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Examples of spectral dualities

Grothendieck duality: commutative rings and locally ringed spaces

CRingop ⊥ LRSpaces
Spec

Γ

Stone duality: distributive lattices and Stone spaces

DLatop 'eq Stone
Spec

KΩ(−)

Other examples:

In algebraic geometry: Pierce spectrum, real spectrum

Stone-like dualities for boolean algebras, Heyting algebras

Dubuc & Poveda duality for MV-algebras, dualities for
residuated lattices, duality for rigs...



General template

Contravariant adjunction between algebras and spaces:

Bop ⊥ StrSpaces
Spec

Γ

a category of algebraic objects
B ' TB[Set]

Set-valued models of an
(essentially) algebraic theory

with a distinguished subcategory
of “local objects”

and a factorization system
(etale, local)

a category of (locally)
structured spaces

space-like objects equiped
with a sheaf of B-object

values on opens are in B

stalks are local objects

morphisms: underlying
continuous maps
+ morphisms of sheaves with
“local arrows” at stalks

Spec associates a structured space to each algebra

Γ reconstructs algebras as global sections of structural sheaves



General template

Geometry is not intrinsic to the category of algebras
Defined relatively to a choice of local data:

local objects, models of a geometric theory T′
extending T.

local arrows, behaving as a right class

etale arrows, behaving as a left class

For Grothendieck duality

B = CRing ; “structured spaces” = locally ringed spaces

Local objects = local rings (with unique maximal ideal)

Local arrows: conservative rings homomorphisms

Etale arrows: localization of rings



Historic of the construction

Hakim, 1972: Zariski topos + systematic construction of
several geometries for rings

Johnstone, 1977: first proposal of a general process

Cole, mid 70’ (first published in 2016): admissibility +
systematic 2-categorical construction of spectra

Coste,1979: syntactical interpretation + explicit
construction of the spectral site

Diers, 1981/1984: in term of multiadjonctions

Taylor, 1998: in term of stable functors

Dubuc, 2000: axiomatic etale classes

Lurie, 2009: ∞-categorical synthesis

Anel, 2009: factorial and topological interpretation



Several methods

Different approaches with unclear links:

Cole: abstract presentation of admissibility
Spectrum constructed by 2-limits as a classifying objects

Coste: syntactical interpretation of Cole’s admissibility
Explicit construction of the spectral site.

Anel: topological behaviours in the opposite category

Diers: more divergent, purely categorical approach
Abstraction of admissibility into multiadjunction
Spectrum as a space constructed from its points

Our purpose: synthesis and explicit relations of the links
between those methods + some additional observations



A multifaceted construction

Topology

Spectrum as a space

Algebra

Spectrum as

free object

Categories

Spectrum from

multi-adjunction

Logic
Spectrum

for geometric

extensions

Local objects

as points

Geometric

extensions

as topology

Factorial

data

Classifying

toposes

Spectrum



Context

LFP categories

A locally finitely presentable category B is a category with:

small colimits

a small generator Bℵ0 of finitely presented objects
generating arbitrary objects under filtered colimits :

B ' Ind(Bℵ0)

Category of models of an essentially algebraic theory T.
= cartesian theory (constructed with ∧ and strict ∃)
= finite-limits theory (sorts constructed by finite limits)



Syntactic category for T

Syntactic category for T

Obj: formulas in context {x, φ(x)} in the language of T
Mor: equivalence classes of functional formulas

[θ(x, y)] : {φ, x} → {ψ, y} s.t.

{ θ(x, y) `T ψ(y)
θ(x, y) ∧ θ(x, y′) `T y = y′

φ(x) `T ∃yθ(x, y)

CT ' Bopℵ0
has finite limits, cf. Gabriel-Ulmer

F.p. objects are determined by presentation formula

K = 〈x1, ..., xn〉/φK(x1, ..., xn) corresponds to {φK , x1, ..., xn}
f : 〈x1, ..., xn〉/φ(x1, ..., xn)→ 〈y1, ..., ym〉/ψ(y1, ..., ym)

s.t. (f(xi) = τi[y1, ..., ym])i=1,...,n corresponds to

θf (y1, ..., ym;x1, ..., xn)⇔ x1 = τ1[y1, ..., ym] ∧ ... ∧ xn = τn[y1, ..., ym]



Classifying topos for T

Diaconescu theorem for Lex sites

CT = Bopℵ0
Set

B̂opℵ0

F lex

ょ

F∗

F ∗ lex

B ' Ind(Bℵ0)

' Lex[Bopℵ0
, Set]

' Geom[Set, B̂opℵ0
]

If E Grothendieck topos, T[E ] = Lex[Bopℵ0
, E ] ' Geom[E , B̂opℵ0

]

B = B̂opℵ0
classifies T-models in arbitrary toposes



Geometric extensions

Geometric theory: constructed with ∧,∃,
∨

→ has a finite-limit part.
A geometric extension of T:
→ a geometric theory T′ whose finite-limit part is T
Corresponds to a topology J on CT = Bopℵ0

Models in Set are J-continuous Lex functors F : (Bopℵ0
, J)→ Set:

colimi∈IF (Ki)
〈F (ki)〉i∈I
� F (K)

Diaconescu theorem for arbitrary sites

(Bopℵ0
, J) Set

Sh(Bopℵ0
, J)

Flex
J−cont

ょ
F∗

F ∗ lex

TJ [E ] ' LexJ−Cont[(Bopℵ0
, J), E ]

' Geom[Set, Sh(Bopℵ0
, J)]



Problem of the free object

Geometric extensions do not have a good notion of free object.
→ Several locally free T′-models under a given object.

The problem of spectrum

For any B in B construct:

a topos Spec(B)

endowed with a free T′-model B̃ for B

The free model will be

a sheaf of B-objects in this topos,

with local objects under B as stalks

Cannot process directly: need to precise factorization data
Admissibility relates factorial and geometric data.



Orthogonality and factorization systems

Factorization systems

A pair (E ,M) s.t. any arrows
has a unique factorization

B C

Bf

f

nf∈E uf∈M

Ortogonality structure

A pair (E ,M) s.t. with
diagonalization property:

B A

B′ B

n∈E u∈M∃!

General properties of a factorization system (E ,M)

E contains iso

is post-absorbant, hence
closed by retracts,

closed by colimits

M contains iso

is pre-absorbant, hence
closed by sections,

closed by limits



Saturated class

Saturated classes

A saturated class is a V ⊆
−−→
Bℵ0 closed by:

composition

pushouts along f.p. arrows

post-absorption

K K ′

K ′′

f∈V

g∈V
has to be in V

In a L.F.P. category

Orthogonality and factorization systems coincide
Any factorization system (E ,M) is determined by E ∩ Bℵ0

Any saturated class left generates a factorization system
V 7→ (Ind(V),V⊥)
Factorization system ' saturated classes



Etale and local arrows, admissibility

Coste’s admissibility structure

A geometry for B will be determined by a pair (V , J) with:

a V saturated class determining (EtV ,LocV)

a topology J on Bopℵ0
with basic covers in V

(encodding the theory of local objects)

Etale arrows: dual of open inclusions of the geometry
→ will constitute the topological part of spectrum
Local forms in (V , J): etale arrows toward J-local objects
→ points of the geometry
Etale arrows approximate local forms by filtered colimits
As open neighborhood approximate points
Local arrows: residual, non-topological information
Factorization: separate topological from residual data



Topology on Bop

Induced topology

(V, J) induces a topology on Bop
Can transfer J covers under arbitrary objects by pushouts
Define J̃ whose covers are dual cocones of

(B
fi→ Bi)i∈I s.t.

B K

Bi Ki

fi ki
q

Local objects are J̃-irreducible → lift their own covers



Local objects as focal spaces
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Topological interpretation (Anel)

In Bop etale maps behave as open inclusions

In B (algebraic side)

Etale arrow B
l→ C

Local objects
→ Lift their own cover:
A A

Bi

li
∃r

Cone of local units

B

Ai ... Aj

ηi ηj

In Bop (spatial site)

Etale open inclusion C
lop→ B

Focal spaces
→ Has a minimal point:

∗

...

Cocone of focal components

“Spec(B)”

↑v {xi} ... ↑v {xj}



Syntactic aspects: etale and local arrows (Coste)

Arrows in V “create witnesses of codomain formulas from
witnesses of domain formula”

Local arrows “reflect witnesses of codomain formulas”

{ ∀f ∈ V
∀a ∈ A s.t. A |= φf (a)

∀b ∈ B s.t. B |= ψf (b) ∧ θf (g(a), b)
⇒ ∃!c ∈ A

{ A |= ψf (c)
A |= θf (a, c)

g(c) = b

〈x1, ..., xn〉Σ/φf (x1, ..., xn) A

〈y1, ..., ym〉Σ/ψf (y1, ..., yn) B

f

paq

g∃!pcq

pbq

For Grothendieck duality

Etale arrows = localizations: create invertible from nonzero
Local arrows = conservative morphisms: reflect invertibility



Syntactic aspects: local objects

LocJ ' TJ [Set] ' pt(Sh(Bopℵ0
, J))

Covers = disjunctions of cases for witnesses of domain formulas

TJ = TB ∪
{
φ(x) `

∨
i∈I
∃yi(ψi(yi) ∧ θfi(yi, x))

}
(fi)i∈I∈J(〈x〉/φ(x)

〈x〉Σ/φ(x) B

〈yi〉Σ/ψi(yi)

fi

g=pbq

∃pbiq

If b ∈ B such that B |= φ(b)
then ∃i ∈ I and bi ∈ B s.t.
B |= ψi(bi) ∧ θfi(bi, b))

Example of local rings

TLocRing = TCRing ∪ {x 6= 0 ` ∃y(xy = 1) ∨ ∃y′((1− x)y′ = 1)}



Admissibility for local objects + local arrows

Relates factorial and geometric data

Cole’s admissibility

An admissibility structure is the data of:

a (finite-limits) theory T
a geometric extension T′

a class of arrows Loc in T[Set] closed by inverse image,
composition and pre-absorption containing iso

such that any arrows from a T model toward a T′ model
admits an initial factorization through T′ model with a
local arrow on the right.



Local and multi right adjoints

Local right adjoint (aka Stable functors)

Let U : A → B a functor:

U local RAdj if each slice is RAdj: A/A ⊥ B/U(A)

U/A

LA

U is multi-RAdj if any B in B has a small cone of local
units

(B
ηi→ U(Ai))i∈IB

initial in the comma B ↓ U

Multireflection

(Non-full) faithful multi RAdj are (non-full) multireflections.



Multireflection induced by admissibility

Admissibility is encoded by stability

Multireflection from admissibility

For an admissibility structure (V , J):

Local objects are downclosed for local maps:
if u : A→ L a local map with L local, then A is local.

TJ [Set]Loc ↪→ B is multireflective.

Local units correspond to local forms = points



Multireflection and admissibility

Conversely: multiadjunctions produce admissibility.
Defect of uniqueness of the unit
Universal property of reflection jointly assumed by the
universal cone.

B U(A)

U(Ai) ... U(Aj)

ηi ηj

f

∃

Taking as local maps the right class generated by U(
−→
A):

Stability says that one of the factorization is admissible

Initial amongst those with an arrow in U(
−→
A) on the right



Admissibility structure for stable functor

Factorization system for a stable functor

(⊥U(
−→
A )︸ ︷︷ ︸

DiagU

, (⊥U(
−→
A))⊥︸ ︷︷ ︸

LocU

)

On the right: class generated by arrows in the range of U
On the left: Diers’ “diagonally universal morphisms”
Right generated factorization system

Topology of U -localizing families

JU (B) =

{
(B

δi→ Bi)
op
i∈I | ∀j ∈ IB , ∃i ∈ I

B U(Aj)

Bi

ηj

δi ∃

}
(JU |ℵ0 ,DiagU ∩ Bℵ0) admissibility structure



Coste and Diers contexts

Comparison of contexts

CosteB ⊥ DiersB

(V, J) 7−→ UV,J : TJ [Set]LocV ↪→ B

(DiagU ∩
−−→
Bℵ0 , JU |ℵ0) ←− [ U : A → B

Coste contexts on B:
saturated class V +
topology J generated in V
(V1, J1) ≤ (V2, J2) if
J1 ≤ J2 and V2 ⊆ V1

EtV2 ⊆ EtV1

LocV1 ⊆ LocV2

Diers contexts on B:
U : A → B multiRAdj
s.t. local forms are
filt.colim of etale arrows

U1 ≤ U2 if
A1 B

A2

U1

U2



Coste and Diers contexts

Comparison of contexts

CosteB ⊥ DiersB

(V, J) 7−→ UV,J : TJ [Set]LocV ↪→ B

(DiagU ∩
−−→
Bℵ0 , JU ) ←− [ U : A → B

Closure of Diers contexts:

A B

TJU |ℵ0
[Set]LocU

U

eso

Same local objects but new etale maps

(DiagUV,J ∩ Bopℵ0
, JUV,J = J) ≤ (V, J)



Local maps in arbitrary toposes

Localness can be expressed by pullback

In T[Set] ' Ind(Bℵ0)

ょK F

ょK′ F ′

u

ょf α
∃!

v

F (K ′) F (K)

F ′(K ′) F ′(K)

F (f)

αK′
y

αK

F ′(f)

Generalizes to arbitrary toposes
Pointwise factorization in T[E ]: (EtE ,LocE)

F (c) F ′(c)

Hα,c

αc

nα,c uα,c

Hα = aJE (c 7→ Hα,c)



Admissibility in arbitrary toposes

Admissibility is inherited in any arbitrary topos E

Local objects in E are “absorbant right to local maps”

The inclusion TJ [E ]Loc ↪→ T[E ] is multireflective

In any topos E , a retract of a local object is local

For F, F0 : Bopℵ0
→ E s.t. F0 is J-local and

F0

F F

rs

∐
F0(Ki) F0(K)

∐
F (Ki) F (K)

∐
F (Ki) F (K)

∐
rKi

〈F0(ki)〉

rK

〈F (ki)〉
∐
sKi

〈F (ki)〉
sK



(Locally) modelled topose

Œcumene for T-models

TBT opos : TB-modeled toposes

Obj: (E , E) with E in T[E ]

Arr: (f, f ]) : (E , E)→ (F , F ) with:

{
F

f−→ E geom.

f∗E
f]−→ F T-morph.

TJ,VLocT opos: TJ -locally modelled toposes:

Obj: (E , E) with each Ex local, x ∈ pt(E)

Arr: (f, f ]) with f ] in TJ transformation

f ]x : Efx → Fx a local arrow in TJ [Set]

TBT opos =
∫
T[−]

TJ,VLocT opos =
∫
TJ [−]Loc

}
Indexed categories over GT opop



Turning admissibility into reflection

The fundamental adjunction

One wants to construct a left adjoint Spec to the inclusion

TJ,VLocT opos ⊥ TBT opos
w

SpecV,J

Consider models jointly, regardless of their base topos
Then admissibility turns into proper reflection
One can construct a free local object under a given T-model
If allowed to change of topos



For models in Set

Adjunction for models in Set
In particular if restricting to models over Set:

Bop ⊥ TJ,VLocT opos
SpecV,J

Γ

Here Γ applies the direct image part of

! : Spec(F )→ Set

to the structure sheaf F̃



Coste’s spectrum of a Set-valued model

Spectral site of B ∈ B

VB =

{
l : B → C |

B K

C K ′

l

f

k

q
k∗f

for some k ∈ V
and f : K → B

}

JB(l)︸ ︷︷ ︸
onVopB

=

{(
B Al

Ani

l

ni
mi

)
i∈I

|
Bl K

Bni Ki

mi

u

ki

q

}

Gathers etale arrows under B with relative topology



Coste’s spectrum of a Set-valued model

Spectrum of B ∈ B

SpecV,J(B) = Sh(VopB , JB)

VopB is a Lex site coding for “basic open inclusions”
Etale arrow δ : B → C correspond to etale geometric
morphisms

Spec(δ) : Spec(C) ' Spec(B)/aJB (ょδ)→ Spec(B)

Ind-etale maps live in Spec(B) as Ind-objects on VB



Points of the spectrum

Points

Points of spectral site of B are local forms under B

If B
l→ C etale, any point of Spec(C) is a point of Spec(B)

Etale arrows between local objects = specialization order

If A Set-valued local, Spec(A) local topos



Structural sheaf of Set-valued model

Structural sheaf of B in B

B̃ is a distinguished sheaf of B-objects in Spec(B):

B̃ = aJB((B
l→ C) 7−→ C)

Sheafification of the Codomain functor

At stalks: B̃ returns local objects under B
Hence B̃ is a TJ -model in Spec(B)
→ This is the free local object under B

Spec(B) is the good topos over which one can define the
free local object for B
B̃ gathers local forms of B as its stalks.



Coste’s spectral site: general case

Definition of (VopF , JF ) for F = Sh(CF , JF) and F in T[F ]

Obj: (c, l) with c ∈ CF and l a morphism in VF (c)

Arr:(s, h) : (c, f)→ (c′, f ′) with

F (c) Bc,f

F (c′) Bc′,f ′

f

F (s) h

f ′

JF jointly generated by:

((c, 1c)
(si,F (si))−→ (ci, 1ci ))i∈I with (c

si→ ci)i∈I ∈ JopF (c)

((c, l)
(1c,hi)−→ (c, li))i∈I with

(
F (c) Bc,l

Bc,li

l

fi
hi

)
i∈I

∈ Jop
F (c)

(l)



Relation between the sites

Gluing relation

The site for F is the gluing of the sites for its values:

(VopF , JF ) = colim
c∈CF

(VopF (c), JF (c))

Spec(F ) ' lim
c∈CF

Spec(F (c))

Spectral sites for Set-valued models are the building blocks for
spectral sites of arbitrary models



Diers construction

Diers quotients VB by factorization relation
Diers contexts have enough points : the spectrum is spatial

Spectral space of Diers for a B in B

Point are the local units ni : B → U(Ai) indexed by IB

Topology is generated by f.p. etale maps:
for l : B → C ∈ VB defines a subset of IB

D(l) = {n ∈ IB | l ≤ n}

D(l : B → C) ∩D(l′ : B → C ′) = D(B → C +l,l′

B C ′)

(D(l))l∈VB basis for a topology on IB

Gets a posite (VB/ ∼≤, JB)

Localic reflection of Coste Spectrum



Structural sheaf of Diers Spectrum

Structural sheaf

Defined by left Kan extension + sheafification

K∆B B

Ω(SpecUB)op

Cod

D
B=LanDCod

B(U) = colim
U⊆D(δ)

Cod(δ)

B̃ = (B)++

Stalks are colimits of values on neighborhoods
Hence Diers condition of approximability



Modelled toposes as an over 2-category

Models as geometric morphisms

TBT opos ' GT op/B where B = B̂opℵ0

Structural sheaves are geometric morphisms toward the

classifier: (F , F ) is a F F→ B in GT op

A morphism (F , F )
(f,f])→ (E , E) is a 2-cell in GT op:

E F

B

f

E
F

f]

2-cells in TBT opos are inessential, can be seen as 1-cells:
TBT opos must be seen as a 1-category.



Usefull 2-limits of toposes

Use 2-limits in GT op to construct classifying objects

Classifyer of natural
transformations:

2 t B B
∂0

∂1

µ

E 2 t B B

p

q

∃!
φ

∂0

∂1

µ

Universal factorization of the
universal map:

2 t B B

∂0

∂µ

∂1

nµ

uµ

BEt = Inv(uµ)

BLoc = Inv(nµ)

Can do the same over BJ



Usefull 2-limits of toposes

Use 2-limits in GT op to construct classifying objects

Classifier of etale maps under F :

F ×∂0,F
B BEt F

BEt B

B B

y
F

∂1

∂0

µEt

For etale maps to local objects:

BEt ×∂1,w
B BJ BJ

BEt B

B B

y
w

∂0

∂1

µEt

Compose by pullback the classifier of etale map from F to local
objects

[F,BJ ]2̂Et = F ×∂0,F
B BEt ×BEt (BEt ×∂1,w

B BJ)



Cole’s spectrum

Cole spectrum is constructed by comma and pullbacks
Exhibits Spec(F ) as the classifier of admissible
factorizations of arrows from F toward a local object

Spec(F ) [F,BJ ]2̂Et BEt ×F,∂0
B F F

BEt ×∂1,w
B BJ BEt B

BLocJ BJ B B

p1

p2

y π2 y

π1 π1
1

y
F

π2
2

y

∂0

∂1∂
Loc,J
0

∂
Loc,J
1

uJ w

µEt



Cole’s spectrum

TJ,VLocT opos[(Spec(F ), F̃ ), (E , E)] ' TBT opos[(F , F ), (E , wE)]
(?, ?) ← [ (f, φ)

E

Spec(F ) [F,BJ ]2̂Et BEt ×F,∂0
B F F

BEt ×∂1,w
B BJ BEt B

BLocJ BJ B B

E

f

φ
p1

p2

y π2 y

π1 π1
1

y
F

π2
2

y

∂0

∂1∂
Loc,J
0

∂
Loc,J
1

uJ w

µEt



Cole’s spectrum

TJ,VLocT opos[(Spec(F ), F̃ ), (E , E)] ' TBT opos[(F , F ), (E , wE)]
(?, ?) ← [ (f, φ)

E

Spec(F ) [F,BJ ]2̂Et BEt ×F,∂0
B F F

BEt ×∂1,w
B BJ BEt B

BLocJ BJ B B

E

Hφ

uφ

f

p1

p2

y π2 y

π1 π1
1

y
F

π2
2

y

∂0

∂1∂
Loc,J
0

∂
Loc,J
1

uJ w

µEt

nφ



Cole’s spectrum

TJ,VLocT opos[(Spec(F ), F̃ ), (E , E)] ' TBT opos[(F , F ), (E , wE)]
(?, ?) ← [ (f, φ)

E

Spec(F ) [F,BJ ]2̂Et BEt ×F,∂0
B F F

BEt ×∂1,w
B BJ BEt B

BLocJ BJ B B

E
tuφ

Hφ

tnφ

uφ

f

p1

p2

y π2 y

π1 π1
1

y
F

π2
2

y

∂0

∂1∂
Loc,J
0

∂
Loc,J
1

uJ w

µEt

nφ



Cole’s spectrum

TJ,VLocT opos[(Spec(F ), F̃ ), (E , E)] ' TBT opos[(F , F ), (E , wE)]
(t, uφ) ← [ (f, φ)

E

Spec(F ) [F,BJ ]2̂Et BEt ×F,∂0
B F F

BEt ×∂1,w
B BJ BEt B

BLocJ BJ B B

E
tuφ

Hφ

tnφ

uφ

t

f

p1

p2

y π2 y

π1 π1
1

y
F

π2
2

y

∂0

∂1∂
Loc,J
0

∂
Loc,J
1

uJ w

µEt

nφ



Unit and canonical map

(SpecF, F̃ ) (E , E)
(t,t])

t] = uφ : F̃ t = ∂Loc,J0 ◦ p2 ◦ t⇒ E = ∂Loc,J1 ◦ t

(F , F ) (E,wE)

(SpecF, wF̃ )

(η(F,F ),η
]
(F,F )

)

(f,φ)

(wt,w∗uφ)

η(F ,F ) = π1
1 ◦ π1 ◦ p1 : SpecF → F

η](F ,F ) = (p ◦ p1)∗ι∗Etµ : F ◦ η(F ,F ) ⇒ w ◦ ∂Loc,J0 ◦ p2 = wF̃



Locally modelled toposes as algebra for wSpec

Theorem of algebraicity

The category of modelled toposes coincides with the category of
algebras of the monad wSpec

TJ,VLocT opos ' (TBT opos)wSpec

Locally modelled toposes are automatically algebras via their reflections maps
By naturality, local morphisms are morphisms of algebras
Conversely: an algebra is endowed with a retraction of its unit

(F , F ) (SpecF,wF̃ )
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Hence the structural sheaf is a retraction of a local object, hence local



Locally modelled toposes as algebra for wSpec

Theorem of algebraicity

The category of modelled toposes coincides with the category of
algebras of the monad wSpec

TJ,VLocT opos ' (TBT opos)wSpec

Corollary

TJ,VLocT opos is complete and w creates limits
TJ,VLocT opos has coproducts.

Example

Locally rings spaces are complete and cocomplete

wSpec is not idempotent by non-fullness

Being locally modelled is more a structure than a property.



Ongoing works and perspectives

Condition of redundancy: when is the topological
reduct sufficient for faithful dualization ?

Conditions for representability and existence of
dualizing object ?

Criterion for a best factorization system associated to
a class of local object ...



Spectrum for monadic categories

Problem of the Pt functor for frames:

Frmop ⊥ T op
pt

Ω

This functor should be the prototypical spectrum
Corresponds to the stable inclusion

FocFrm0−cons︸ ︷︷ ︸ ↪→ Frm
Obj: focal frames: where {0} is prime ideal

Mor: 0-conservative morphisms f s.t. f−1({0} = {0}

But Frm is not L.F.P., not even accessible ! However it is
monadic:
→ geometry for monadic categories ?



Semantics as a 2-categorical geometry ?

Stone-like dualities = propositional syntax-semantic dualities
And they are (topological reduct of) spectral dualities

Propositional dualities

Lindenbaum algebras closed
by operations coding
connectors

Models =morphisms
f ∈ B[B, 2]
= identified with f−1(1)
= points of the spectrum

2 is dualizing object

Frame of ideals
= topology on the spectrum

First order dualities

Syntactic site = categories
in corresponding doctrine
(KZ-monadic)

Models are functors in the
doctrine F in D[CT,Set]
= identified with

∫
F

= pts of classifying topos

Set as dualizing object

Classifying topos =
topology on the category of
models



Semantics as a 2-categorical geometry ?

Example of correspondences

Jipsen-Moshier
∧ − SLatop1 ' HMS
Stone
DLatop ' Stone
Esakia
Heytop ' Esa
Duality for frames

Gabriel-Ulmer
Lexop ' LFP
Awodey-Forsell, Makkai
For coherent theories

Duality for small ccc ?

Duality for geometric
theories ?

Using a 2-spectrum of models to characterize categories of
models for presheaf types, regular, coherent, geometric
theories ?



Thanks for your attention !



Structured Stone duality

Usually Stone duality is defined without structural sheaf:
The underlying spectral space is sufficient for reconstructing a DLat
D with KΩ
→ situation of redundancy

Stable inclusion for Stone

Define the category FocDLat0−cons having:

Obj: focal DLat, where {0} is prime ideal

Mor: 0-conservative morphisms f s.t. f−1({0} = {0}

Then LocDLat0−cons ↪→ DLat is a multireflection



Structured Stone duality

If x prime ideal of D, then D/x is local

Structured Stone spectrum

The associated spectrum for D is

(Spec(D) = (IPrimeD , τCoZariskiD ), D̃)

with D̃ defined on the basis as D̃(U coZara ) = D/θ(a,0) for any
a ∈ D

DLatop ⊥ DLat∗ − Spaces

Spec↑

Γ



Relation between the sites

A canonical bifibration

VopF → CF is a cloven bifibration
Hence there is a geometric surjection Spec(F )� F

For an arrow in the site s : c→ c′

VF (c′) ⊥ VF (c)
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Gabriel-Ulmer & Jipsen-Moshier

Gabriel− Ulmer Jipsen−Moshier
Lexop 'eq LFP

C 7→ Lex[C,Set]
C F→ D 7→ (−) ◦ F

(Afp)op ←[ A

(Bfp)op
G
op
fp→ (Afp)op ← [ A

G
�

finitary
B

∧
−SLat1op ' HMS

L 7→ FL
f : L→ M 7→ f−1 : FM → FL
KOFX ← [ X

h−1

Lex[C,Set] ' C −ModSet
F 7→

∫
F

α : F → G 7→
∫
α(????)

FM ← [ M = (Mc)c∈C

∧
−SLat1[L, 2] ' FL

f 7→ f−1(1) '
∫
f

χF ← [ F

LFP categories are complete
and cocomplete

X ∈ HMS ⇒ (X,v) ∈ CDLat

K ∈ Afp ⇔ A[K,−]is finitary :

∀f : K → colim↑Xi, ∃i, g : K → Xi, f : qi ◦ g

↑v x ∈ KOFX ⇔↑v x open so

x v
⊔↑ xi ⇔ d

↓ ↑v xi ⊆↑v x

⇒ ∃i x v xi
because HMS spaces are well filtered

Afp ↓ X is filtered ↑KOFX F is directed

Afp ↓ X,X ↓ Afp are LFP ↑v x, ↓v x are HMS


