Goldblatt-Thomason for LE-logics

Willem Conradie
joint work with A. Palmigiano and A. Tzimoulis

TACL 2019
Nice, France

Goldblatt-Thomason theorem for modal logic

Theorem
Let \mathcal{L} be a modal signature and let K be a class of Kripke \mathcal{L}-frames that is closed under taking ultrapowers. Then K is \mathcal{L}-definable if and only if K is closed under p -morphic images, generated subframes and disjoint unions, and reflects ultrafilter extensions.

LE-logics

The logics algebraically captured by varieties of normal lattice expansions.

$$
\phi::=p|\perp| \top|\phi \wedge \phi| \phi \vee \phi|f(\bar{\phi})| g(\bar{\phi})
$$

where $p \in \operatorname{AtProp}, f \in \mathcal{F}, g \in \mathcal{G}$.

Normality

- Every $f \in \mathcal{F}$ is finitely join-preserving in positive coordinates and finitely meet-reversing in negative coordinates.
- Every $g \in \mathcal{G}$ is finitely meet-preserving in positive coordinates and finitely join-reversing in negative coordinates.

Examples: substructural, Lambek, Lambek-Grishin, Orthologic...

Goldblatt-Thomason theorem for LE-logics

Theorem
Let \mathcal{L} be an LE signature and let K be a class of \mathcal{L}-frames that is closed under taking ultrapowers. Then K is \mathcal{L}-definable if and only if K is closed under p -morphic images, generated subframes and co-products, and reflects filter-ideal extensions.

LE frames

Definition

An \mathcal{L}-frame is a tuple $\mathbb{F}=\left(\mathbb{W}, \mathcal{R}_{\mathcal{F}}, \mathcal{R}_{\mathcal{G}}\right)$ such that $\mathbb{W}=(W, U, N)$ is a polarity, $\mathcal{R}_{\mathcal{F}}=\left\{R_{f} \mid f \in \mathcal{F}\right\}$, and $\mathcal{R}_{\mathcal{G}}=\left\{R_{g} \mid g \in \mathcal{G}\right\}$ such that for each $f \in \mathcal{F}$ and $g \in \mathcal{G}$, the symbols R_{f} and R_{g} respectively denote $\left(n_{f}+1\right)$-ary and $\left(n_{g}+1\right)$-ary relations on \mathbb{W},

$$
\begin{equation*}
R_{f} \subseteq U \times W^{\epsilon_{f}} \text { and } R_{g} \subseteq W \times U^{\epsilon_{g}} \tag{1}
\end{equation*}
$$

In addition, we assume that the following sets are Galois-stable (from now on abbreviated as stable) for all $w_{0} \in W, u_{0} \in U$, $\bar{w} \in W^{\epsilon_{f}}$, and $\bar{u} \in U^{\epsilon_{g}}$:

$$
\begin{align*}
& R_{f}^{(0)}[\bar{w}] \text { and } R_{f}^{(i)}\left[u_{0}, \bar{w}^{i}\right] \tag{2}\\
& R_{g}^{(0)}[\bar{u}] \text { and } R_{g}^{(i)}\left[w_{0}, \bar{u}^{i}\right] \tag{3}
\end{align*}
$$

co-product for LE frames

Let $\mathcal{L}=\{\square\}$, i.e. $R_{\square} \subseteq W \times U$:

p-morphisms for LE logics

Definition
A p-morphism of \mathcal{L}-frames, $\mathbb{F}_{1}=\left(\mathbb{W}_{1}, \mathcal{R}_{\mathcal{F}}^{1}, \mathcal{R}_{\mathcal{G}}^{1}\right)$ and $\mathbb{F}_{2}=\left(\mathbb{W}_{2}, \mathcal{R}_{\mathcal{F}}^{2}, \mathcal{R}_{\mathcal{G}}^{2}\right)$, is a pair $(S, T): \mathbb{F}_{1} \rightarrow \mathbb{F}_{2}$ such that:
p1. $S \subseteq W_{1} \times U_{2}$ and $T \subseteq U_{1} \times W_{2}$;
p2. $S^{(0)}[u], S^{(1)}[w], T^{(0)}[w]$ and $T^{(1)}[u]$ are Galois stable sets;
p3. $\left(T^{(0)}[w]\right)^{\downarrow} \subseteq S^{(0)}\left[w^{\uparrow}\right]$ for every $w \in W_{2}$;
p4. $T^{(0)}\left[\left(S^{(1)}[w]\right)^{\downarrow}\right] \subseteq w^{\uparrow}$ for every $w \in W_{1}$;
p5. $T^{(0)}\left[\left(\left(R_{f}^{2}\right)^{(0)}[\bar{w}]\right)^{\downarrow}\right]=\left(R_{f}^{1}\right)^{(0)}\left[\overline{\left(\left(T^{\epsilon_{f}}\right)^{(0)}[w]\right)^{d}}\right]$ for every $R_{f}^{i} \in \mathcal{R}_{\mathcal{F}}^{i}$, where $T^{1}=T$ and $T^{\partial}=S$;
p6. $S^{(0)}\left[\left(\left(R_{g}^{2}\right)^{(0)}[\bar{u}]\right)^{\uparrow}\right]=\left(R_{g}^{1}\right)^{(0)}\left[\overline{\left(\left(S^{\epsilon_{g}}\right)^{(0)}[u]\right)^{d}}\right]$ for every $R_{g}^{i} \in \mathcal{R}_{G}^{i}$, where $S^{1}=S$ and $S^{\partial}=T$.

p-morphisms for LE logics

Definition

A p-morphism of \mathcal{L}-frames, $\mathbb{F}_{1}=\left(\mathbb{W}_{1}, R_{\varnothing}^{1}, R_{\square}^{1}\right)$ and $\mathbb{F}_{2}=\left(\mathbb{W}_{2}, R_{\varnothing}^{2}, R_{\square}^{2}\right)$, is a pair $(S, T): \mathbb{F}_{1} \rightarrow \mathbb{F}_{2}$ such that:
p1. $S \subseteq W_{1} \times U_{2}$ and $T \subseteq U_{1} \times W_{2}$;
p2. $S^{(0)}[u], S^{(1)}[w], T^{(0)}[w]$ and $T^{(1)}[u]$ are Galois stable sets;
p3. $\left(T^{(0)}[w]\right)^{\downarrow} \subseteq S^{(0)}\left[w^{\uparrow}\right]$ for every $w \in W_{2}$;
p4. $T^{(0)}\left[\left(S^{(1)}[w]\right)^{\downarrow}\right] \subseteq w^{\uparrow}$ for every $w \in W_{1}$;
p5. $T^{(0)}\left[\left(\left(R_{\diamond}^{2}\right)^{(0)}[w]\right)^{\downarrow}\right]=\left(R_{\diamond}^{1}\right)^{(0)}\left[\left((T)^{(0)}[w]\right)^{\downarrow}\right]$;
p6. $S^{(0)}\left[\left(\left(R_{\square}^{2}\right)^{(0)}[u]\right)^{\uparrow}\right]=\left(R_{\square}^{1}\right)^{(0)}\left[\left((S)^{(0)}[u]\right)^{\uparrow}\right]$.

Injective and surjective p-morphisms

Definition

For every p-morphism $(S, T): \mathbb{F}_{1} \rightarrow \mathbb{F}_{2}$,

1. $(S, T): \mathbb{F}_{1} \rightarrow \mathbb{F}_{2}$, if $a \neq b$ implies $S^{(0)}\left[([a]] \neq S^{(0)}[(b \downarrow)]\right.$, for every $a, b \in\left(\mathbb{F}_{2}\right)^{+}$. In this case we say that \mathbb{F}_{2} is a p-morphic image of \mathbb{F}_{1}.
2. $(S, T): \mathbb{F}_{1} \hookrightarrow \mathbb{F}_{2}$, if for every $a \in\left(\mathbb{F}_{1}\right)^{+}$there exists $b \in\left(\mathbb{F}_{2}\right)^{+}$ such that $\left.S^{(0)}[\llbracket b]\right]=\llbracket a \rrbracket$. In this case we say that \mathbb{F}_{1} is a generated subframe of \mathbb{F}_{2}.

Example: generated subframe

$(S, T): \mathbb{F}_{1} \hookrightarrow \mathbb{F}_{2}$, if for every $a \in\left(\mathbb{F}_{1}\right)^{+}$there exists $b \in\left(\mathbb{F}_{2}\right)^{+}$such that $\left.S^{(0)}[\llbracket b]\right]=\llbracket a \rrbracket$. In this case we say that \mathbb{F}_{1} is a generated subframe of \mathbb{F}_{2}.

\mathbb{F}_{2} is a generated subframe of \mathbb{F}_{1}.

Example: p-morphic image

$(S, T): \mathbb{F}_{1} \rightarrow \mathbb{F}_{2}$ is surjective, in symbols $(S, T): \mathbb{F}_{1} \rightarrow \mathbb{F}_{2}$, if $a \neq b$ implies $S^{(0)}[\llbracket a \rrbracket] \neq S^{(0)}\left[(\square b \downarrow]\right.$ (or equivalently $\left.T^{(0)}[\llbracket a \rrbracket] \neq T^{(0)}[\llbracket b \rrbracket]\right)$, for every $a, b \in\left(\mathbb{F}_{2}\right)^{+}$. In this case we say that \mathbb{F}_{2} is a p-morphic image of \mathbb{F}_{1}.

\mathbb{F}_{1}

$$
\begin{gathered}
x_{2} \\
\bullet \\
\stackrel{\bullet}{a_{2}}
\end{gathered}
$$

\mathbb{F}_{2}
$(\varnothing, \varnothing)=(S, T): \mathbb{F}_{1} \rightarrow \mathbb{F}_{2}$.
\mathbb{F}_{2} is a p -morphic image of \mathbb{F}_{1}.

(Counter)example

Indeed, $\left(T^{(0)}\left[a_{2}\right]\right)^{\downarrow}=\varnothing \neq\left\{a_{1}, b_{1}\right\}=S^{(0)}\left[\left(a_{2}\right)^{\uparrow}\right]$ violating a Lemma.

Filter-ideal extensions

Definition

The filter-ideal frame of an \mathcal{L}-algebra \mathbb{A} is $\mathbb{A}_{\star}=\left(\widetilde{F}_{A}, \mathfrak{J}_{A}, N^{\star}, \mathcal{R}_{f}^{\star}, \mathcal{R}_{G}^{\star}\right)$ defined as follows:

1. $\mathscr{F}_{\mathbb{A}}=\{F \subseteq \mathbb{A} \mid F$ is a filter $\} ;$
2. $\mathfrak{I}_{\mathbb{A}}=\{I \subseteq \mathbb{A} \mid I$ is an ideal $\}$;
3. $F N^{\star} I$ if and only if $F \cap I \neq \varnothing$;
4. for any $f \in \mathcal{F}$ and any $\bar{F} \in \overline{\mathscr{F}}^{\epsilon_{f}}, R_{f}^{\star}(I, \bar{F})$ if and only $f(\bar{a}) \in I$ for some $\bar{a} \in \bar{F}$;
5. for any $g \in \mathcal{G}$ and any $\bar{I} \in \overline{\mathfrak{J}}^{\epsilon_{\bar{g}}}, R_{g}^{\star}(F, \bar{I})$ if and only if $g(\bar{a}) \in F$ for some $\bar{a} \in \bar{I}$.

Definition

Let \mathbb{F} be an \mathcal{L}-frame. The filter-ideal extension of \mathbb{F} is the \mathcal{L}-frame $\left(\mathbb{F}^{+}\right)_{\star}$.

Ultraproducts of LE-frames

- \mathcal{L}-frames as (multi-sorted) first-order structures.
- Given a family $\left\{\mathbb{F}_{i} \mid j \in J\right\}$ of \mathcal{L}-frames and an ultrafilter \mathcal{U} over J, the ultraproduct $\left(\prod_{i \in I} \mathbb{F}_{i}\right) / \mathcal{U}$ is defined as usual.
- $\left(\prod_{i \in I} \mathbb{F}_{i}\right) / \mathcal{U}$ is an \mathcal{L}-frame, by $Ł o s$ Theorem.
- Let $\mathbb{F}^{J} / \mathcal{U}$ be the ultrapower of \mathbb{F}.

Enlargement property

Theorem (Enlargement property)
There exists a surjective p-morphism $(S, T): \mathbb{F}^{J} / \mathcal{U} \rightarrow\left(\mathbb{F}^{+}\right)_{\star}$ for some set J and some ultrafilter \mathcal{U} over J.

$$
\begin{array}{rll}
s S I & \Longleftrightarrow & s^{-1}[[c c \|] \in \mathcal{U} \text { for some } c \in I \\
t T F & \Longleftrightarrow & t^{-1}[[c]] \in \mathcal{U} \text { for some } c \in F . \tag{5}
\end{array}
$$

Goldblatt-Thomason theorem for LE-logics

Theorem

Let \mathcal{L} be an LE signature and let K be a class of \mathcal{L}-frames that is closed under taking ultrapowers. Then K is \mathcal{L}-definable if and only if K is closed under p -morphic images, generated subframes and co-products, and reflects filter-ideal extensions.

Proof.
Let \mathbb{F} be an \mathcal{L}-frame validating the \mathcal{L}-theory of K . By Birkhoff's Theorem:

$$
\mathbb{F}^{+} \leftrightarrow \mathbb{A} \hookrightarrow\left(\coprod_{i \in I} \mathbb{F}_{i}\right)^{+} .
$$

This gives

$$
\left(\mathbb{F}^{+}\right)_{\star} \hookrightarrow \mathbb{A}_{\star} \leftrightarrow\left(\left(\coprod_{i \in I} \mathbb{F}_{i}\right)^{+}\right)_{\star} \leftrightarrow\left(\coprod_{i \in I} \mathbb{F}_{i}\right)^{J} / \mathcal{U} .
$$

Examples revisited: Difference

The first-order condition $R_{\square}=N^{c}$ is not \mathcal{L}-definable:

Examples revisited: Irreflexivity

The first-order condition $R^{c} \subseteq N$ is not \mathcal{L}-definable:

Examples revisited: Every point has a predecessor

The following first-order condition $\forall u \exists w(\neg w R u)$ is not \mathcal{L}-definable:

Thank you!

