quantale) it is divisible.
- Lawvere's quantale of real numbers ([0,∞], ∧, +, 0) is divisible; it is isomorphic to the (obviously continuous) product *t*-norm ([0, 1], ∨, ·, 1).

- If Ω is divisible then it is integral (each 1_X is top element in $\Omega(X, X)$).
- If Q is divisible then it is locally localic (each sup-lattice Q(X, Y) is a locale).
- Any locale is divisible.
- ► A left-continuous t-norm ([0,1], *,1) is (by definition) a commutative, integral, ordered monoid with left-continuous multiplication; this is precisely an integral, commutative quantale on ([0,1], V). Such a left-continuous t-norm is (also right-)continuous if and only if (as a quantale) it is divisible.
- Lawvere's quantale of real numbers ([0,∞], ∧, +, 0) is divisible; it is isomorphic to the (obviously continuous) product *t*-norm ([0, 1], ∨, ·, 1).
- Any non-(right-)continuous left-continuous t-norm thus provides an example of an integral and localic quantale which is not divisible (e.g. the "nilpotent minimum t-norm").

2. Diagonals

2. Diagonals

New mathematical structures often arise from known ones by universal constructions.

New mathematical structures often arise from known ones by universal constructions.

As a well-known case in point, in any category C, if $f^2 = f$ and $g^2 = g$ are two idempotents, then we say that m is a **map** from f to g if

New mathematical structures often arise from known ones by universal constructions.

As a well-known case in point, in any category C, if $f^2 = f$ and $g^2 = g$ are two idempotents, then we say that m is a **map** from f to g if

A new category ${\mathfrak I}({\mathfrak C})$ of maps between idempotents in ${\mathfrak C}$ is defined by the obvious composition rule

New mathematical structures often arise from known ones by universal constructions.

As a well-known case in point, in any category C, if $f^2 = f$ and $g^2 = g$ are two idempotents, then we say that m is a **map** from f to g if

A new category ${\mathfrak I}({\mathfrak C})$ of maps between idempotents in ${\mathfrak C}$ is defined by the obvious composition rule

There is a full embedding

$$I: \mathfrak{C} \to \mathfrak{I}(\mathfrak{C}): \left(A \xrightarrow{m} B \right) \mapsto \left(\begin{array}{c} A \xrightarrow{m} B \\ 1_A \downarrow & m_{\downarrow} \downarrow 1_B \\ A \xrightarrow{m} B \end{array} \right)$$

There is a full embedding

$$I: \mathfrak{C} \to \mathfrak{I}(\mathfrak{C}): \left(A \xrightarrow{m} B \right) \mapsto \left(\begin{array}{c} A \xrightarrow{m} B \\ 1_A \downarrow & m_{\downarrow} \downarrow 1_B \\ A \xrightarrow{m} B \end{array} \right)$$

displaying $\mathbb{J}(\mathbb{C})$ to be the universal "split-idempotent" completion of $\mathbb{C}:$

$$\text{if } f^2 = f \text{ in } \mathbb{C} \text{ then } \begin{array}{c} A \xrightarrow{f} A \\ 1_A \downarrow & f \\ A \xrightarrow{f} A \end{array} \begin{array}{c} A \xrightarrow{f} A \\ 1_A \downarrow & f \\ A \xrightarrow{f} A \end{array} \begin{array}{c} A \xrightarrow{f} A \xrightarrow{f} A \\ 1_A \downarrow & f \\ A \xrightarrow{f} A \end{array} \begin{array}{c} A \xrightarrow{f} A \xrightarrow{f} A \\ A \xrightarrow{f} A \xrightarrow{f} A \xrightarrow{f} A \end{array} \begin{array}{c} A \xrightarrow{f} A$$

There is a full embedding

$$I: \mathfrak{C} \to \mathfrak{I}(\mathfrak{C}): \left(A \xrightarrow{m} B \right) \mapsto \left(\begin{array}{c} A \xrightarrow{m} B \\ 1_A \downarrow & m_{\downarrow} \downarrow 1_B \\ A \xrightarrow{m} B \end{array} \right)$$

displaying $\mathbb{J}(\mathbb{C})$ to be the universal "split-idempotent" completion of \mathbb{C} :

$$\text{if } f^2 = f \text{ in } \mathbb{C} \text{ then } 1_A \xrightarrow{f} 1_A = 1_A \xrightarrow{f} f \xrightarrow{f} 1_A \text{ in } \mathbb{I}(\mathbb{C})$$

There is a full embedding

$$I: \mathfrak{C} \to \mathfrak{I}(\mathfrak{C}): \left(A \xrightarrow{m} B \right) \mapsto \left(\begin{array}{c} A \xrightarrow{m} B \\ 1_A \downarrow & m_{\downarrow} \downarrow 1_B \\ A \xrightarrow{m} B \end{array} \right)$$

displaying ${\mathfrak I}({\mathfrak C})$ to be the universal "split-idempotent" completion of ${\mathfrak C}:$

$$\text{if } f^2 = f \text{ in } \mathbb{C} \text{ then } 1_A \xrightarrow{f} 1_A = 1_A \xrightarrow{f} f \xrightarrow{f} 1_A \text{ in } \mathbb{I}(\mathbb{C})$$

(Actually, all idempotents split in $\mathfrak{I}(\mathfrak{C})$.)

There is a full embedding

$$I: \mathfrak{C} \to \mathfrak{I}(\mathfrak{C}): \left(A \xrightarrow{m} B \right) \mapsto \left(\begin{array}{c} A \xrightarrow{m} B \\ 1_A \downarrow & m_{\downarrow} \downarrow 1_B \\ A \xrightarrow{m} B \end{array} \right)$$

displaying ${\mathfrak I}({\mathfrak C})$ to be the universal "split-idempotent" completion of ${\mathfrak C}:$

$$\text{if } f^2 = f \text{ in } \mathbb{C} \text{ then } 1_A \xrightarrow{f} 1_A = 1_A \xrightarrow{f} f \xrightarrow{f} 1_A \text{ in } \mathbb{I}(\mathbb{C})$$

(Actually, all idempotents split in ${\mathfrak I}({\mathfrak C}).)$

The "bigger" category ${\mathfrak I}({\mathfrak C})$ has many virtues that ${\mathfrak C}$ may lack ...

There is a full embedding

$$I: \mathfrak{C} \to \mathfrak{I}(\mathfrak{C}): \left(A \xrightarrow{m} B \right) \mapsto \left(\begin{array}{c} A \xrightarrow{m} B \\ 1_A \downarrow & m_{\downarrow} \downarrow 1_B \\ A \xrightarrow{m} B \end{array} \right)$$

displaying ${\mathfrak I}({\mathfrak C})$ to be the universal "split-idempotent" completion of ${\mathfrak C}:$

$$\text{if } f^2 = f \text{ in } \mathbb{C} \text{ then } 1_A \xrightarrow{f} 1_A = 1_A \xrightarrow{f} f \xrightarrow{f} 1_A \text{ in } \mathbb{I}(\mathbb{C})$$

(Actually, all idempotents split in $\mathfrak{I}(\mathfrak{C})$.)

The "bigger" category ${\mathfrak I}({\mathfrak C})$ has many virtues that ${\mathfrak C}$ may lack ...

... but for our purposes, it is not yet big enough.

In any category ${\mathfrak C},$ say that d is a $\operatorname{\mathbf{diagonal}}$ from f to g

In any category ${\mathfrak C},$ say that d is a ${\rm diagonal}$ from f to g if

$$\exists d_0, d_1 : \begin{array}{c} A_0 & \xrightarrow{d_0} & B_0 \\ f & \swarrow & \\ A_1 & \xrightarrow{d_1} & B_1 \end{array}$$

In any category \mathcal{C} , say that d is a **diagonal** from f to g if

$$\exists d_0, d_1 : \begin{array}{c} A_0 & \stackrel{d_0}{\longrightarrow} & B_0 \\ f \downarrow & \searrow \\ A_1 & \stackrel{d_1}{\longrightarrow} & B_1 \end{array}$$

A new category $\mathcal{D}(\mathcal{C})$ of diagonals in \mathcal{C} is defined by the composition rule

In any category \mathcal{C} , say that d is a **diagonal** from f to g if

$$\exists d_0, d_1 : \begin{array}{c} A_0 & \stackrel{d_0}{\longrightarrow} & B_0 \\ f \downarrow & \searrow \\ A_1 & \stackrel{d_1}{\longrightarrow} & B_1 \end{array}$$

A new category $\mathcal{D}(\mathcal{C})$ of diagonals in \mathcal{C} is defined by the composition rule

with identities $f \downarrow f$.

There is a full embedding

$$I: \mathfrak{C} \to \mathfrak{D}(\mathfrak{C}): \left(\begin{array}{c} A \xrightarrow{f} B \end{array} \right) \mapsto \left(\begin{array}{c} A \xrightarrow{B} \\ 1_A \downarrow & f_{\searrow} \downarrow 1_B \\ A \xrightarrow{B} \end{array} \right)$$

There is a full embedding

$$I: \mathfrak{C} \to \mathcal{D}(\mathfrak{C}): \left(\begin{array}{c} A \xrightarrow{f} B \end{array} \right) \mapsto \left(\begin{array}{c} A & B \\ 1_A \downarrow & f_{\searrow} \downarrow 1_B \\ A & B \end{array} \right)$$

displaying ${\mathfrak D}({\mathfrak C})$ to be the universal "split-everything (properly)" completion of ${\mathfrak C}:$

There is a full embedding

$$I: \mathfrak{C} \to \mathcal{D}(\mathfrak{C}): \left(\begin{array}{c} A & \\ \end{array} \right) \mapsto \left(\begin{array}{c} A & B \\ 1_A \downarrow & f_{\searrow} \downarrow 1_B \\ A & B \end{array} \right)$$

displaying ${\mathfrak D}({\mathfrak C})$ to be the universal "split-everything (properly)" completion of ${\mathfrak C}:$

for any
$$f$$
 in C, $1_A \xrightarrow{f} 1_B = 1_A \xrightarrow{f} f \xrightarrow{f} 1_B$ in $\mathcal{D}(\mathbb{C})$

There is a full embedding

$$I: \mathfrak{C} \to \mathcal{D}(\mathfrak{C}): \left(\begin{array}{c} A & \\ \end{array} \right) \mapsto \left(\begin{array}{c} A & B \\ 1_A \downarrow & f_{\searrow} \downarrow 1_B \\ A & B \end{array} \right)$$

displaying ${\mathfrak D}({\mathfrak C})$ to be the universal "split-everything (properly)" completion of ${\mathfrak C}:$

for any
$$f$$
 in C, $1_A \xrightarrow{f} 1_B = 1_A \xrightarrow{f} f \xrightarrow{f} 1_B$ in $\mathcal{D}(\mathcal{C})$

(Actually all arrows in $\mathcal{D}(\mathcal{C})$ have an image factorisation; this leads to a monadic characterisation of proper factorisation systems.)

There is a full embedding

$$I: \mathfrak{C} \to \mathfrak{D}(\mathfrak{C}): \left(\begin{array}{c} A \xrightarrow{f} B \end{array} \right) \mapsto \left(\begin{array}{c} A \xrightarrow{B} \\ 1_A \downarrow & f_{\searrow} \downarrow 1_B \\ A \xrightarrow{B} \end{array} \right)$$

displaying ${\mathfrak D}({\mathfrak C})$ to be the universal "split-everything (properly)" completion of ${\mathfrak C}:$

for any
$$f$$
 in \mathbb{C} , $1_A \xrightarrow{f} 1_B = 1_A \xrightarrow{f} f \xrightarrow{f} 1_B$ in $\mathcal{D}(\mathbb{C})$

(Actually all arrows in $\mathcal{D}(\mathcal{C})$ have an image factorisation; this leads to a monadic characterisation of proper factorisation systems.)

The splitting of idempotents in \mathcal{C} is a full subcategory of $\mathcal{D}(\mathcal{C})$:

$$\mathfrak{C} \longrightarrow \mathfrak{I}(\mathfrak{C}) \longrightarrow \mathfrak{D}(\mathfrak{C})$$

There is a full embedding

$$I: \mathfrak{C} \to \mathfrak{D}(\mathfrak{C}): \left(\begin{array}{c} A \xrightarrow{f} B \end{array} \right) \mapsto \left(\begin{array}{c} A \xrightarrow{B} \\ 1_A \downarrow & f_{\searrow} \downarrow 1_B \\ A \xrightarrow{B} \end{array} \right)$$

displaying ${\mathfrak D}({\mathfrak C})$ to be the universal "split-everything (properly)" completion of ${\mathfrak C}:$

for any
$$f$$
 in C, $1_A \xrightarrow{f} 1_B = 1_A \xrightarrow{f} f \xrightarrow{f} 1_B$ in $\mathcal{D}(\mathcal{C})$

(Actually all arrows in $\mathcal{D}(\mathcal{C})$ have an image factorisation; this leads to a monadic characterisation of proper factorisation systems.)

The splitting of idempotents in \mathcal{C} is a full subcategory of $\mathcal{D}(\mathcal{C})$:

$$\mathcal{C} \longrightarrow \mathcal{I}(\mathcal{C}) \longrightarrow \mathcal{D}(\mathcal{C})$$

Note: even for a monoid M, both $\mathcal{I}(M)$ and $\mathcal{D}(M)$ are (many-object) categories.

In any quantaloid Q, making use of residuation,

$$\exists d_0, d_1: \begin{array}{c} A_0 & \xrightarrow{d_0} & B_0 \\ f & & \\ A_1 & \xrightarrow{d_1} & B_1 \end{array}$$

In any quantaloid Q, making use of residuation,

In any quantaloid Q, making use of residuation,

That is, if $d: f \to g$ is a diagonal in Ω , then its square can be filled in a canonical way.

In any quantaloid Q, making use of residuation,

That is, if $d: f \to g$ is a diagonal in Ω , then its square can be filled in a canonical way.

The category $\mathcal{D}(Q)$ is actually a quantaloid too (with local suprema "as in Q"), in which the composition rule can be made explicit as

In any quantaloid Q, making use of residuation,

That is, if $d: f \to g$ is a diagonal in Q, then its square can be filled in a canonical way.

The category $\mathcal{D}(\Omega)$ is actually a quantaloid too (with local suprema "as in Ω "), in which the composition rule can be made explicit as

This holds a fortiori for $\mathfrak{I}(\Omega)$ too, and the full embeddings are indeed quantaloid homomorphisms:

$$\mathcal{Q} \longrightarrow \mathcal{I}(\mathcal{Q}) \longrightarrow \mathcal{D}(\mathcal{Q})$$

Recall, a quantaloid Ω is **divisible** if, for every $f, g: X \to Y$,

$$g \circ (g \searrow f) = f \land g = (f \swarrow g) \circ g.$$

Recall, a quantaloid Ω is **divisible** if, for every $f, g \colon X \to Y$,

$$g \circ (g \searrow f) = f \wedge g = (f \swarrow g) \circ g.$$

And d is a **diagonal** from f to g precisely when

Recall, a quantaloid Ω is **divisible** if, for every $f, g \colon X \to Y$,

$$g \circ (g \searrow f) = f \wedge g = (f \swarrow g) \circ g.$$

And d is a **diagonal** from f to g precisely when

It is not very difficult to prove now that:

 $\label{eq:main_state} \mathbb{Q} \text{ is divisible } \quad \text{iff} \quad \mathbb{D}(\mathbb{Q})(f,g) = \mathop{\downarrow} f \wedge g.$

Recall, a quantaloid Ω is **divisible** if, for every $f, g: X \to Y$,

$$g \circ (g \searrow f) = f \wedge g = (f \swarrow g) \circ g.$$

It is not very difficult to prove now that:

 Ω is divisible iff $\mathcal{D}(\Omega)(f,g) = \downarrow f \land g$.

Proof:

 \Rightarrow If Ω is divisible then it is integral; so when $q \circ x = d = y \circ f$ then surely $d < f \land q$; and conversely, from $d \leq f \wedge g \leq f$ we get $d = d \wedge f = (d \swarrow f) \circ f$ and similarly $d = g \circ (g \searrow d)$. $\overleftarrow{\leftarrow} \text{ If } \mathcal{D}(\mathfrak{Q})(f,g) = \downarrow f \land g \text{ then } \mathfrak{Q} \text{ is integral because } \mathfrak{Q}(X,X) = \mathcal{D}(\mathfrak{Q})(1_X,1_X) = \downarrow 1_X; \text{ but also}$ $g \circ x = f \wedge g = y \circ f$, which implies $x \leq g \searrow f$ and $y \leq g \swarrow f$ and from that also $f \wedge g \leq g(g \searrow f)$ and $f \wedge g \leq (f \swarrow g)g$; the other inequation holds by integrality, so $g(g \searrow f) = f \wedge g = (f \swarrow g)g$.

Recall, a quantaloid Ω is **divisible** if, for every $f, g: X \to Y$,

$$g \circ (g \searrow f) = f \wedge g = (f \swarrow g) \circ g.$$

 Ω is divisible iff $\mathcal{D}(\Omega)(f,g) = \downarrow f \land g$.

Moreover, Ω is divisible iff $\mathcal{D}(\Omega)$ is divisible.

Recall, a quantaloid Ω is **divisible** if, for every $f, g: X \to Y$,

$$g \circ (g \searrow f) = f \wedge g = (f \swarrow g) \circ g.$$

It is not very difficult to prove now that:

 Ω is divisible iff $\mathcal{D}(\Omega)(f,g) = \downarrow f \land g$.

Moreover, Ω is divisible iff $\mathcal{D}(\Omega)$ is divisible.

Computations with $\mathcal{D}(\Omega)$ thus simplify a great deal whenever Ω is a divisible quantaloid: because the hom-sup-lattices are easy, because the composition law is easy!

Recall, a quantaloid Ω is **divisible** if, for every $f, g: X \to Y$,

$$g \circ (g \searrow f) = f \wedge g = (f \swarrow g) \circ g.$$

It is not very difficult to prove now that:

 Ω is divisible iff $\mathcal{D}(\Omega)(f,g) = \downarrow f \land g$.

Moreover, Ω is divisible iff $\mathcal{D}(\Omega)$ is divisible.

Computations with $\mathcal{D}(\Omega)$ thus simplify a great deal whenever Ω is a divisible quantaloid: because the hom-sup-lattices are easy, because the composition law is easy!

This applies to any divisible quantale Q—which is of use in many-valued logic.

3. Many-valued logic

3. Many-valued logic

An order $\mathbb{X}=(X,\leq)$ is a set together with a binary predicate

$$\mathbb{X} \colon X \times X \to \{\bot, \top\} \colon (x, y) \mapsto \begin{cases} \top \text{ if } x \leq y \\ \bot \text{ if } x \nleq y \end{cases}$$

$$\left\{ \begin{array}{l} \mathbb{X}(x,y) \wedge \mathbb{X}(y,z) \leq \mathbb{X}(x,z) \\ \top \leq \mathbb{X}(x,x) \end{array} \right.$$

A $(Q,\bigvee,\cdot,1)\text{-valued}$ order $\mathbb X$ is a set together with a binary predicate

$$\mathbb{X} \colon X \times X \to \{\bot, \top\} \colon (x, y) \mapsto \left\{ \begin{array}{l} \top \text{ if } x \leq y \\ \bot \text{ if } x \not\leq y \end{array} \right.$$

$$\left\{ \begin{array}{l} \mathbb{X}(x,y) \wedge \mathbb{X}(y,z) \leq \mathbb{X}(x,z) \\ \top \leq \mathbb{X}(x,x) \end{array} \right.$$

A $(Q,\bigvee,\cdot,1)\text{-valued}$ order $\mathbb X$ is a set together with a binary predicate

 $\mathbb{X}\colon X\times X\to Q$

A $(Q,\bigvee,\cdot,1)\text{-valued}$ order $\mathbb X$ is a set together with a binary predicate

 $\mathbb{X}\colon X\times X\to Q$

$$\left\{ \begin{array}{l} \mathbb{X}(x,y) \cdot \mathbb{X}(y,z) \leq \mathbb{X}(x,z) \\ \top \leq \mathbb{X}(x,x) \end{array} \right.$$

A $(Q,\bigvee,\cdot,1)\text{-valued}$ order $\mathbb X$ is a set together with a binary predicate

 $\mathbb{X}\colon X\times X\to Q$

$$\left\{ \begin{array}{l} \mathbb{X}(x,y) \cdot \mathbb{X}(y,z) \leq \mathbb{X}(x,z) \\ 1 \leq \mathbb{X}(x,x) \end{array} \right.$$

A $(Q,\bigvee,\cdot,1)\text{-valued}$ order $\mathbb X$ is a set together with a binary predicate

 $\mathbb{X}: X \times X \to Q$

such that

$$\left\{ \begin{array}{l} \mathbb{X}(x,y) \cdot \mathbb{X}(y,z) \leq \mathbb{X}(x,z) \\ 1 \leq \mathbb{X}(x,x) \end{array} \right.$$

This is exactly the definition of a Q-enriched category X.

A $(Q, \bigvee, \cdot, 1)$ -valued order $\mathbb X$ is a set together with a binary predicate

 $\mathbb{X}\colon X\times X\to Q$

such that

$$\left\{ \begin{array}{l} \mathbb{X}(x,y) \cdot \mathbb{X}(y,z) \leq \mathbb{X}(x,z) \\ 1 \leq \mathbb{X}(x,x) \end{array} \right.$$

This is exactly the definition of a Q-enriched category X.

There is a very rich theory of Q-enriched categories, functors and distributors, which thus – at first sight – caters for a theory of "many-valued orders".

A $(Q,\bigvee,\cdot,1)\text{-valued}$ order $\mathbb X$ is a set together with a binary predicate

 $\mathbb{X}\colon X\times X\to Q$

such that

$$\left\{ \begin{array}{l} \mathbb{X}(x,y) \cdot \mathbb{X}(y,z) \leq \mathbb{X}(x,z) \\ 1 \leq \mathbb{X}(x,x) \end{array} \right.$$

This is exactly the definition of a Q-enriched category \mathbb{X} .

There is a very rich theory of Q-enriched categories, functors and distributors, which thus – at first sight – caters for a theory of "many-valued orders".

However...

Let A be a set and (P,\leq) an order, and consider the set

 $X = \{f \colon S \to P \text{ is a function } \mid S \subseteq A\}$

of partial functions from A to P.

Let A be a set and (P,\leq) an order, and consider the set

$$X = \{ f \colon S \to P \text{ is a function } | S \subseteq A \}$$

of partial functions from A to P.

To compare partial functions f and g, it is most natural to compute the "extent to which f is smaller than g":

 $\mathbb{X}(f,g) = \{ x \in \mathsf{dom}(f) \cap \mathsf{dom}(g) \mid fx \le gx \text{ in } P \}.$

Let A be a set and (P,\leq) an order, and consider the set

$$X = \{f \colon S \to P \text{ is a function } \mid S \subseteq A\}$$

of partial functions from A to P.

To compare partial functions f and g, it is most natural to compute the "extent to which f is smaller than g":

 $\mathbb{X}(f,g) = \{ x \in \mathsf{dom}(f) \cap \mathsf{dom}(g) \mid fx \le gx \text{ in } P \}.$

This makes up a $(\mathcal{P}(A), \bigcup, \cap, A)$ -valued predicate

 $\mathbb{X}: X \times X \to \mathcal{P}(A)$

Let A be a set and (P,\leq) an order, and consider the set

$$X = \{f \colon S \to P \text{ is a function } \mid S \subseteq A\}$$

of partial functions from A to P.

To compare partial functions f and g, it is most natural to compute the "extent to which f is smaller than g":

 $\mathbb{X}(f,g) = \{ x \in \mathsf{dom}(f) \cap \mathsf{dom}(g) \mid fx \le gx \text{ in } P \}.$

This makes up a $(\mathcal{P}(A), \bigcup, \cap, A)$ -valued predicate

 $\mathbb{X}: X \times X \to \mathcal{P}(A)$

for which

$$\left\{\begin{array}{l}\mathbb{X}(f,g)\cap\mathbb{X}(g,h)\subseteq\mathbb{X}(f,h)\text{ holds}\right.$$

Let A be a set and (P,\leq) an order, and consider the set

$$X = \{ f \colon S \to P \text{ is a function } | S \subseteq A \}$$

of partial functions from A to P.

To compare partial functions f and g, it is most natural to compute the "extent to which f is smaller than g":

 $\mathbb{X}(f,g) = \{ x \in \mathsf{dom}(f) \cap \mathsf{dom}(g) \mid fx \leq gx \text{ in } P \}.$

This makes up a $(\mathcal{P}(A), \bigcup, \cap, A)$ -valued predicate

 $\mathbb{X}: X \times X \to \mathcal{P}(A)$

for which

$$\left\{ \begin{array}{l} \mathbb{X}(f,g) \cap \mathbb{X}(g,h) \subseteq \mathbb{X}(f,h) \text{ holds}, \\ A \subseteq \mathbb{X}(f,f) \text{ fails}! \end{array} \right.$$

Let A be a set and (P,\leq) an order, and consider the set

$$X = \{f \colon S \to P \text{ is a function } \mid S \subseteq A\}$$

of partial functions from A to P.

To compare partial functions f and g, it is most natural to compute the "extent to which f is smaller than g":

 $\mathbb{X}(f,g) = \{ x \in \mathsf{dom}(f) \cap \mathsf{dom}(g) \mid fx \le gx \text{ in } P \}.$

This makes up a $(\mathcal{P}(A), \bigcup, \cap, A)$ -valued predicate

 $\mathbb{X}: X \times X \to \mathcal{P}(A)$

for which

$$\begin{cases} \mathbb{X}(f,g) \cap \mathbb{X}(g,h) \subseteq \mathbb{X}(f,h) \text{ holds,} \\ A \subseteq \mathbb{X}(f,f) \text{ fails!} \end{cases}$$

So X is not a $\mathcal{P}(A)$ -enriched category, because the quantale $\mathcal{P}(A)$ does not deal adequately with the *partiality* of X's elements.

Let A be a set and (P,\leq) an order, and consider the set

$$X = \{ f \colon S \to P \text{ is a function } | S \subseteq A \}$$

of partial functions from A to P.

To compare partial functions f and g, it is most natural to compute the "extent to which f is smaller than g":

 $\mathbb{X}(f,g) = \{ x \in \mathsf{dom}(f) \cap \mathsf{dom}(g) \mid fx \le gx \text{ in } P \}.$

This makes up a $(\mathcal{P}(A), \bigcup, \cap, A)$ -valued predicate

 $\mathbb{X}: X \times X \to \mathcal{P}(A)$

for which

$$\begin{cases} \mathbb{X}(f,g) \cap \mathbb{X}(g,h) \subseteq \mathbb{X}(f,h) \text{ holds,} \\ A \subseteq \mathbb{X}(f,f) \text{ fails!} \end{cases}$$

So X is *not* a $\mathcal{P}(A)$ -enriched category, because the quantale $\mathcal{P}(A)$ does not deal adequately with the *partiality* of X's elements.

Quantaloids, diagonals and divisibility to the rescue!

Let ${\mathfrak Q}$ be a (small) quantaloid. A ${\mathfrak Q}\text{-enriched}$ category ${\mathbb C}$ consists of:

- ▶ a set C₀,
- a unary predicate $t: \mathbb{C}_0 \to \mathsf{obj}(\Omega)$,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to \operatorname{arr}(\Omega)$

for which we have:

- $\blacktriangleright \ \mathbb{C}(y,x) \colon tx \to ty,$
- $1_{tx} \leq \mathbb{C}(x, x)$,
- $\blacktriangleright \ \mathbb{C}(z,y) \circ \mathbb{C}(y,x) \le \mathbb{C}(z,x).$

Let ${\mathfrak Q}$ be a (small) quantaloid. A ${\mathfrak Q}\text{-enriched}$ category ${\mathbb C}$ consists of:

- ▶ a set C₀,
- a unary predicate $t: \mathbb{C}_0 \to \mathsf{obj}(\Omega)$,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to \operatorname{arr}(\Omega)$

for which we have:

- $\blacktriangleright \ \mathbb{C}(y,x) \colon tx \to ty,$
- $1_{tx} \leq \mathbb{C}(x, x)$,
- $\blacktriangleright \ \mathbb{C}(z,y) \circ \mathbb{C}(y,x) \le \mathbb{C}(z,x).$

There is - again - a very rich theory of Q-enriched categories, functors and distributors.

Let ${\mathfrak Q}$ be a (small) quantaloid. A ${\mathfrak Q}\text{-enriched}$ category ${\mathbb C}$ consists of:

- ▶ a set \mathbb{C}_0 ,
- a unary predicate $t: \mathbb{C}_0 \to \mathsf{obj}(\mathbb{Q})$,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to \operatorname{arr}(\Omega)$

for which we have:

- $\blacktriangleright \ \mathbb{C}(y,x) \colon tx \to ty,$
- $1_{tx} \leq \mathbb{C}(x, x)$,

•
$$\mathbb{C}(z,y) \circ \mathbb{C}(y,x) \le \mathbb{C}(z,x).$$

There is – again – a very rich theory of Ω -enriched categories, functors and distributors. But how can this help us with the previous (and other) examples?

Let Q be a divisible, commutative quantale, and ${\mathfrak D}(Q)$ the quantaloid of diagonals.

Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals. A $\mathcal{D}(Q)\text{-enriched category }\mathbb{C}$ is

- ▶ a set C₀,
- a unary predicate $t \colon \mathbb{C}_0 \to \mathsf{obj}(\mathcal{D}(Q))$,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to \operatorname{arr}(\mathcal{D}(Q))$

for which we have in $\mathcal{D}(Q)$:

- $\blacktriangleright \ \mathbb{C}(y,x) \colon tx \to ty,$
- $1_{tx} \leq \mathbb{C}(x, x)$,
- $\blacktriangleright \ \mathbb{C}(z,y) \circ_{ty} \mathbb{C}(y,x) \leq \mathbb{C}(z,x).$

Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals. A $\mathcal{D}(Q)\text{-enriched category }\mathbb{C}$ is

- ▶ a set C₀,
- a unary predicate $t \colon \mathbb{C}_0 \to Q$,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to \operatorname{arr}(\mathcal{D}(Q))$

for which we have in $\mathcal{D}(Q)$:

- $\blacktriangleright \ \mathbb{C}(y,x) \colon tx \to ty,$
- $1_{tx} \leq \mathbb{C}(x, x)$,
- $\blacktriangleright \ \mathbb{C}(z,y) \circ_{ty} \mathbb{C}(y,x) \le \mathbb{C}(z,x).$

Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals. A $\mathcal{D}(Q)\text{-enriched category }\mathbb{C}$ is

- ▶ a set C₀,
- a unary predicate $t \colon \mathbb{C}_0 \to Q$,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to Q$

for which we have in $\mathcal{D}(Q)$:

- $\blacktriangleright \ \mathbb{C}(y,x) \colon tx \to ty,$
- $1_{tx} \leq \mathbb{C}(x, x)$,
- $\blacktriangleright \ \mathbb{C}(z,y) \circ_{ty} \mathbb{C}(y,x) \leq \mathbb{C}(z,x).$

Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals. A $\mathcal{D}(Q)\text{-enriched category }\mathbb{C}$ is

- ▶ a set C₀,
- a unary predicate $t \colon \mathbb{C}_0 \to Q$,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to Q$

- $\blacktriangleright \ \mathbb{C}(y,x) \colon tx \to ty,$
- ▶ $1_{tx} \leq \mathbb{C}(x, x)$,
- $\blacktriangleright \ \mathbb{C}(z,y) \circ_{ty} \mathbb{C}(y,x) \leq \mathbb{C}(z,x).$

Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals. A $\mathcal{D}(Q)\text{-enriched category }\mathbb{C}$ is

- ▶ a set C₀,
- a unary predicate $t \colon \mathbb{C}_0 \to Q$,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to Q$

- $\mathbb{C}(y, x) \leq tx \wedge ty$,
- ▶ $1_{tx} \leq \mathbb{C}(x, x)$,
- $\blacktriangleright \ \mathbb{C}(z,y) \circ_{ty} \mathbb{C}(y,x) \leq \mathbb{C}(z,x).$

Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals. A $\mathcal{D}(Q)\text{-enriched category }\mathbb{C}$ is

- ▶ a set C₀,
- a unary predicate $t \colon \mathbb{C}_0 \to Q$,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to Q$

- $\mathbb{C}(y, x) \leq tx \wedge ty$,
- ► $tx \leq \mathbb{C}(x, x)$,
- $\blacktriangleright \ \mathbb{C}(z,y) \circ_{ty} \mathbb{C}(y,x) \leq \mathbb{C}(z,x).$

Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals. A $\mathcal{D}(Q)\text{-enriched category }\mathbb{C}$ is

- ▶ a set C₀,
- a unary predicate $t \colon \mathbb{C}_0 \to Q$,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to Q$

- $\mathbb{C}(y, x) \leq tx \wedge ty$,
- $\blacktriangleright tx = \mathbb{C}(x, x),$
- $\blacktriangleright \ \mathbb{C}(z,y) \circ_{ty} \mathbb{C}(y,x) \leq \mathbb{C}(z,x).$

Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals. A $\mathcal{D}(Q)\text{-enriched category }\mathbb{C}$ is

- ▶ a set C₀,
- a unary predicate $t \colon \mathbb{C}_0 \to Q$,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to Q$

- $\blacktriangleright \ \mathbb{C}(y,x) \leq \mathbb{C}(x,x) \wedge \mathbb{C}(y,y),$
- $\blacktriangleright tx = \mathbb{C}(x, x),$
- $\blacktriangleright \ \mathbb{C}(z,y) \circ_{ty} \mathbb{C}(y,x) \leq \mathbb{C}(z,x).$

Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals. A $\mathcal{D}(Q)\text{-enriched category }\mathbb{C}$ is

- ▶ a set C₀,
- a unary predicate $t \colon \mathbb{C}_0 \to Q$,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to Q$

- $\blacktriangleright \ \mathbb{C}(y,x) \leq \mathbb{C}(x,x) \wedge \mathbb{C}(y,y),$
- $\blacktriangleright tx = \mathbb{C}(x, x),$
- $\blacktriangleright \ \mathbb{C}(z,y) \circ_{\mathbb{C}(y,y)} \mathbb{C}(y,x) \leq \mathbb{C}(z,x).$

Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals. A $\mathcal{D}(Q)\text{-enriched category }\mathbb{C}$ is

- ▶ a set C₀,
- a unary predicate $t: \mathbb{C}_0 \to Q$,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to Q$

- $\blacktriangleright \ \mathbb{C}(y,x) \leq \mathbb{C}(x,x) \wedge \mathbb{C}(y,y),$
- $\blacktriangleright \ tx = \mathbb{C}(x, x),$
- $\blacktriangleright \ \mathbb{C}(z,y) \circ_{\mathbb{C}(y,y)} \mathbb{C}(y,x) \leq \mathbb{C}(z,x).$

Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals. A $\mathcal{D}(Q)\text{-enriched category }\mathbb{C}$ is

- ▶ a set C₀,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to Q$

- $\blacktriangleright \ \mathbb{C}(y,x) \leq \mathbb{C}(x,x) \wedge \mathbb{C}(y,y),$
- $\blacktriangleright \ \mathbb{C}(z,y) \circ_{\mathbb{C}(y,y)} \mathbb{C}(y,x) \leq \mathbb{C}(z,x).$

Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals. A $\mathcal{D}(Q)\text{-enriched category }\mathbb{C}$ is

- ▶ a set C₀,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to Q$

- $\blacktriangleright \ \mathbb{C}(y,x) \leq \mathbb{C}(x,x) \wedge \mathbb{C}(y,y),$
- $\blacktriangleright \ \left[\mathbb{C}(z,y)\swarrow \mathbb{C}(y,y)\right] \cdot \mathbb{C}(y,y) \cdot \left[\mathbb{C}(y,y)\searrow \mathbb{C}(y,x)\right] \leq \mathbb{C}(z,x).$

Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals. A $\mathcal{D}(Q)\text{-enriched category }\mathbb{C}$ is

- ▶ a set C₀,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to Q$

- $\blacktriangleright \ \mathbb{C}(y,x) \leq \mathbb{C}(x,x) \wedge \mathbb{C}(y,y),$
- $\blacktriangleright \ \mathbb{C}(z,y) \cdot [\mathbb{C}(y,y) \to \mathbb{C}(y,x)] \leq \mathbb{C}(z,x).$

Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals. A $\mathcal{D}(Q)\text{-enriched category }\mathbb{C}$ is

- ▶ a set C₀,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to Q$

for which we have in Q:

- $\blacktriangleright \ \mathbb{C}(y,x) \leq \mathbb{C}(x,x) \wedge \mathbb{C}(y,y),$
- $\blacktriangleright \ \mathbb{C}(z,y) \cdot [\mathbb{C}(y,y) \to \mathbb{C}(y,x)] \le \mathbb{C}(z,x).$

Think of this as a partial Q-enriched category (or a Q-enriched partial category?).

Let Q be a divisible, commutative quantale, and $\mathcal{D}(Q)$ the quantaloid of diagonals. A $\mathcal{D}(Q)\text{-enriched category }\mathbb{C}$ is

- ▶ a set C₀,
- a binary predicate $\mathbb{C} \colon \mathbb{C}_0 \times \mathbb{C}_0 \to Q$

for which we have in Q:

- $\blacktriangleright \ \mathbb{C}(y,x) \leq \mathbb{C}(x,x) \wedge \mathbb{C}(y,y),$
- $\blacktriangleright \ \mathbb{C}(z,y) \cdot [\mathbb{C}(y,y) \to \mathbb{C}(y,x)] \le \mathbb{C}(z,x).$

Think of this as a partial Q-enriched category (or a Q-enriched partial category?).

Similar simplifications can be done for the notion of $\mathcal{D}(Q)$ -enriched functor and distributor—for indeed, we have the complete quantaloid-enriched yoga at our disposal.

Partial functions done right:

Partial functions done right:

Recall, for A a set and (P,\leq) is order, we wish to consider the set

 $X = \{ f \colon S \to P \text{ is a function } \mid S \subseteq A \}$

together with the binary predicate

 $\mathbb{X} \colon X \times X \to \mathcal{P}(A) \colon (f,g) \mapsto \{x \in \mathsf{dom}(f) \cap \mathsf{dom}(g) \mid fx \leq gx \text{ in } P\}.$

Partial functions done right:

Recall, for A a set and (P,\leq) is order, we wish to consider the set

 $X = \{ f \colon S \to P \text{ is a function } | S \subseteq A \}$

together with the binary predicate

 $\mathbb{X} \colon X \times X \to \mathcal{P}(A) \colon (f,g) \mapsto \{x \in \mathsf{dom}(f) \cap \mathsf{dom}(g) \mid fx \leq gx \text{ in } P\}.$

As any locale, $(\mathcal{P}(A), \bigcup, \cap, A)$ is a divisible, commutative quantale. Better still, because every element is idempotent in this quantale, we have $\mathcal{D}(\mathcal{P}(A)) = \mathcal{I}(\mathcal{P}(A))$, making the composition of diagonals even simpler.

Partial functions done right:

Recall, for A a set and (P,\leq) is order, we wish to consider the set

 $X = \{f \colon S \to P \text{ is a function} \mid S \subseteq A\}$

together with the binary predicate

 $\mathbb{X} \colon X \times X \to \mathcal{P}(A) \colon (f,g) \mapsto \{ x \in \mathsf{dom}(f) \cap \mathsf{dom}(g) \mid fx \leq gx \text{ in } P \}.$

As any locale, $(\mathcal{P}(A), \bigcup, \cap, A)$ is a divisible, commutative quantale. Better still, because every element is idempotent in this quantale, we have $\mathcal{D}(\mathcal{P}(A)) = \mathcal{I}(\mathcal{P}(A))$, making the composition of diagonals even simpler.

Now we find that

 $\blacktriangleright \ \mathbb{X}(f,g) \subseteq \mathbb{X}(f,f) \cap \mathbb{X}(g,g)$

Partial functions done right:

Recall, for A a set and (P,\leq) is order, we wish to consider the set

 $X = \{ f \colon S \to P \text{ is a function } | S \subseteq A \}$

together with the binary predicate

 $\mathbb{X} \colon X \times X \to \mathcal{P}(A) \colon (f,g) \mapsto \{x \in \mathsf{dom}(f) \cap \mathsf{dom}(g) \mid fx \leq gx \text{ in } P\}.$

As any locale, $(\mathcal{P}(A), \bigcup, \cap, A)$ is a divisible, commutative quantale. Better still, because every element is idempotent in this quantale, we have $\mathcal{D}(\mathcal{P}(A)) = \mathcal{I}(\mathcal{P}(A))$, making the composition of diagonals even simpler.

Now we find that

- $\blacktriangleright \ \mathbb{X}(f,g) \subseteq \mathbb{X}(f,f) \cap \mathbb{X}(g,g)$
- $\blacktriangleright \ \mathbb{X}(f,g) \cap [\mathbb{X}(g,g) \Rightarrow \mathbb{X}(g,h)] \subseteq \mathbb{X}(f,h)$

Partial functions done right:

Recall, for A a set and (P,\leq) is order, we wish to consider the set

 $X = \{f \colon S \to P \text{ is a function } \mid S \subseteq A\}$

together with the binary predicate

 $\mathbb{X} \colon X \times X \to \mathcal{P}(A) \colon (f,g) \mapsto \{x \in \mathsf{dom}(f) \cap \mathsf{dom}(g) \mid fx \leq gx \text{ in } P\}.$

As any locale, $(\mathcal{P}(A), \bigcup, \cap, A)$ is a divisible, commutative quantale. Better still, because every element is idempotent in this quantale, we have $\mathcal{D}(\mathcal{P}(A)) = \mathcal{I}(\mathcal{P}(A))$, making the composition of diagonals even simpler.

Now we find that

- $\blacktriangleright \ \mathbb{X}(f,g) \subseteq \mathbb{X}(f,f) \cap \mathbb{X}(g,g)$
- $\blacktriangleright \ \mathbb{X}(f,g) \cap \mathbb{X}(g,h) \subseteq \mathbb{X}(f,h)$

Partial functions done right:

Recall, for A a set and (P,\leq) is order, we wish to consider the set

 $X = \{f \colon S \to P \text{ is a function} \mid S \subseteq A\}$

together with the binary predicate

 $\mathbb{X} \colon X \times X \to \mathcal{P}(A) \colon (f,g) \mapsto \{ x \in \mathsf{dom}(f) \cap \mathsf{dom}(g) \mid fx \leq gx \text{ in } P \}.$

As any locale, $(\mathcal{P}(A), \bigcup, \cap, A)$ is a divisible, commutative quantale. Better still, because every element is idempotent in this quantale, we have $\mathcal{D}(\mathcal{P}(A)) = \mathcal{I}(\mathcal{P}(A))$, making the composition of diagonals even simpler.

Now we find that

- $\blacktriangleright \ \mathbb{X}(f,g) \subseteq \mathbb{X}(f,f) \cap \mathbb{X}(g,g)$
- $\blacktriangleright \ \mathbb{X}(f,g) \cap \mathbb{X}(g,h) \subseteq \mathbb{X}(f,h)$

are both satisfied.

Partial functions done right:

Recall, for A a set and (P,\leq) is order, we wish to consider the set

 $X = \{ f \colon S \to P \text{ is a function } | S \subseteq A \}$

together with the binary predicate

 $\mathbb{X} \colon X \times X \to \mathcal{P}(A) \colon (f,g) \mapsto \{ x \in \mathsf{dom}(f) \cap \mathsf{dom}(g) \mid fx \leq gx \text{ in } P \}.$

As any locale, $(\mathcal{P}(A), \bigcup, \cap, A)$ is a divisible, commutative quantale. Better still, because every element is idempotent in this quantale, we have $\mathcal{D}(\mathcal{P}(A)) = \mathcal{I}(\mathcal{P}(A))$, making the composition of diagonals even simpler.

Now we find that

- $\blacktriangleright \ \mathbb{X}(f,g) \subseteq \mathbb{X}(f,f) \cap \mathbb{X}(g,g)$
- $\blacktriangleright \ \mathbb{X}(f,g) \cap \mathbb{X}(g,h) \subseteq \mathbb{X}(f,h)$

are both satisfied.

This makes X a partial $\mathcal{P}(A)$ -category.

Partial functions done right:

Recall, for A a set and (P,\leq) is order, we wish to consider the set

 $X = \{ f \colon S \to P \text{ is a function } | S \subseteq A \}$

together with the binary predicate

 $\mathbb{X} \colon X \times X \to \mathcal{P}(A) \colon (f,g) \mapsto \{ x \in \mathsf{dom}(f) \cap \mathsf{dom}(g) \mid fx \leq gx \text{ in } P \}.$

As any locale, $(\mathcal{P}(A), \bigcup, \cap, A)$ is a divisible, commutative quantale. Better still, because every element is idempotent in this quantale, we have $\mathcal{D}(\mathcal{P}(A)) = \mathcal{I}(\mathcal{P}(A))$, making the composition of diagonals even simpler.

Now we find that

- $\blacktriangleright \ \mathbb{X}(f,g) \subseteq \mathbb{X}(f,f) \cap \mathbb{X}(g,g)$
- $\blacktriangleright \ \mathbb{X}(f,g) \cap \mathbb{X}(g,h) \subseteq \mathbb{X}(f,h)$

are both satisfied.

This makes X a partial $\mathcal{P}(A)$ -category.

With a bit more quantaloid-enriched category theory, one can deal with sheaves on a locale in this way.

Partial metrics done right:

Partial metrics done right:

As any continuous $t\text{-norm, }([0,1],\bigvee,\cdot,1)$ is a divisible, commutative quantale.

Partial metrics done right:

As any continuous *t*-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.

In what follows we shall consider its isomorphic copy $([0,\infty], \Lambda, +, 0)$, the Lawvere quantale of real numbers, in which residuation is

$$x \to y = 0 \lor (-x + y).$$

Partial metrics done right:

As any continuous *t*-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.

In what follows we shall consider its isomorphic copy $([0,\infty], \Lambda, +, 0)$, the Lawvere quantale of real numbers, in which residuation is

$$x \to y = 0 \lor (-x + y).$$

Since there are no non-trivial idempotents, $\mathcal{D}[0,\infty]$ is much bigger than $\mathfrak{I}[0,\infty]$.

Partial metrics done right:

As any continuous *t*-norm, $([0, 1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.

In what follows we shall consider its isomorphic copy $([0,\infty],\bigwedge,+,0)$, the Lawvere quantale of real numbers, in which residuation is

$$x \to y = 0 \lor (-x + y).$$

Since there are no non-trivial idempotents, $\mathcal{D}[0,\infty]$ is much bigger than $\mathfrak{I}[0,\infty]$.

A partial $[0,\infty]$ -category $\mathbb X$ now consists of a set X together with a binary predicate

 $\mathbb{X}\colon X\times X\to [0,\infty]$

Partial metrics done right:

As any continuous *t*-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.

In what follows we shall consider its isomorphic copy $([0,\infty], \Lambda, +, 0)$, the Lawvere quantale of real numbers, in which residuation is

$$x \to y = 0 \lor (-x + y).$$

Since there are no non-trivial idempotents, $\mathcal{D}[0,\infty]$ is much bigger than $\mathfrak{I}[0,\infty]$.

A partial $[0,\infty]$ -category $\mathbb X$ now consists of a set X together with a binary predicate

$$\mathbb{X}\colon X\times X\to [0,\infty]$$

satisfying

 $\blacktriangleright \ \mathbb{X}(x,y) \geq \mathbb{X}(x,x) \vee \mathbb{X}(y,y)$

Partial metrics done right:

As any continuous *t*-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.

In what follows we shall consider its isomorphic copy $([0,\infty],\bigwedge,+,0)$, the Lawvere quantale of real numbers, in which residuation is

$$x \to y = 0 \lor (-x + y).$$

Since there are no non-trivial idempotents, $\mathcal{D}[0,\infty]$ is much bigger than $\mathfrak{I}[0,\infty]$.

A partial $[0,\infty]$ -category $\mathbb X$ now consists of a set X together with a binary predicate

$$\mathbb{X} \colon X \times X \to [0,\infty]$$

satisfying

- $\blacktriangleright \ \mathbb{X}(x,y) \geq \mathbb{X}(x,x) \vee \mathbb{X}(y,y)$
- $\blacktriangleright \ \mathbb{X}(x,y) + [\mathbb{X}(y,y) \to \mathbb{X}(y,z)] \geq \mathbb{X}(x,z)$

Partial metrics done right:

As any continuous *t*-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.

In what follows we shall consider its isomorphic copy $([0,\infty],\bigwedge,+,0)$, the Lawvere quantale of real numbers, in which residuation is

$$x \to y = 0 \lor (-x + y).$$

Since there are no non-trivial idempotents, $\mathcal{D}[0,\infty]$ is much bigger than $\mathfrak{I}[0,\infty]$.

A partial $[0,\infty]$ -category $\mathbb X$ now consists of a set X together with a binary predicate

$$\mathbb{X} \colon X \times X \to [0,\infty]$$

satisfying

- $\blacktriangleright \ \mathbb{X}(x,y) \geq \mathbb{X}(x,x) \vee \mathbb{X}(y,y)$
- $\blacktriangleright \ \mathbb{X}(x,y) + [0 \lor (-\mathbb{X}(y,y) + \mathbb{X}(y,z))] \ge \mathbb{X}(x,z)$

Partial metrics done right:

As any continuous *t*-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.

In what follows we shall consider its isomorphic copy $([0,\infty],\bigwedge,+,0)$, the Lawvere quantale of real numbers, in which residuation is

$$x \to y = 0 \lor (-x + y).$$

Since there are no non-trivial idempotents, $\mathcal{D}[0,\infty]$ is much bigger than $\mathfrak{I}[0,\infty]$.

A partial $[0,\infty]$ -category $\mathbb X$ now consists of a set X together with a binary predicate

$$\mathbb{X} \colon X \times X \to [0,\infty]$$

satisfying

- $\blacktriangleright \ \mathbb{X}(x,y) \geq \mathbb{X}(x,x) \vee \mathbb{X}(y,y)$
- $\blacktriangleright \ \mathbb{X}(x,y) \mathbb{X}(y,y) + \mathbb{X}(y,z) \geq \mathbb{X}(x,z)$

Partial metrics done right:

As any continuous *t*-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.

In what follows we shall consider its isomorphic copy $([0,\infty],\bigwedge,+,0)$, the Lawvere quantale of real numbers, in which residuation is

$$x \to y = 0 \lor (-x + y).$$

Since there are no non-trivial idempotents, $\mathcal{D}[0,\infty]$ is much bigger than $\mathfrak{I}[0,\infty]$.

A partial $[0,\infty]$ -category $\mathbb X$ now consists of a set X together with a binary predicate

 $\mathbb{X}\colon X\times X\to [0,\infty]$

satisfying

- $\blacktriangleright \ \mathbb{X}(x,y) \geq \mathbb{X}(x,x) \vee \mathbb{X}(y,y)$
- $\blacktriangleright \ \mathbb{X}(x,y) \mathbb{X}(y,y) + \mathbb{X}(y,z) \geq \mathbb{X}(x,z)$

That is to say, up to finiteness, symmetry and separatedness (which can all be expressed categorically!), we recover here the definition of a **partial metric space**.

Partial metrics done right:

As any continuous *t*-norm, $([0,1], \bigvee, \cdot, 1)$ is a divisible, commutative quantale.

In what follows we shall consider its isomorphic copy $([0,\infty],\bigwedge,+,0)$, the Lawvere quantale of real numbers, in which residuation is

$$x \to y = 0 \lor (-x + y).$$

Since there are no non-trivial idempotents, $\mathcal{D}[0,\infty]$ is much bigger than $\mathfrak{I}[0,\infty]$.

A partial $[0,\infty]$ -category $\mathbb X$ now consists of a set X together with a binary predicate

$$\mathbb{X}\colon X\times X\to [0,\infty]$$

satisfying

- $\blacktriangleright \ \mathbb{X}(x,y) \geq \mathbb{X}(x,x) \vee \mathbb{X}(y,y)$
- $\blacktriangleright \ \mathbb{X}(x,y) \mathbb{X}(y,y) + \mathbb{X}(y,z) \ge \mathbb{X}(x,z)$

That is to say, up to finiteness, symmetry and separatedness (which can all be expressed categorically!), we recover here the definition of a **partial metric space**.

Quantaloid-enriched category theory can be put to use here, in particular to deal with Cauchy completion, exponentiability, Hausdorff distance, and more.

4. Summary

In this talk I've tried to make the following points:

In this talk I've tried to make the following points:

 \blacktriangleright If Q is a divisible quantale, then the quantaloid $\mathcal{D}(Q)$ of diagonals in Q has a pleasant description.

In this talk I've tried to make the following points:

- \blacktriangleright If Q is a divisible quantale, then the quantaloid $\mathcal{D}(Q)$ of diagonals in Q has a pleasant description.
- ▶ If Q is a divisible commutative quantale, then a $\mathcal{D}(Q)$ -enriched category \mathbb{C} is a set \mathbb{C}_0 together with a binary predicate $\mathbb{C} : \mathbb{C}_0 \times \mathbb{C}_0 \to Q$ satisfying

$$\begin{cases} \mathbb{C}(x,y) \leq \mathbb{C}(x,x) \land \mathbb{C}(y,y) \\ \mathbb{C}(x,y) \circ (\mathbb{C}(y,y) \to \mathbb{C}(y,z)) \leq \mathbb{C}(x,z) \end{cases}$$

In this talk I've tried to make the following points:

- \blacktriangleright If Q is a divisible quantale, then the quantaloid $\mathcal{D}(Q)$ of diagonals in Q has a pleasant description.
- ▶ If Q is a divisible commutative quantale, then a $\mathcal{D}(Q)$ -enriched category \mathbb{C} is a set \mathbb{C}_0 together with a binary predicate $\mathbb{C} : \mathbb{C}_0 \times \mathbb{C}_0 \to Q$ satisfying

$$\begin{cases} \mathbb{C}(x,y) \leq \mathbb{C}(x,x) \wedge \mathbb{C}(y,y) \\ \mathbb{C}(x,y) \circ (\mathbb{C}(y,y) \to \mathbb{C}(y,z)) \leq \mathbb{C}(x,z) \end{cases}$$

Such a "partial Q-category" is a many-valued order relation on a set of partially defined elements.

In this talk I've tried to make the following points:

- \blacktriangleright If Q is a divisible quantale, then the quantaloid $\mathcal{D}(Q)$ of diagonals in Q has a pleasant description.
- ▶ If Q is a divisible commutative quantale, then a $\mathcal{D}(Q)$ -enriched category \mathbb{C} is a set \mathbb{C}_0 together with a binary predicate $\mathbb{C} : \mathbb{C}_0 \times \mathbb{C}_0 \to Q$ satisfying

$$\begin{cases} \mathbb{C}(x,y) \leq \mathbb{C}(x,x) \wedge \mathbb{C}(y,y) \\ \mathbb{C}(x,y) \circ (\mathbb{C}(y,y) \to \mathbb{C}(y,z)) \leq \mathbb{C}(x,z) \end{cases}$$

- Such a "partial Q-category" is a many-valued order relation on a set of partially defined elements.
- Applied to a continuous *t*-norm, this seems to provide a useful notion of "fuzzy (pre)order" (on "fuzzy elements"!), but only further research and more examples can tell.