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Flat fixpoint modalities

In PDL:
〈α∗〉a ≡ µx .a ∨ 〈α〉x [α∗]a ≡ νx .a ∧ [α]x

in CTL
AFa ≡ µx .a ∨2x

In logics of common knowledge (belief):

Ca ≡ νx .
∧
i∈I

2i (a ∧ x)

Ca ≡ νx .
∧
i∈I

3i (a ∧ x)

(the latter in case of a diamond-like notion of confirmed belief)
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Flat fixpoint modalities

We start with a (multi)modal propositional language

and, for a modal scheme c(p, x) we add a modality [c(p) expressing
νx .c(p, x)

Semantically

‖[c(p)‖ =
⋃
{Y ∈ UX | Y ⊆ ‖c(x , p)‖x :Y }
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Two axiomatizations

For a modal scheme c(p, x) and a modality [c(p)

Kozen’s axiomatization of [c as the greatest fixed point:

[c(p) ` c(p, [c(p))

q ` c(p, q)

q ` [c(p)

An infinitary axiomatization, with the following rule replacing the
induction rule and using finite approximations of [c(p)
c0(p) = > and cn+1(p) = c(p, cn(p)):

{cn(p) | n ∈ N} `ω [c(p).
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(Strong) completeness?

In many interesting cases

Kozen’s axiomatization known to be complete (over multimodal K
plus some syntactical restrictions on c , covering clasical PDL, and
common knowledge logic).
Infinitary axiomatization known strongly complete (classical PDL and
common knowledge logic)

Our goal: to advance in both directions for modal logics with non-classical
base such as Dunn-Belnap logic BD, or (distributive) substructural logics
(i.e. non-classical versions of PDL or logics of belief based on information).
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Running example

Syntax of BD extended with individual belief modalities {3i | i ∈ I} and a
common belief modality [c for c(p, x) =

∧
i 3i (p ∧ x)

a ::= p | t | f | a ∨ a | a ∧ a | ¬a | 3ia | [ca

Plus a suitable axiomatization of the purely modal part (DL, de Morgan
and involutive negation, normal diamonds, ...), and of the [c modality.
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Frames

Frames for BD are based on involutive posets (X ,≤, ∗), equipped with
monotone relations {Si | i ∈ I}

Si : X op × X −→ 2

Valuation of atoms by uppersets in X are extended in the obvious way to
constants and ∧,∨.

x  ¬α ≡ ∗x 1 α
x  3iα ≡ ∃s(sSix ∧ s  α)
x  2iα ≡ ∀s(∗sSi ∗ x −→ s  α)

S-frames can be seen as poset coalgebras for the lowerset functor L, or,
S , ∗S∗-frames as L× U coalgebras.
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Cover modalities over poset coalgebras

For a polynomial poset (locally monotone) endofunctor T

T ::= E | Id | T + T | T × T | TE | T ∂ | LT (U = L∂)

an alternative modal language is available, based on cover modalities
∇T : TL −→ L and ∆T : TL −→ L to reason about T ∂-coalgebras.

DNF based on ∇T is available (and CNF based on ∆T )
they are mutually definable, and often inter-definable with usual
modalities
for example,

∇UωA ≡
∧
a∈A

3a and 3a ≡ ∇Uωa↑

∇Uω×Lω(A,B) ≡
∧

3A ∧2
∨

B and 3a ≡ ∇Uω×Lω(a↑,T↓)

Bílková, M. and Dostál, M., Moss’ logic for ordered coalgebras, to appear in LMCS.
https://arxiv.org/abs/1901.06547.
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Relative finitary adjoints

For a polynomial finitary functor T , and a L.T. ([) modal algebra L,
∇T : TL −→ L is left relative adjoint: there is
r : L −→ LωTL

∇T (A) ≤ b iff A ≤ C for some C ∈ r(b).

(using the T -lifting of relation ≤)
∆T : TL −→ L is right relative adjoint: there is
l : L −→ UωTL

a ≤ ∆T (B) iff C ≤ B for someC ∈ l(a).
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Constructivity of fixed points

We know that whenever each c is a right relative adjoint, the [ modal
algebra L is constructive: for each c , a:

[[c(a)] =
∧
n∈N

[cn(a)]

Thus we can show that the common belief modality over BD, and some
implication-free fragments of distributive substructural logics is
constructive.

Over classical (multi)modal logic K and all c harmless w.r.t. x , this
consequently yields completeness of Kozen’s axiomatization.

L. Santocanale: Completions of µ-algebras, LICS 2005.
L. Santocanale, Y. Venema: Completeness for flat modal fixpoint logics, APAL 2010.
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Strong completeness of `ω

From the constructivity we see that
the infinitary rule

{cn(p) | n ∈ N} `ω [c(p)

is (globally) sound,
`ω is a conservative expansion of `

α 0 β then α 0ω β,

and that L embeds into the complex algebra of the canonical model of
`ω (yet to be constructed).
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Pair extension lemma

For a logic `ω we define a relation :

Γ  ∆ iff there is a finite ∆′ ⊆ ∆ and Γ `ω
∨

∆′.

A tuple 〈Γ,∆〉 is a pair if Γ 6 ∆, it is full if Γ ∪∆ = FmL (iff Γ is a prime
theory)

Proposition (Pair extension property)

Every pair of  with finite ∆ can be extended in a full pair, provided `ω be
a countably axiomatizable logic with a strong disjunction.

M. Bílková, P. Cintula, and T. Lávička. Lindenbaum and Pair Extension Lemma in
Infinitary Logics. WOLLIC 2018.
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Pair Extension Property for finite ∆s suffices to obtain a separation by
prime theories,
for a canonical model construction we moreover need to prove
valuation lemma for normal diamond-like operators (diamonds or
fusion):

3a ∈ Γ implies 〈{a}, {b | 3b /∈ Γ}〉

is a pair that can be extended to a full one.
for the argument to work we need to start with a countable
axiomatization of `ω, with a strong disjunction, and all infinitary rule
instances closed under boxes (meet preserving definable modalities).
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Canonical model of `ω

We use pair-extension property to built saturated theories:
Γ `ω a and Γ ⊆ T implies a ∈ T ,
Γ `ω a and ¬a ∈ T implies T ∩ ¬Γ 6= ∅ (case of BD),
T is prime.

Canonical frame is defined on the poset (ST ,⊆) by
∗T = {a | ¬a /∈ T}
TSiT

′ if and only if ∀a(a ∈ T −→ 3ia ∈ T ′)

Lemma
For all formulas a and all saturated theories T ,

T  a iff a ∈ T .
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To conclude

We have provided:
completeness for a logic of confirmed common belief over BD (both
fintary and strong infinitary completeness),
over some substructural logics (dFL) we only understand the infinitary
part of the story (for implication-free fragments, finitary part also
works)

Further challenges:
adding modal axioms (e.g. expressing factivity or consistency of belief)
extending language with e.g. implication(s)
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