The logic of categories and informational entropy

Willem conradie joint work with A. Craig, A. Palmigiano and N. M. Wijnberg.

18 June 2019

TACL, Nice

1

1/19

Lattice-based modal logic

The language \mathcal{L} of the basic normal non-distributive modal logic:

$$\varphi := \bot \mid \top \mid p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Box \varphi \mid \Diamond \varphi,$$

where $p \in \mathsf{Prop.}$ The *basic*, or minimal normal \mathcal{L} -logic is a set \mathbf{L} of sequents $\phi \vdash \psi$ with $\phi, \psi \in \mathcal{L}$, containing the following axioms:

$$\begin{array}{ll} p\vdash p, & \perp\vdash p, & p\vdash \top, \\ p\vdash p\lor q, & q\vdash p\lor q, & p\land q\vdash p, & p\land q\vdash q, \\ \top\vdash \Box\top, & \Box p\land \Box q\vdash \Box(p\land q), & \Diamond \bot\vdash \bot, & \Diamond p\lor \Diamond q\vdash \Diamond(p\lor q) \end{array}$$

and closed under the following inference rules:

$$\frac{\phi \vdash \chi \quad \chi \vdash \psi}{\phi \vdash \psi} \quad \frac{\phi \vdash \psi}{\phi \left(\chi/p\right) \vdash \psi \left(\chi/p\right)} \quad \frac{\chi \vdash \phi \quad \chi \vdash \psi}{\chi \vdash \phi \land \psi} \quad \frac{\phi \vdash \chi \quad \psi \vdash \chi}{\phi \lor \psi \vdash \chi}$$
$$\frac{\phi \vdash \psi}{\Box \phi \vdash \Box \psi} \quad \frac{\phi \vdash \psi}{\Diamond \phi \vdash \Diamond \psi}$$

Introduction

Problem: Understanding relational semantics for lattice-based

(e.g. substructural) logics:

Two options:

- Polarity-based (two-sorted).
- Graph based (single sorted).

Notation: Let $T \subseteq U \times V$, and any $U' \subseteq U$ and $V' \subseteq V$.

$$T^{(1)}[U'] = \{v \mid \forall u(u \in U' \Rightarrow uTv)\}$$

$$T^{(0)}[V'] = \{u \mid \forall v(v \in V' \Rightarrow uTv)\}.$$

$$T^{[1]}[U'] = \{ v \mid \forall u(u \in U' \Rightarrow uT^c v) \}$$

$$T^{[0]}[V'] = \{ u \mid \forall v(v \in V' \Rightarrow uT^c v) \}.$$

Two-sorted semantics for lattice-based modal logics

Polarity. $\mathbb{P} = (A, X, I)$ with A and X sets and $I \subseteq A \times X$.

Galois connection. $(\cdot)^{(1)} : \mathcal{P}A \to \mathcal{P}X \text{ and } (\cdot)^{(0)} : \mathcal{P}X \to \mathcal{P}A \text{ s.t.}$ for all $B \subseteq A$ and $Y \subseteq X$,

$$B^{(1)} := \{ x \in X \mid \forall a(a \in B \to aIx) \},$$
$$P^{(0)} := \{ a \in A \mid \forall x(x \in Y \to aIx) \}.$$

Closed sets. $B = B^{(10)}$ and $Y = Y^{(01)}$.

Lattice of closed sets. Let C(A) (resp. C(X)) be the closed subsets of A (resp. X).

$$\mathbb{P}^+ = (C(A), \bigcap, \bigvee, \varnothing^{(10)}, A) \cong^{\partial} (C(X), \bigcap, \bigvee, \varnothing^{(01)}, X).$$

Concept lattice of \mathbb{P} . Lattice of tuples $C = (\llbracket C \rrbracket, \llbracket C \rrbracket)$ s.t.

$$\llbracket C \rrbracket = \llbracket C \rrbracket^{(0)}$$
 and $\llbracket C \rrbracket = \llbracket C \rrbracket^{(1)}$.

Polarity-based frames and models

Polarity-based frame. $\mathbb{F}=(\mathbb{P},R)$ such that

•
$$\mathbb{P} = (A, X, I)$$
 is a polarity

- $\blacktriangleright \ R \subseteq A \times X$
- ▶ $R^{(1)}[b]$ and $R^{(0)}[y]$ are closed sets, for all $b \in A$ and $y \in X$.

Polarity-based models. $\mathbb{M} = (\mathbb{F}, V)$ s.t.

- F a polarity-based frame
- for all $p \in \mathbf{AtProp}$,

 $V(p) = ([\![p]\!], (\![p]\!])$ with $[\![p]\!] = (\![p]\!]^{(0)}$ and $(\![p]\!] = [\![p]\!]^{(1)}$

Interpretation of lattice-based modal logic on RS-frames

 $\mathbb{M}, a \Vdash p \quad \text{iff} \quad a \in \llbracket p \rrbracket \qquad \mathbb{M}, x \succ p \quad \text{iff} \quad x \in \llbracket p \rrbracket$

$$\begin{split} \mathbb{M}, a \Vdash \phi \land \psi & \text{iff} \quad \mathbb{M}, a \Vdash \phi \text{ and } \mathbb{M}, a \Vdash \psi \\ \mathbb{M}, x \succ \phi \land \psi & \text{iff} \quad \text{for all } a \in A, \text{ if } \mathbb{M}, a \Vdash \phi \land \psi, \text{ then } a \mathrm{I}x \end{split}$$

$$\begin{split} \mathbb{M}, a \Vdash \phi \lor \psi & \text{ iff } \quad \text{for all } x \in X, \text{ if } \mathbb{M}, x \succ \phi \lor \psi, \text{ then } a \mathbf{I} x \\ \mathbb{M}, x \succ \phi \lor \psi & \text{ iff } \quad \mathbb{M}, x \succ \phi \text{ and } \mathbb{M}, x \succ \psi \end{split}$$

$$\begin{split} \mathbb{M}, a \Vdash \Box \phi & \text{iff for all } x \in X, \text{ if } \mathbb{M}, x \succ \phi, \text{ then } aRx \\ \mathbb{M}, x \succ \Box \phi & \text{iff for all } a \in A, \text{ if } \mathbb{M}, a \Vdash \Box \phi, \text{ then } aIx \end{split}$$

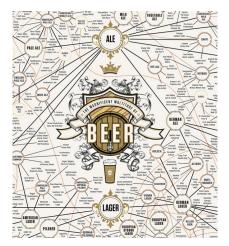
Categorization theory

From Wikipedia:

Categorization is the process in which ideas and objects are recognized, differentiated, and understood.

Ideally, a category illuminates a relationship between the subjects and objects of knowledge.

Categorization is fundamental in language, prediction, inference, decision making and in all kinds of environmental interaction.



Categorization theory and RS-models via Formal Concept Analysis

- Let $\mathbb{F}=(\mathbb{P},R)$ with
 - ▶ $\mathbb{P} = (A, X, I)$ database
 - A set of objects (e.g. car models currently on sale)
 - X set of features (e.g. electric, 3 doors, red...)
 - ▶ I incidence relation: aIx iff object a has feature x
 - R ⊆ A × X knowledge/perception/beliefs of a given agent: aRx iff object a has feature x according to the agent
 - \blacktriangleright a^1 set of features of object a
 - $\blacktriangleright x^0$ set of objects having feature x
 - \blacktriangleright B^1 set of features shared by all objects in B
 - \blacktriangleright Y^0 set of objects satisfying all features in Y
 - \blacktriangleright \mathbb{P}^+ concept lattice arising from database $\mathbb P$

Categories as social constructs

Social interaction is key to categorization theory:

- categories arise from factual information about the world.
- However, what they mean critically depends on how people perceive them and agree about them

Three aspects of categorization theory:

- ► factual truth
- subjective perception / knowledge / beliefs
- social interaction

Epistemic interpretation of \Box

In an RS-frame $\mathbb{F} = (\mathbb{P}, R)$:

- $\blacktriangleright \ R \subseteq A \times X$ encodes perception of a given agent about objects and their features
- aRx reads 'object a has feature x according to the agent'
- $\blacktriangleright \ \Box \phi$ reads 'category which the agent understands as ϕ '

Example: Factivity of knowledge. $\Box \phi \leq \phi$

$$\forall p (\Box p \le p)$$

- iff $\forall \mathbf{m} (\Box \mathbf{m} \leq \mathbf{m})$
- iff $\forall a \forall \mathbf{m} [\mathrm{ST}_a(\Box \mathbf{m}) \to \mathrm{ST}_a(\mathbf{m})]$
- iff $\forall a \forall m (aRm \rightarrow aIm)$, if a has m according to the agent, then a has m in reality

Graphs and lattices

A reflexive graph is a structure $\mathbb{X} = (Z, E)$. Any graph $\mathbb{X} = (Z, E)$ defines the polarity $\mathbb{P}_{\mathbb{X}} = (Z, Z, E^c)$. The complete lattice \mathbb{X}^+ associated with a graph \mathbb{X} is defined as the concept lattice of $\mathbb{P}_{\mathbb{X}}$. \mathbb{L} a lattice. Flt(\mathbb{L}): filters \mathbb{L} . Idl(\mathbb{L}): filters \mathbb{L} . The graph associated with \mathbb{L} is $\mathbb{X}_{\mathbb{L}} := (Z, E)$ where $Z := \{(F, J) \in \text{Flt}(\mathbb{L}) \times \text{Idl}(\mathbb{L}) \mid F \cap J = \emptyset\}$. For $z \in Z$, we denote by F_z the filter part of z and by J_z the ideal part of z. The (reflexive) E relation is defined by zEz' if and only if

 $F_z \cap J_{z'} = \emptyset.$

Proposition [Craig & Havier, 2014]

For any lattice $\mathbb{L},$ the complete lattice $\mathbb{X}_{\mathbb{L}}^+$ is the canonical extension of $\mathbb{L}.$

Graph-based frames

Definition

A graph-based $\mathcal{L} ext{-}\mathbf{frame}$ is a structure $\mathbb{F}=(\mathbb{X},R_{\Diamond},R_{\Box})$ where

- $\blacktriangleright \ \mathbb{X} = (Z, E) \text{ is a reflexive graph}$
- R_◊ and R_□ are binary relations on Z satisfying the following E-compatibility conditions:

$$\begin{aligned} (R_{\Box}^{[0]}[y])^{[10]} &\subseteq R_{\Box}^{[0]}[y] & (R_{\Box}^{[1]}[b])^{[01]} \subseteq R_{\Box}^{[1]}[b] \\ (R_{\Diamond}^{[0]}[b])^{[10]} &\subseteq R_{\Diamond}^{[0]}[b] & (R_{\Diamond}^{[1]}[y])^{[01]} \subseteq R_{\Diamond}^{[1]}[y]. \end{aligned}$$

Graph-based frames and \mathcal{L} -algebras

The complex algebra of a graph-based \mathcal{L} -frame $\mathbb{F} = (\mathbb{X}, R_{\Diamond}, R_{\Box})$: the complete \mathcal{L} -algebra $\mathbb{F}^+ = (\mathbb{X}^+, [R_{\Box}], \langle R_{\Diamond} \rangle)$, where:

$$\blacktriangleright$$
 \mathbb{X}^+ is the concept lattice of $\mathbb{P}_{\mathbb{X}}$

▶ for every
$$c = (\llbracket c \rrbracket, \llbracket c \rrbracket) \in \mathbb{P}^+_{\mathbb{X}}$$
,

$$[R_{\Box}]c := (R_{\Box}^{[0]}[[\![c]\!]], (R_{\Box}^{[0]}[[\![c]\!]])^{[1]})$$

and

$$\langle R_{\Diamond}\rangle c:=((R^{[0]}_{\Diamond}[\llbracket c \rrbracket])^{[0]},R^{[0]}_{\Diamond}[\llbracket c \rrbracket])$$

Lemma

The algebra $\mathbb{F}^+ = (\mathbb{X}^+, [R_{\Box}], \langle R_{\Diamond} \rangle)$ is a complete lattice expansion such that $[R_{\Box}]$ is completely meet-preserving and $\langle R_{\Diamond} \rangle$ is completely join-preserving.

Graph-based models

Definition A graph-based \mathcal{L} -model is a tuple $\mathbb{M} = (\mathbb{F}, V)$ where \mathbb{F} is a graph-based \mathcal{L} -frame and $V : \operatorname{Prop} \to \mathbb{F}^+$. Since V(p) is a formal concept, we will write $V(p) = (\llbracket p \rrbracket, \llbracket p \rrbracket)$. Extended V compositionally to all \mathcal{L} -formulas as follows:

$$\begin{array}{rcl} V(p) &=& (\llbracket p \rrbracket, \llbracket p \rrbracket) \\ V(\top) &=& (Z, \emptyset) \\ V(\bot) &=& (\emptyset, Z) \\ V(\phi \land \psi) &=& (\llbracket \phi \rrbracket \cap \llbracket \psi \rrbracket, (\llbracket \phi \rrbracket \cap \llbracket \psi \rrbracket)^{[1]}) \\ V(\phi \lor \psi) &=& ((\llbracket \phi \rrbracket \cap \llbracket \psi \rrbracket)^{[0]}, \llbracket \phi \rrbracket \cap \llbracket \psi \rrbracket)^{[1]}) \\ V(\Box \phi) &=& (R_{\Box}^{[0]}[\llbracket \phi \rrbracket), (R_{\Box}^{[0]}[\llbracket \phi \rrbracket)^{[1]}) \\ V(\Diamond \phi) &=& ((R_{\Diamond}^{[0]}[\llbracket \phi \rrbracket)^{[0]}, R_{\Diamond}^{[0]}[\llbracket \phi \rrbracket)) \end{array}$$

Graph-based semantics

$\mathbb{M}, z \Vdash \bot$		never
$\mathbb{M}, z \succ \bot$		always
$\mathbb{M}, z \Vdash \top$		always
$\mathbb{M}, z \succ \top$		never
$\mathbb{M}, z \Vdash p$	iff	$z \in \llbracket p \rrbracket$
$\mathbb{M}, z \succ p$	iff	$\forall z'[z'Ez \Rightarrow z' \not\models p]$
$\mathbb{M}, z \succ \phi \lor \psi$	iff	$\mathbb{M}, z \succ \phi \text{ and } \mathbb{M}, z \succ \psi$
$\mathbb{M}, z \Vdash \phi \lor \psi$	iff	$\forall z'[zEz' \Rightarrow \mathbb{M}, z' \not\succ \phi \lor \psi]$
$\mathbb{M}, z \Vdash \phi \land \psi$	iff	$\mathbb{M}, z \Vdash \phi$ and $\mathbb{M}, z \Vdash \psi$
$\mathbb{M}, z \succ \phi \land \psi$	iff	$\forall z'[z'Ez \Rightarrow \mathbb{M}, z' \not\models \phi \land \psi]$
$\mathbb{M}, z \succ \Diamond \phi$	iff	$\forall z'[zR_{\Diamond}z' \Rightarrow \mathbb{M}, z' \not\models \phi]$
$\mathbb{M}, z \Vdash \Diamond \phi$	iff	$\forall z'[zEz' \Rightarrow \mathbb{M}, z' \not\succ \Diamond \phi]$
$\mathbb{M}, z \Vdash \Box \psi$	iff	$\forall z'[zR_{\Box}z' \Rightarrow \mathbb{M}, z' \neq \psi]$
$\mathbb{M}, z \succ \Box \psi$	iff	$\forall z'[z'Ez \Rightarrow \mathbb{M}, z' \not\models \Box \psi]$

Graph-based semantics (2)

An \mathcal{L} -sequent $\phi \vdash \psi$ is true in \mathbb{M} , denoted $\mathbb{M} \models \phi \vdash \psi$, if for all $z, z' \in Z$, if $\mathbb{M}, z \Vdash \phi$ and $\mathbb{M}, z' \succ \psi$ then zE^cz' .

An \mathcal{L} -sequent $\phi \vdash \psi$ is valid in \mathbb{F} , denoted $\mathbb{F} \models \phi \vdash \psi$, if it is true in every model based on \mathbb{F} .

Theorem

The basic non-distributive modal logic \mathbf{L} is sound and complete complete w.r.t. the class of graph-based \mathcal{L} -frames.

Correspondence - E-composition

Definition

For any graph $\mathbb{X} = (Z, E)$ and relations $R, S \subseteq Z \times Z$, the *E*-compositions of R and S are the relations $R \circ_E S \subseteq Z \times Z$ and $R \bullet_E S \subseteq Z \times Z$ defined as follows: for any $a, x \in Z$,

$$x(R \circ_E S)a \quad \text{iff} \quad \exists b(xRb \& E^{(1)}[b] \subseteq S^{(0)}[a]).$$
$$a(R \bullet_E S)x \quad \text{iff} \quad \exists y(aRy \& E^{(0)}[y] \subseteq S^{(0)}[x]).$$

When $E = \Delta$, E-composition = ordinary relational composition.

Correspondence — *E*-parametric conditions

Proposition

For any graph-based \mathcal{L} -frame $\mathbb{F} = (\mathbb{X}, R_{\Box}, R_{\Diamond})$,

- 1. $\mathbb{F} \models \Box \phi \vdash \phi$ iff $E \subseteq R_{\Box}$ (R_{\Box} is *E*-reflexive).
- 2. $\mathbb{F} \models \phi \vdash \Diamond \phi$ iff $E \subseteq R_{\blacksquare}$ (R_{\Diamond} is *E*-reflexive).
- 3. $\mathbb{F} \models \Box \phi \vdash \Box \Box \phi$ iff $R_{\Box} \bullet_{E} R_{\Box} \subseteq R_{\Box}$ (R_{\Box} is E_{\bullet} -transitive).
- 4. $\mathbb{F} \models \Diamond \Diamond \phi \vdash \Diamond \phi$ iff $R_{\Diamond} \circ_{E} R_{\Diamond} \subseteq R_{\Diamond}$ (R_{\Diamond} is E_{\circ} -transitive).
- 5. $\mathbb{F} \models \phi \vdash \Box \phi$ iff $R_{\Box} \subseteq E$ (R_{\Box} is sub-E).
- 6. $\mathbb{F} \models \Diamond \phi \vdash \phi$ iff $R_{\blacksquare} \subseteq E$ (R_{\Diamond} is sub-E)

Interpretation

- $\mathbb{F}=(Z,E,R_{\Diamond},R_{\Box})$
 - Z a set of states
 - ▶ E and indiscernibility relation inherent limits to knowability.
 - 1. $a^{[1]}$ states not indeclinable from a
 - 2. $a^{[10]}$ horizon to the possibility of completely 'knowing' a.
 - horizon could be epistemic, cognitive, technological, or evidential.
 - 4. $E := \Delta$ represents limit case in which $a^{[10]} = \{a\}$.
 - ▶ e.g. disjunction becomes weaker: $\llbracket \phi \lor \psi \rrbracket = (\llbracket \phi \rrbracket \cap \llbracket \psi \rrbracket)^{[0]}$ requires a state z to satisfy $\phi \lor \psi$ exactly when z can be told apart from any state that refutes both ϕ and ψ .
 - ▶ R_{\Diamond} and R_{\Box} subjective indiscernibility.