The logic of categories and informational entropy

Willem conradie joint work with
A. Craig, A. Palmigiano and N. M. Wijnberg.

18 June 2019

TACL, Nice

Lattice-based modal logic

The language \mathcal{L} of the basic normal non-distributive modal logic:

$$
\varphi:=\perp|\top| p|\varphi \wedge \varphi| \varphi \vee \varphi|\square \varphi| \diamond \varphi,
$$

where $p \in$ Prop. The basic, or minimal normal \mathcal{L}-logic is a set \mathbf{L} of sequents $\phi \vdash \psi$ with $\phi, \psi \in \mathcal{L}$, containing the following axioms:

$$
\begin{array}{lll}
p \vdash p, & \perp \vdash p, & p \vdash \mathrm{\top}, \\
p \vdash p \vee q, & q \vdash p \vee q, & p \wedge q \vdash p,
\end{array}
$$

and closed under the following inference rules:

$$
\begin{gathered}
\frac{\phi \vdash \chi \quad \chi \vdash \psi}{\phi \vdash \psi} \frac{\phi \vdash \psi}{\phi(\chi / p) \vdash \psi(\chi / p)} \frac{\chi \vdash \phi \quad \chi \vdash \psi}{\chi \vdash \phi \wedge \psi} \frac{\phi \vdash \chi \quad \psi \vdash \chi}{\phi \vee \psi \vdash \chi} \\
\frac{\phi \vdash \psi}{\square \phi \vdash \square \psi} \frac{\phi \vdash \psi}{\diamond \phi \vdash \diamond \psi}
\end{gathered}
$$

Introduction

Problem: Understanding relational semantics for lattice-based (e.g. substructural) logics:

Two options:

- Polarity-based (two-sorted).
- Graph based (single sorted).

Notation: Let $T \subseteq U \times V$, and any $U^{\prime} \subseteq U$ and $V^{\prime} \subseteq V$.

$$
\begin{aligned}
& T^{(1)}\left[U^{\prime}\right]=\left\{v \mid \forall u\left(u \in U^{\prime} \Rightarrow u T v\right)\right\} \\
& T^{(0)}\left[V^{\prime}\right]=\left\{u \mid \forall v\left(v \in V^{\prime} \Rightarrow u T v\right)\right\} . \\
& T^{[1]}\left[U^{\prime}\right]=\left\{v \mid \forall u\left(u \in U^{\prime} \Rightarrow u T^{c} v\right)\right\} \\
& T^{[0]}\left[V^{\prime}\right]=\left\{u \mid \forall v\left(v \in V^{\prime} \Rightarrow u T^{c} v\right)\right\} .
\end{aligned}
$$

Two-sorted semantics for lattice-based modal logics

Polarity. $\mathbb{P}=(A, X, \mathrm{I})$ with A and X sets and $\mathrm{I} \subseteq A \times X$.
Galois connection. $(\cdot)^{(1)}: \mathcal{P} A \rightarrow \mathcal{P} X$ and $(\cdot)^{(0)}: \mathcal{P} X \rightarrow \mathcal{P} A$ s.t. for all $B \subseteq A$ and $Y \subseteq X$,

- $B^{(1)}:=\{x \in X \mid \forall a(a \in B \rightarrow a \mathrm{I} x)\}$,
- $Y^{(0)}:=\{a \in A \mid \forall x(x \in Y \rightarrow a \mathrm{I} x)\}$.

Closed sets. $B=B^{(10)}$ and $Y=Y^{(01)}$.
Lattice of closed sets. Let $C(A)$ (resp. $C(X)$) be the closed subsets of A (resp. X).

$$
\mathbb{P}^{+}=\left(C(A), \bigcap, \bigvee, \varnothing^{(10)}, A\right) \cong \cong^{\partial}\left(C(X), \bigcap, \bigvee, \varnothing^{(01)}, X\right) .
$$

Concept lattice of \mathbb{P}. Lattice of tuples $C=(\llbracket C \rrbracket,(\llbracket C \rrbracket))$ s.t.

$$
\llbracket C \rrbracket=\left([C \mid)^{(0)} \quad \text { and } \quad(\mid C \rrbracket)=\llbracket C \rrbracket^{(1)} .\right.
$$

Polarity-based frames and models

Polarity-based frame. $\mathbb{F}=(\mathbb{P}, R)$ such that

- $\mathbb{P}=(A, X, \mathrm{I})$ is a polarity
- $R \subseteq A \times X$
- $R^{(1)}[b]$ and $R^{(0)}[y]$ are closed sets, for all $b \in A$ and $y \in X$.

Polarity-based models. $\mathbb{M}=(\mathbb{F}, V)$ s.t.

- \mathbb{F} a polarity-based frame
- for all $p \in$ AtProp,

$$
\begin{aligned}
& \qquad V(p)=(\llbracket p \rrbracket,(\llbracket p \rrbracket) \\
& \text { with } \llbracket p \rrbracket=\left([p \rrbracket)^{(0)} \text { and }([p])=\llbracket p \rrbracket^{(1)}\right. \text {. }
\end{aligned}
$$

Interpretation of lattice-based modal logic on RS-frames

$\mathbb{M}, a \Vdash \perp$	never	$\mathbb{M}, x \succ \perp$	always
$\mathbb{M}, a \Vdash \top$	always	$\mathbb{M}, x \succ \top$	never

$\mathbb{M}, a \Vdash p \quad$ iff $\quad a \in \llbracket p \rrbracket \quad \mathbb{M}, x \succ p \quad$ iff $\quad x \in([p)$
$\mathbb{M}, a \Vdash \phi \wedge \psi \quad$ iff $\quad \mathbb{M}, a \Vdash \phi$ and $\mathbb{M}, a \Vdash \psi$
$\mathbb{M}, x \succ \phi \wedge \psi \quad$ iff \quad for all $a \in A$, if $\mathbb{M}, a \Vdash \phi \wedge \psi$, then $a \mathbf{I} x$
$\mathbb{M}, a \Vdash \phi \vee \psi \quad$ iff \quad for all $x \in X$, if $\mathbb{M}, x \succ \phi \vee \psi$, then $a \mathrm{I} x$ $\mathbb{M}, x \succ \phi \vee \psi \quad$ iff $\quad \mathbb{M}, x \succ \phi$ and $\mathbb{M}, x \succ \psi$
$\mathbb{M}, a \Vdash \square \phi \quad$ iff \quad for all $x \in X$, if $\mathbb{M}, x \succ \phi$, then $a R x$
$\mathbb{M}, x \succ \square \phi \quad$ iff \quad for all $a \in A$, if $\mathbb{M}, a \Vdash \square \phi$, then $a \mathrm{I} x$

Categorization theory

From Wikipedia:

Categorization is the process in which ideas and objects are recognized, differentiated, and understood. Ideally, a category illuminates a relationship between the subjects and objects of knowledge.
Categorization is fundamental in language, prediction, inference, decision making and in all kinds of environmental interaction.

Categorization theory and RS-models

 via Formal Concept AnalysisLet $\mathbb{F}=(\mathbb{P}, R)$ with

- $\mathbb{P}=(A, X, \mathrm{I})$ database
- A set of objects (e.g. car models currently on sale)
- X set of features (e.g. electric, 3 doors, red...)
- I incidence relation: $\quad a \mathrm{I} x$ iff object a has feature x
- $R \subseteq A \times X$ knowledge/perception/beliefs of a given agent: $a R x$ iff object a has feature x according to the agent
- a^{1} set of features of object a
- x^{0} set of objects having feature x
- B^{1} set of features shared by all objects in B
- Y^{0} set of objects satisfying all features in Y
- \mathbb{P}^{+}concept lattice arising from database \mathbb{P}

Categories as social constructs

Social interaction is key to categorization theory:

- categories arise from factual information about the world.
- However, what they mean critically depends on how people perceive them and agree about them

Three aspects of categorization theory:

- factual truth
- subjective perception / knowledge / beliefs
- social interaction

Epistemic interpretation of \square

In an RS-frame $\mathbb{F}=(\mathbb{P}, R)$:

- $R \subseteq A \times X$ encodes perception of a given agent about objects and their features
- $a R x$ reads 'object a has feature x according to the agent'
- $\square \phi$ reads 'category which the agent understands as ϕ '

Example: Factivity of knowledge. $\square \phi \leq \phi$

```
    \forallp(\squarep\leqp)
iff }\forall\mathbf{m}(\square\mathbf{m}\leq\mathbf{m}
iff }\foralla\forall\mathbf{m}[\mp@subsup{\textrm{ST}}{a}{}(\square\mathbf{m})->\mp@subsup{\textrm{ST}}{a}{(}\mathbf{m})
iff }\foralla\forallm(aRm->a\textrm{Im})\mathrm{ ,
if \(a\) has \(m\) according to the agent, then \(a\) has \(m\) in reality
```


Graphs and lattices

A reflexive graph is a structure $\mathbb{X}=(Z, E)$.
Any graph $\mathbb{X}=(Z, E)$ defines the polarity $\mathbb{P}_{\mathbb{X}}=\left(Z, Z, E^{c}\right)$.
The complete lattice \mathbb{X}^{+}associated with a graph \mathbb{X} is defined as the concept lattice of $\mathbb{P}_{\mathbb{X}}$.
\mathbb{L} a lattice. $\operatorname{Flt}(\mathbb{L})$: filters \mathbb{L}. $\operatorname{IdI}(\mathbb{L})$: filters \mathbb{L}.
The graph associated with \mathbb{L} is $\mathbb{X}_{\mathbb{L}}:=(Z, E)$ where
$Z:=\{(F, J) \in \operatorname{Flt}(\mathbb{L}) \times \operatorname{Idl}(\mathbb{L}) \mid F \cap J=\varnothing\}$.
For $z \in Z$, we denote by F_{z} the filter part of z and by J_{z} the ideal part of z.
The (reflexive) E relation is defined by $z E z^{\prime}$ if and only if $F_{z} \cap J_{z^{\prime}}=\emptyset$.
Proposition [Craig \& Havier, 2014]
For any lattice \mathbb{L}, the complete lattice $\mathbb{X}_{\mathbb{L}}+$ is the canonical extension of \mathbb{L}.

Graph-based frames

Definition
A graph-based \mathcal{L}-frame is a structure $\mathbb{F}=\left(\mathbb{X}, R_{\diamond}, R_{\square}\right)$ where

- $\mathbb{X}=(Z, E)$ is a reflexive graph
- R_{\diamond} and R_{\square} are binary relations on Z satisfying the following E-compatibility conditions:

$$
\begin{array}{ll}
\left(R_{\square}^{[0]}[y]\right)^{[10]} \subseteq R_{\square}^{[0]}[y] & \\
\left(R_{\square}^{[1]}[b]\right)^{[01]} \subseteq R_{\square}^{[1]}[b] \\
\left(R_{\diamond}^{[0]}\right)^{[10]} \subseteq R_{\diamond}^{[0]}[b] & \left(R_{\diamond}^{[1]}[y]\right)^{[01]} \subseteq R_{\diamond}^{[1]}[y] .
\end{array}
$$

Graph-based frames and \mathcal{L}-algebras

The complex algebra of a graph-based \mathcal{L}-frame $\mathbb{F}=\left(\mathbb{X}, R_{\diamond}, R_{\square}\right)$: the complete \mathcal{L}-algebra $\mathbb{F}^{+}=\left(\mathbb{X}^{+},\left[R_{\square}\right],\left\langle R_{\diamond}\right\rangle\right)$, where:

- \mathbb{X}^{+}is the concept lattice of $\mathbb{P}_{\mathbb{X}}$
- for every $c=(\llbracket c \rrbracket,([c\rceil)) \in \mathbb{P}_{\mathbb{X}}^{+}$,

$$
\left[R_{\square}\right] c:=\left(R_{\square}^{[0]}\left[([c)],\left(R_{\square}^{[0]}[(c c)]\right)^{[1]}\right)\right.
$$

and

$$
\left\langle R_{\diamond}\right\rangle c:=\left(\left(R_{\diamond}^{[0]}[\llbracket c \rrbracket]\right)^{[0]}, R_{\diamond}^{[0]}[\llbracket c \rrbracket]\right)
$$

Lemma

The algebra $\mathbb{F}^{+}=\left(\mathbb{X}^{+},\left[R_{\square}\right],\left\langle R_{\diamond}\right\rangle\right)$ is a complete lattice expansion such that $\left[R_{\square}\right]$ is completely meet-preserving and $\left\langle R_{\diamond}\right\rangle$ is completely join-preserving.

Graph-based models

Definition

A graph-based \mathcal{L}-model is a tuple $\mathbb{M}=(\mathbb{F}, V)$ where \mathbb{F} is a graph-based \mathcal{L}-frame and $V:$ Prop $\rightarrow \mathbb{F}^{+}$.
Since $V(p)$ is a formal concept, we will write $V(p)=(\llbracket p \rrbracket,([p]))$.
Extended V compositionally to all \mathcal{L}-formulas as follows:

$$
\begin{aligned}
V(p) & =(\llbracket p \rrbracket,([p])) \\
V(T) & =(Z, \emptyset) \\
V(\perp) & =(\emptyset, Z) \\
V(\phi \wedge \psi) & =\left(\llbracket \phi \rrbracket \cap \llbracket \psi \rrbracket,(\llbracket \phi \rrbracket \cap \llbracket \psi \rrbracket)^{[1]}\right) \\
V(\phi \vee \psi) & =((\llbracket \phi) \cap \llbracket \psi))^{[0]},(\lfloor\phi) \cap(\llbracket \psi)) \\
V(\square \phi) & \left.=\left(R_{\square}^{[0]}[([\phi))],\left(R_{\square}^{[0]}[(\phi \phi)]\right)\right)^{[1]}\right) \\
V(\diamond \phi) & =\left(\left(R_{\diamond}^{[0]}[\llbracket \phi \rrbracket]\right)^{[0]}, R_{\diamond}^{[0]}[\llbracket \phi \rrbracket]\right)
\end{aligned}
$$

Graph-based semantics

$\mathbb{M}, z \Vdash \perp$		never
$\mathbb{M}, z \succ \perp$		always
$\mathbb{M}, z \Vdash \top$		always
$\mathbb{M}, z \succ \top$		never
$\mathbb{M}, z \Vdash p$	iff	$z \in \llbracket[p \rrbracket$
$\mathbb{M}, z \succ p$	iff	$\forall z^{\prime}\left[z^{\prime} E z \Rightarrow z^{\prime} \Vdash p\right]$
$\mathbb{M}, z \succ \phi \vee \psi$	iff	$\mathbb{M}, z \succ \phi$ and $\mathbb{M}, z \succ \psi$
$\mathbb{M}, z \Vdash \phi \vee \psi$	iff	$\forall z^{\prime}\left[z E z^{\prime} \Rightarrow \mathbb{M}, z^{\prime} \nsucc \phi \vee \psi\right]$
$\mathbb{M}, z \Vdash \phi \wedge \psi$	iff	$\mathbb{M}, z \Vdash \phi$ and $\mathbb{M}, z \Vdash \psi$
$\mathbb{M}, z \succ \phi \wedge \psi$	iff	$\forall z^{\prime}\left[z^{\prime} E z \Rightarrow \mathbb{M}, z^{\prime} \Vdash \phi \wedge \psi\right]$
$\mathbb{M}, z \succ \diamond \phi$	iff	$\forall z^{\prime}\left[z R \diamond z^{\prime} \Rightarrow \mathbb{M}, z^{\prime} \Vdash \phi\right]$
$\mathbb{M}, z \Vdash \diamond \phi$	iff	$\forall z^{\prime}\left[z E z^{\prime} \Rightarrow \mathbb{M}, z^{\prime} \nsucc \diamond \phi\right]$
$\mathbb{M}, z \Vdash \square \psi$	iff	$\forall z^{\prime}\left[z R \square z^{\prime} \Rightarrow \mathbb{M}, z^{\prime} \nsucc \psi\right]$
$\mathbb{M}, z \succ \square \psi$	iff	$\forall z^{\prime}\left[z^{\prime} E z \Rightarrow \mathbb{M}, z^{\prime} \Vdash \square \psi\right]$

Graph-based semantics (2)

An \mathcal{L}-sequent $\phi \vdash \psi$ is true in \mathbb{M}, denoted $\mathbb{M} \models \phi \vdash \psi$, if for all $z, z^{\prime} \in Z$, if $\mathbb{M}, z \Vdash \phi$ and $\mathbb{M}, z^{\prime} \succ \psi$ then $z E^{c} z^{\prime}$.

An \mathcal{L}-sequent $\phi \vdash \psi$ is valid in \mathbb{F}, denoted $\mathbb{F} \models \phi \vdash \psi$, if it is true in every model based on \mathbb{F}.

Theorem
The basic non-distributive modal logic \mathbf{L} is sound and complete complete w.r.t. the class of graph-based \mathcal{L}-frames.

Correspondence - E-composition

Definition

For any graph $\mathbb{X}=(Z, E)$ and relations $R, S \subseteq Z \times Z$, the E-compositions of R and S are the relations $R \circ_{E} S \subseteq Z \times Z$ and $R \bullet_{E} S \subseteq Z \times Z$ defined as follows: for any $a, x \in Z$,

$$
\begin{array}{lll}
x\left(R \circ_{E} S\right) a & \text { iff } & \exists b\left(x R b \& E^{(1)}[b] \subseteq S^{(0)}[a]\right) \\
a\left(R \bullet_{E} S\right) x & \text { iff } & \exists y\left(a R y \& E^{(0)}[y] \subseteq S^{(0)}[x]\right)
\end{array}
$$

When $E=\Delta$, E-composition $=$ ordinary relational composition.

Correspondence - E-parametric conditions

Proposition

For any graph-based \mathcal{L}-frame $\mathbb{F}=\left(\mathbb{X}, R_{\square}, R_{\diamond}\right)$,

1. $\mathbb{F} \models \square \phi \vdash \phi \quad$ iff $\quad E \subseteq R_{\square} \quad\left(R_{\square}\right.$ is E-reflexive $)$.
2. $\mathbb{F} \models \phi \vdash \diamond \phi \quad$ iff $\quad E \subseteq R_{\square} \quad\left(R_{\diamond}\right.$ is E-reflexive).
3. $\mathbb{F} \mid=\square \phi \vdash \square \square \phi \quad$ iff $\quad R_{\square} \bullet_{E} R_{\square} \subseteq R_{\square} \quad\left(R_{\square}\right.$ is E_{\bullet}-transitive).
4. $\mathbb{F} \models \diamond \diamond \phi \vdash \diamond \phi \quad$ iff $\quad R_{\diamond}{ }^{\circ} E R_{\diamond} \subseteq R_{\diamond} \quad\left(R_{\diamond}\right.$ is E_{0}-transitive).
5. $\mathbb{F} \models \phi \vdash \square \phi \quad$ iff $\quad R_{\square} \subseteq E \quad\left(R_{\square}\right.$ is sub- $\left.E\right)$.
6. $\mathbb{F} \models \diamond \phi \vdash \phi \quad$ iff $\quad R_{\square} \subseteq E \quad\left(R_{\diamond}\right.$ is sub- $\left.E\right)$

Interpretation

$\mathbb{F}=\left(Z, E, R_{\diamond}, R_{\square}\right)$

- Z a set of states
- E and indiscernibility relation - inherent limits to knowability.

1. $a^{[1]}$ - states not indeclinable from a
2. $a^{[10]}$ - horizon to the possibility of completely 'knowing' a.
3. horizon could be epistemic, cognitive, technological, or evidential.
4. $E:=\Delta$ represents limit case in which $a^{[10]}=\{a\}$.

- e.g. disjunction becomes weaker: $\llbracket \phi \vee \psi \rrbracket=(\llbracket \phi]) \cap([\psi]))^{[0]}$ requires a state z to satisfy $\phi \vee \psi$ exactly when z can be told apart from any state that refutes both ϕ and ψ.
- R_{\diamond} and R_{\square} subjective indiscernibility.

