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Examples of spectral dualities

Grothendieck duality: commutative rings and locally ringed spaces
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Stone duality: distributive lattices and Stone spaces
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Other examples:

m In algebraic geometry: Pierce spectrum, real spectrum
m Stone-like dualities for boolean algebras, Heyting algebras

m Dubuc & Poveda duality for MV-algebras, dualities for
residuated lattices, duality for rigs...



General template

Contravariant adjunction between algebras and spaces:

r
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m a category of algebraic objects m a category of (locally)
B ~ Tg[Set] structured spaces
m Set-valued models of an m space-like objects equiped
(essentially) algebraic theory with a sheaf of B-object
m with a distinguished subcategory m values on opens are in B

of “local objects” .
m stalks are local objects

m and a factorization system

(etale, local) m morphisms: underlying

continuous maps
+ morphisms of sheaves with
“local arrows” at stalks

m Spec associates a structured space to each algebra

m [ reconstructs algebras as global sections of structural sheaves



General template

Geometry is not intrinsic to the category of algebras
Defined relatively to a choice of local data:

m local objects, models of a geometric theory T
extending T.

m local arrows, behaving as a right class

m etale arrows, behaving as a left class

For Grothendieck duality

m B =CRing ; “structured spaces” = locally ringed spaces
m Local objects = local rings (with unique maximal ideal)
m Local arrows: conservative rings homomorphisms

m FEtale arrows: localization of rings



Historic of the construction

m Hakim, 1972: Zariski topos + systematic construction of
several geometries for rings

m Johnstone, 1977: first proposal of a general process

m Cole, mid 70’ (first published in 2016): admissibility +
systematic 2-categorical construction of spectra

m Coste,1979: syntactical interpretation + explicit
construction of the spectral site

m Diers, 1981/1984: in term of multiadjonctions
m Taylor, 1998: in term of stable functors

m Dubuc, 2000: axiomatic etale classes

m Lurie, 2009: oco-categorical synthesis

m Anel, 2009: factorial and topological interpretation



Several methods

Different approaches with unclear links:

m Cole: abstract presentation of admissibility
Spectrum constructed by 2-limits as a classifying objects

m Coste: syntactical interpretation of Cole’s admissibility
Explicit construction of the spectral site.

m Anel: topological behaviours in the opposite category

m Diers: more divergent, purely categorical approach
Abstraction of admissibility into multiadjunction
Spectrum as a space constructed from its points

Our purpose: synthesis and explicit relations of the links
between those methods + some additional observations



A multifaceted construction

Topology

Spectrum as a space

Local objects
Algebra

as points

Spectrum as

free object

Logic

Spectrum from
Categories

multi-adjunction



Context

LFP categories

A locally finitely presentable category B is a category with:
m small colimits

m a small generator By, of finitely presented objects
generating arbitrary objects under filtered colimits :

B ~ Ind(By,)
Category of models of an essentially algebraic theory T.

= cartesian theory (constructed with A and strict J)
= finite-limits theory (sorts constructed by finite limits)



Syntactic category for T

Syntactic category for T

m Obj: formulas in context {7, ¢(Z)} in the language of T
m Mor: equivalence classes of functional formulas

0
[0z, y)] - {¢, T} = {¢, 7} st { Z(

Cr ~ By, has finite limits, cf. Gabriel-Ulmer
F.p. objects are determined by presentation formula

m K ={(x1,...2,) /0K (x1,...,x,) corresponds to {¢dx,x1,...,Tn}

m (@ @) [O(@, - Tn) = YL Ym) [ (Y1, Ym)
s.t. (f(zi) = 7y, ...s Ym))i=1,....n corresponds to

Gf(yla o Ym; 21, -wxn) < T1 =T1 [y1, ceey y'm] N Nxp = TvL[yh ---7ym}



Classifying topos for T

Diaconescu theorem for Lex sites

CT = Bgﬁ &) Set B~ Ind(BNO)
;l F* lex ~ Lex[By,, Sei]\
= Fx ~ Geom|[Set, By |

By,
If £ Grothendieck topos, T[E] = Lex[By, £] ~ Geom|[E, E@]

B = By classifies T-models in arbitrary toposes



Geometric extensions

Geometric theory: constructed with A, 3,/

— has a finite-limit part.

A geometric extension of T:

— a geometric theory T’ whose finite-limit part is T
Corresponds to a topology J on Cr = By

Models in Set are J-continuous Lex functors F' : (ByY,J) — Set:

F(ki))i
colimier F(K;) 0 pk)

Diaconescu theorem for arbitrary sites

Flex O]
(B;;I;, J) J—cont Set ’]TJ[E] =~ LexJ—COTLt[(BNP;? J)? g]
P e =~ Geom|[Set, Sh(BY, J)]




Problem of the free object

Geometric extensions do not have a good notion of free object.
— Several locally free T'-models under a given object.

The problem of spectrum

For any B in B construct:

m a topos Spec(B)
m endowed with a free T'-model B for B

The free model will be

m a sheaf of B-objects in this topos,

m with local objects under B as stalks

Cannot process directly: need to precise factorization data
Admissibility relates factorial and geometric data.



Orthogonality and factorization systems

Factorization systems Ortogonality structure

A pair (£, M) s.t. any arrows A pair (£, M) s.t. with

has a unique factorization diagonalization property:
B— 1 B—— A

General properties of a factorization system (£, M)

m &£ contains iso m M contains iso
m is post-absorbant, hence m is pre-absorbant, hence
closed by retracts, closed by sections,

m closed by colimits m closed by limits



Saturated class

Saturated classes
—
A saturated class is a V C By, closed by:

m composition K 1Y, Kk
m pushouts along f.p. arrows geVJ( AS to be in ¥
m post-absorption K"

In a L.F.P. category

Orthogonality and factorization systems coincide
Any factorization system (£, M) is determined by £ N By,

m Any saturated class left generates a factorization system
Vi (Ind(V), V1)
m Factorization system ~ saturated classes



Etale and local arrows, admissibility

Coste’s admissibility structure

A geometry for B will be determined by a pair (V, J) with:
m a V saturated class determining (Ety, Locy)

= a topology J on By with basic covers in V
(encodding the theory of local objects)

Etale arrows: dual of open inclusions of the geometry
— will constitute the topological part of spectrum

Local forms in (V, J): etale arrows toward .J-local objects
— points of the geometry

Etale arrows approximate local forms by filtered colimits
As open neighborhood approximate points

Local arrows: residual, non-topological information
Factorization: separate topological from residual data



Topology on B

Induced topology

(V, J) induces a topology on B
Can transfer J covers under arbitrary objects by pushouts
Define J whose covers are dual cocones of

; B+——K
(B =X Bi)ie] S.t. fll lk)l
-

Local objects are J-irreducible — lift their own covers



Local objects as focal spaces



Local objects as focal spaces




Local objects as focal spaces
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Local objects as focal spaces

o F = = E DA



Topological interpretation (Anel)

In B etale maps behave as open inclusions

In B (algebraic side) In B°P (spatial site)
Etale arrow B - C Etale open inclusion C “B
Local objects Focal spaces
— Lift their own cover: — Has a minimal point:

A A

Pt

5 8

Bi *
Cone of local units Cocone of focal components

B LLSpeC(B)”
N ™S



Syntactic aspects: etale and local arrows (Coste)

m Arrows in V “create witnesses of codomain formulas from
witnesses of domain formula”

m Local arrows “reflect witnesses of codomain formulas”

Vfev A0
{ Va€ Ast. A ¢5(a) o :>E|!ceA{ A b(ac)
Vb€ Bs.t. BEs(b) Abs(g(a),b) g(e)=1b

(x1, -~773n>2/¢f(zl, c ) ; A

A
fl e -7 lg

W15 Ym)S g (y1, -0 yn) —= B

rp7

For Grothendieck duality

Etale arrows = localizations: create invertible from nonzero
Local arrows = conservative morphisms: reflect invertibility



Syntactic aspects: local objects

Locy ~ T [Set] ~ pt(Sh(BY, J))

Covers = disjunctions of cases for witnesses of domain formulas

T =T U {o(@) - \V 3706 105,31, |
iel (fi)icreJ((z)/p(T)
_I’B‘l — —
@)= /px) — B If b € B such that B = ¢(b)
f'J{ /,//\' then ¢ € I and Bj eﬁB s.t.
B B = 1i(bi) A 0, (b1, )
<yi>2/¢i@i)

Example of local rings

Trocring = TeRring U{x #0F Jy(zy =1) vV I/ ((1 — )y’ =1)}




Admissibility for local objects + local arrows

Relates factorial and geometric data

Cole’s admissibility

An admissibility structure is the data of:
m a (finite-limits) theory T
m a geometric extension T’

m a class of arrows Loc in T[Set] closed by inverse image,
composition and pre-absorption containing iso
such that any arrows from a T model toward a T" model
admits an initial factorization through T model with a
local arrow on the right.



Local and multi right adjoints

Local right adjoint (aka Stable functors)

Let U : A — B a functor:
La
m U local RAdj if each slice is RAdj: A/, @ B/u(a)
U/a
m U is multi-RAdj if any B in B has a small cone of local
units

(B 774 U(Ai))iEIB

initial in the comma B | U

Multireflection

(Non-full) faithful multi RAdj are (non-full) multireflections.



Multireflection induced by admissibility

Admissibility is encoded by stability

Multireflection from admissibility

For an admissibility structure (V, J):

m Local objects are downclosed for local maps:
if u: A— L alocal map with L local, then A is local.

m T;[Set]*°¢ — B is multireflective.

Local units correspond to local forms = points



Multireflection and admissibility

Conversely: multiadjunctions produce admissibility.
Defect of uniqueness of the unit

Universal property of reflection jointly assumed by the
universal cone.

Taking as local maps the right class generated by U (j)
Stability says that one of the factorization is admissible

Initial amongst those with an arrow in U (X) on the right



Admissibility structure for stable functor

Factorization system for a stable functor

Diagy Locy

On the right: class generated by arrows in the range of U
On the left: Diers’ “diagonally universal morphisms”
Right generated factorization system

Topology of U-localizing families

. B U(A;j)
JU(B):{(B% ier | Vi€lp, Jiel N L }

(Ju |xy, Diagy N By,) admissibility structure



Coste and Diers contexts

Comparison of contexts

(V, J) —> UVJ : TJ[Set]LOCV — B
—

(DiagUﬂBNO,JU |N0) — U:A—B

m Coste contexts on B: m Diers contexts on B:
saturated class V + U: A— B multiRAdj
topology J generated in V s.t. local forms are

s (Vi,J1) < (W, Jo) if filt.colim of etale arrows
Ji1 < Jyand Vo C V4 A DB

Ety, C Ety, m U <Usyif £ %
Locy, C Locy, As



Coste and Diers contexts

Comparison of contexts

(V, J) — UV7J 2 TJ[SCt]LOCV — B
(Diagy N By Ju) ¢ U:A—B
U

A—— B

m Closure of Diers contexts: ESOl /

’JI‘JUMO [Set]locu
m Same local objects but new etale maps

(DiagUyJ N Bgﬁ, JUV’J = J) < (V, J)



Local maps in arbitrary toposes

Localness can be expressed by pullback

In T[Set] ~ Ind(By,)

Generalizes to arbitrary toposes
Pointwise factorization in T[E]: (Ete, Loce)

F(c) e > F'(c) Hy = aj.(cr Hap)

nm %a,c



Admissibility in arbitrary toposes

Admissibility is inherited in any arbitrary topos &£

m Local objects in £ are “absorbant right to local maps”
m The inclusion T;[£]*°¢ < T[£] is multireflective

m In any topos &£, a retract of a local object is local

For F, Fy : By, — & s.t. Fy is J-local and yFO N

F F
LI Fo (Ky) —pprm 2 Po(K)
IV/\»LMK/ Gl
LIF(K»m F<K>/




(Locally) modelled topose

(Ecumene for T-models

TrT opos : Tp-modeled toposes
m Obj: (£, FE) with E in T[]

i
m A (f, %) : (€, B) — (F, F) with: { e

*FE f—n> F T-morph.
T sy LocT opos: T j-locally modelled toposes:

m Obj: (&, E) with each E; local, = € pt(£)

m Arr: (f, f) with f% in T transformation

f¥: By, — F; alocal arrow in T[Set]

TsT opos = [ T[]

T sy LocT opos = f TJ[—]LOC } Indexed categories over G7 op®?



Turning admissibility into reflection

The fundamental adjunction

One wants to construct a left adjoint Spec to the inclusion

Specy,

/\
T sy LocT opos 1 TgTopos
) \_/\,
Consider models jointly, regardless of their base topos
Then admissibility turns into proper reflection
One can construct a free local object under a given T-model
If allowed to change of topos



For models in Set

Adjunction for models in Set

In particular if restricting to models over Set:

Here T" applies the direct image part of
I': Spec(F) — Set

to the structure sheaf F



Coste’s spectrum of a Set-valued model

Spectral site of B € B

!
' B K for some k € V
Ve=11:B=C 4| b and f: K — B
e
Bl 4 B+t K
Jp(l) = I NGERN [ Bt A
on VP An, /€I B, «+— K,

Gathers etale arrows under B with relative topology



Coste’s spectrum of a Set-valued model

Spectrum of B € B

SpGCV,J(B) = Sh(Vgp, JB)

V7 is a Lex site coding for “basic open inclusions”
Etale arrow § : B — C' correspond to etale geometric
morphisms

Spec(d) : Spec(C) ~ Spec(B)/aj,(&s) — Spec(B)

Ind-etale maps live in Spec(B) as Ind-objects on Vg



Points of the spectrum

Points

m Points of spectral site of B are local forms under B
= IfB5C etale, any point of Spec(C') is a point of Spec(B)
m Etale arrows between local objects = specialization order

m If A Set-valued local, Spec(A) local topos



Structural sheaf of Set-valued model

Structural sheaf of B in B

m Bisa distinguished sheaf of B-objects in Spec(B):
B=ay,(BYC)— C)

Sheafification of the Codomain functor

m At stalks: B returns local objects under B
Hence B is a T j-model in Spec(B)
— This is the free local object under B

Spec(B) is the good topos over which one can define the
free local object for B
B gathers local forms of B as its stalks.



Coste’s spectral site: general case

Definition of (Vy, Jg) for F = Sh(Cz, Jr) and F in T[F]

m Obj: (¢,1) with ¢ € Cx and [ a morphism in Vpg(c)
F(e) —L= B.;
m Arr:(s,h) : (¢, f) = (¢, f') with F(S)l , lh
F(¢) 15 B 4
m Jp jointly generated by:

F(s )

((e.10) © (cir1e))ier with (¢ = e;)ier € JF ()

(1 hi)

€ JF‘zC)()

4} Bcl
((e; D) >
iel

F(c)
(¢,1i))ier with < \ U‘z



Relation between the sites

Gluing relation

The site for F' is the gluing of the sites for its values:

(Vi Jr) = colim(Vi . Jr(o)

ceCr

Spec(F') ~ lim Spec(F(c))

ceCr

Spectral sites for Set-valued models are the building blocks for
spectral sites of arbitrary models



Diers construction

Diers quotients Vp by factorization relation
Diers contexts have enough points : the spectrum is spatial

Spectral space of Diers for a B in B

m Point are the local units n; : B — U(A;) indexed by Ip

m Topology is generated by f.p. etale maps:
for [ : B — C € Vp defines a subset of Ip

D()={n€elp|l<n}
D(l:B—-C)nD(':B—C") =D(B—>C+%l' )
(D(1))1ev, basis for a topology on Ip

Gets a posite (Vg/ ~<, JB)
Localic reflection of Coste Spectrum



Structural sheaf of Diers Spectrum

Structural sheaf
Defined by left Kan extension + sheafification

C

KAap —4 B B(U) = colim Cod(5)
B UCD(s)
Di B=LanpCod B = (§)++
Q(Specy B)°P

Stalks are colimits of values on neighborhoods
Hence Diers condition of approximability



Modelled toposes as an over 2-category

Models as geometric morphisms

TsT opos ~ GTop/B where B = Eg

m Structural sheaves are geometric morphisms toward the
classifier: (F,F)isa F L BinGTop

#
m A morphism (F, F) LY (€,E) is a 2-cell in GT op:

et F

e

B

2-cells in T T opos are inessential, can be seen as 1-cells:
TgT opos must be seen as a 1-category.



Usefull 2-limits of toposes

Use 2-limits in G7T op to construct classifying objects

Classifyer of natural
transformations:

o

2B 3B

o1

P

/\
£ mﬂdfﬁf» 2B b 3B
\_/

q
Can do the same over B

Universal factorization of the
universal map:



Usefull 2-limits of toposes

Use 2-limits in GT op to construct classifying objects

Classifier of etale maps under F:  For etale maps to local objects:
Fxgfpst — F BP x“ By —— By
Lo L]
Bet — % . Bet % .

b oA e

Compose by pullback the classifier of etale map from F' to local
objects A
[F,Bs]%, = F x20F BE xpe. (BEE x2" B)



Cole’s spectrum

Cole spectrum is constructed by comma and pullbacks
Exhibits Spec(F') as the classifier of admissible
factorizations of arrows from F' toward a local object

R 1
Spec(F) —22— [F.Bs]%, ™ . gEt X]g“,@o FTF

4 Mi . r lF

P2 BE? X]‘glaw B, BEt o

B
e e
Bgoc @ B o B=———8B

Loc,J
81




Cole’s spectrum

T v LocT opos[(Spec(F), F), (€, E)]
(7,7




Cole’s spectrum




Cole’s spectrum




Cole’s spectrum

(tv U@)




Unit and canonical map

(SpecF, F) —"", (¢, E)

tﬁ:utﬁ:ﬁt:aéloc’JOPQOtiE:alLOC’JOt

(F, F) SCLIEN (E,wE)

#
(WF‘F)’n(f’F))l %ﬂ*w)

(SpecF, wﬁ)
NF,F) = 7% om op: Speck — F

* X Loc,J ~
ngf,p)z(popﬁ LEt/uL:Fon(f’F)jwoaO opy = wk



Locally modelled toposes as algebra for wSpec

Theorem of algebraicity

The category of modelled toposes coincides with the category of
algebras of the monad wSpec

T 7.y LocT opos =~ (T Topos)” P

Locally modelled toposes are automatically algebras via their reflections maps
By naturality, local morphisms are morphisms of algebras
Conversely: an algebra is endowed with a retraction of its unit

# _ ng * # -
(F, F)(M)(SpecF, wF) - Spec(F) a*nj F~F N

Il S

F

Hence the structural sheaf is a retraction of a local object, hence local



Locally modelled toposes as algebra for wSpec

Theorem of algebraicity

The category of modelled toposes coincides with the category of
algebras of the monad wSpec

wSpec

T s vLocT opos ~ (T T opos)

Corollary

T v LocT opos is complete and w creates limits
T s v LocT opos has coproducts.

Example

Locally rings spaces are complete and cocomplete

wSpec is not idempotent by non-fullness

Being locally modelled is more a structure than a property.



Ongoing works and perspectives

m Condition of redundancy: when is the topological
reduct sufficient for faithful dualization ?

m Conditions for representability and existence of
dualizing object ?

m Criterion for a best factorization system associated to
a class of local object ...



Spectrum for monadic categories

Problem of the Pt functor for frames:

Frm°P 1 Top
-

pt

This functor should be the prototypical spectrum
Corresponds to the stable inclusion

FocFrmO=ns — Frm
— (—

m Obj: focal frames: where {0} is prime ideal

m Mor: O-conservative morphisms f s.t. f~1({0} = {0}

But Frm is not L.F.P., not even accessible | However it is
monadic:
— geometry for monadic categories 7



Semantics as a 2-categorical geometry 7

Stone-like dualities = propositional syntax-semantic dualities
And they are (topological reduct of) spectral dualities

Propositional dualities

m Lindenbaum algebras closed
by operations coding
connectors

m Models =morphisms
f € B[B,2]
= identified with f~1(1)
= points of the spectrum

m 2 is dualizing object

m Frame of ideals
= topology on the spectrum

First order dualities

m Syntactic site = categories
in corresponding doctrine
(KZ-monadic)

m Models are functors in the
doctrine F in D[CT, Set]
= identified with [ F
= pts of classifying topos

m Set as dualizing object

m Classifying topos =
topology on the category of
models



Semantics as a 2-categorical geometry 7

Example of correspondences

m Jipsen-Moshier m Gabriel-Ulmer
A —SLat’ ~ HMS Lex® ~ LFP

m Stone m Awodey-Forsell, Makkai
DLat? ~ Stone For coherent theories

= Esakia m Duality for small ccc ?

Heyt? ~ Esa
m Duality for frames

Duality for geometric
theories 7

Using a 2-spectrum of models to characterize categories of
models for presheaf types, regular, coherent, geometric
theories 7



Thanks for your attention !
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Structured Stone duality

Usually Stone duality is defined without structural sheaf:

The underlying spectral space is sufficient for reconstructing a DLat
D with £Q

— situation of redundancy

Stable inclusion for Stone
Define the category FocDLat?~"* having:

m Obj: focal DLat, where {0} is prime ideal
m Mor: O-conservative morphisms f s.t. f~1({0} = {0}

Then LocDLat®=c°"s < DLat is a multireflection



Structured Stone duality

If x prime ideal of D, then D/x is local

Structured Stone spectrum

The associated spectrum for D is
(SpCC(D) _ (Ilgrime’ 7_8’02@7’1‘31%’)7 ﬁ)

with D defined on the basis as D(UZ0") = D /0 q,0) for any
a€D

r

DLatP 1L DLat* — Spaces

\/

SpecT



Relation between the sites

A canonical bifibration

V¥ — Cr is a cloven bifibration

Hence there is a geometric surjection Spec(F') — F

For an arrow in the site s : ¢ = ¢

F(s)«(-)
/\

Vr(e) 1L 1230)
—_

T(=)oF(s)

F(s)

Fle) <29 p(e) Fle) &80

F(f)*l’l j ll' zl
B

F(S)*BC/J/ < Bcl,ll

ULF(s)

el o0 B

F(d)

lan(s)

LF(s)



Relation between the sites

A canonical bifibration

V¥ — Cr is a cloven bifibration
Hence there is a geometric surjection Spec(F') — F

F(e) « 2 p(ey

Fe) «2— F()

F(t) F(t)
‘ \ B A*l/
! TIF(s) F) F(e) F(z) v
Bey S Bires) I l”[ F(8)«By y <—— Boryp
s
7 Bc”,l” Bc”,l” 3

c— C



Gabriel-Ulmer & Jipsen-Moshier

Gabriel — Ulmer

Jipsen — Moshier

Lex®P  ~cq LFP

C — Lezx[C, Set] N —SLatq P ~  HMS
F L — F
C =D — (=)o F L,
(Aypp)0P “— f:L—-M — f7":Fy—FL
op a KOF x — X
Bsp)P P (Ap)P A S B h=t
X finitary
Lex[C,Set] =~ C— Modget A—SCati[L,2] ~ L
& 2 e ! A O
: 2977 ~
a:F =G — [a(??777) o o -

Fvy M= (Me)eee

LFP categories are complete
and cocomplete

X € HMS = (X,C) € CDLat

K € Ay, & A[K, —]is finitary :
Vf:K—)colimTXi, Ji,9: K - X;, f:q;09

Tc z € KOFx <7TC z open so
IELITIi<:>|_|¢Tg z; ST @
= Jix C x;
because HMS spaces are well filtered

Agp 4 X is filtered

Tkor x F is directed

App L X, X | Afy, are LFP

TE I,J,E x are HMS



