#### Goldblatt-Thomason for LE-logics

Willem Conradie joint work with A. Palmigiano and A. Tzimoulis

> TACL 2019 Nice, France

# Goldblatt-Thomason theorem for modal logic

#### Theorem

Let  $\mathcal{L}$  be a modal signature and let K be a class of Kripke  $\mathcal{L}$ -frames that is closed under taking ultrapowers. Then K is  $\mathcal{L}$ -definable if and only if K is closed under p-morphic images, generated subframes and disjoint unions, and reflects ultrafilter extensions.

# **LE-logics**

The logics algebraically captured by varieties of normal lattice expansions.

 $\phi ::= p \mid \bot \mid \top \mid \phi \land \phi \mid \phi \lor \phi \mid f(\overline{\phi}) \mid g(\overline{\phi})$ 

where  $p \in AtProp, f \in \mathcal{F}, g \in \mathcal{G}$ .

#### Normality

- ► Every f ∈ F is finitely join-preserving in positive coordinates and finitely meet-reversing in negative coordinates.
- ► Every g ∈ G is finitely meet-preserving in positive coordinates and finitely join-reversing in negative coordinates.

Examples: substructural, Lambek, Lambek-Grishin, Orthologic...

# Goldblatt-Thomason theorem for LE-logics

#### Theorem

Let  $\mathcal{L}$  be an LE signature and let K be a class of  $\mathcal{L}$ -frames that is closed under taking ultrapowers. Then K is  $\mathcal{L}$ -definable if and only if K is closed under p-morphic images, generated subframes and co-products, and reflects filter-ideal extensions.

#### LE frames

#### Definition

An  $\mathcal{L}$ -frame is a tuple  $\mathbb{F} = (\mathbb{W}, \mathcal{R}_{\mathcal{F}}, \mathcal{R}_{\mathcal{G}})$  such that  $\mathbb{W} = (W, U, N)$  is a polarity,  $\mathcal{R}_{\mathcal{F}} = \{R_f \mid f \in \mathcal{F}\}$ , and  $\mathcal{R}_{\mathcal{G}} = \{R_g \mid g \in \mathcal{G}\}$  such that for each  $f \in \mathcal{F}$  and  $g \in \mathcal{G}$ , the symbols  $R_f$  and  $R_g$  respectively denote  $(n_f + 1)$ -ary and  $(n_g + 1)$ -ary relations on  $\mathbb{W}$ ,

$$R_f \subseteq U \times W^{\epsilon_f}$$
 and  $R_g \subseteq W \times U^{\epsilon_g}$ , (1)

In addition, we assume that the following sets are Galois-stable (from now on abbreviated as *stable*) for all  $w_0 \in W$ ,  $u_0 \in U$ ,  $\overline{w} \in W^{\epsilon_f}$ , and  $\overline{u} \in U^{\epsilon_g}$ :

$$R_f^{(0)}[\overline{w}] \text{ and } R_f^{(i)}[u_0, \overline{w}^i]$$
 (2)

$$R_g^{(0)}[\overline{u}]$$
 and  $R_g^{(i)}[w_0,\overline{u}^i]$  (3)

#### co-product for LE frames





## p-morphisms for LE logics

#### Definition

A *p*-morphism of  $\mathcal{L}$ -frames,  $\mathbb{F}_1 = (\mathbb{W}_1, \mathcal{R}^1_{\mathcal{F}}, \mathcal{R}^1_{\mathcal{G}})$  and  $\mathbb{F}_2 = (\mathbb{W}_2, \mathcal{R}^2_{\mathcal{F}}, \mathcal{R}^2_{\mathcal{G}})$ , is a pair  $(S, T) : \mathbb{F}_1 \to \mathbb{F}_2$  such that:

p1.  $S \subseteq W_1 \times U_2$  and  $T \subseteq U_1 \times W_2$ ;

p2.  $S^{(0)}[u], S^{(1)}[w], T^{(0)}[w]$  and  $T^{(1)}[u]$  are Galois stable sets;

p3. 
$$(T^{(0)}[w])^{\downarrow} \subseteq S^{(0)}[w^{\uparrow}]$$
 for every  $w \in W_2$ ;

p4. 
$$T^{(0)}[(S^{(1)}[w])^{\downarrow}] \subseteq w^{\uparrow}$$
 for every  $w \in W_1$ ;

p5. 
$$T^{(0)}[((R_f^2)^{(0)}[\overline{w}])^{\downarrow}] = (R_f^1)^{(0)}[\overline{((T^{\epsilon_f})^{(0)}[w])^{\partial}}]$$
 for every  $R_f^i \in \mathcal{R}_{\mathcal{F}}^i$ , where  $T^1 = T$  and  $T^{\partial} = S$ ;

p6. 
$$S^{(0)}[((R_g^2)^{(0)}[\overline{u}])^{\uparrow}] = (R_g^1)^{(0)}[\overline{((S^{\epsilon_g})^{(0)}[u])^{\partial}}]$$
 for every  $R_g^i \in \mathcal{R}_{\mathcal{G}}^i$ ,  
where  $S^1 = S$  and  $S^{\partial} = T$ .

## p-morphisms for LE logics

#### Definition

A *p*-morphism of  $\mathcal{L}$ -frames,  $\mathbb{F}_1 = (\mathbb{W}_1, R^1_{\Diamond}, R^1_{\Box})$  and  $\mathbb{F}_2 = (\mathbb{W}_2, R^2_{\Diamond}, R^2_{\Box})$ , is a pair  $(S, T) : \mathbb{F}_1 \to \mathbb{F}_2$  such that:

p1. 
$$S \subseteq W_1 \times U_2$$
 and  $T \subseteq U_1 \times W_2$ ;

p2.  $S^{(0)}[u], S^{(1)}[w], T^{(0)}[w]$  and  $T^{(1)}[u]$  are Galois stable sets;

p3. 
$$(T^{(0)}[w])^{\downarrow} \subseteq S^{(0)}[w^{\uparrow}]$$
 for every  $w \in W_2$ ;

p4. 
$$T^{(0)}[(S^{(1)}[w])^{\downarrow}] \subseteq w^{\uparrow}$$
 for every  $w \in W_1$ ;

p5. 
$$T^{(0)}[((R^2_{\diamond})^{(0)}[w])^{\downarrow}] = (R^1_{\diamond})^{(0)}[((T)^{(0)}[w])^{\downarrow}];$$

**p6.** 
$$S^{(0)}[((R_{\Box}^2)^{(0)}[u])^{\uparrow}] = (R_{\Box}^1)^{(0)}[((S)^{(0)}[u])^{\uparrow}].$$

# Injective and surjective p-morphisms

#### Definition

For every p-morphism  $(S, T) : \mathbb{F}_1 \to \mathbb{F}_2$ ,

- 1. (S,T) :  $\mathbb{F}_1 \twoheadrightarrow \mathbb{F}_2$ , if  $a \neq b$  implies  $S^{(0)}[[a]] \neq S^{(0)}[[b]]$ , for every  $a, b \in (\mathbb{F}_2)^+$ . In this case we say that  $\mathbb{F}_2$  is a *p*-morphic image of  $\mathbb{F}_1$ .
- 2.  $(S, T) : \mathbb{F}_1 \hookrightarrow \mathbb{F}_2$ , if for every  $a \in (\mathbb{F}_1)^+$  there exists  $b \in (\mathbb{F}_2)^+$  such that  $S^{(0)}[[b]] = [[a]]$ . In this case we say that  $\mathbb{F}_1$  is a *generated subframe* of  $\mathbb{F}_2$ .

#### Example: generated subframe

(S,T):  $\mathbb{F}_1 \hookrightarrow \mathbb{F}_2$ , if for every  $a \in (\mathbb{F}_1)^+$  there exists  $b \in (\mathbb{F}_2)^+$  such that  $S^{(0)}[[b]] = [[a]]$ . In this case we say that  $\mathbb{F}_1$  is a *generated* subframe of  $\mathbb{F}_2$ .



 $\mathbb{F}_2$  is a generated subframe of  $\mathbb{F}_1$ .

## Example: p-morphic image

 $(S,T): \mathbb{F}_1 \to \mathbb{F}_2$  is *surjective*, in symbols  $(S,T): \mathbb{F}_1 \twoheadrightarrow \mathbb{F}_2$ , if  $a \neq b$ implies  $S^{(0)}[[a]] \neq S^{(0)}[[b]]$  (or equivalently  $T^{(0)}[[a]] \neq T^{(0)}[[b]]$ ), for every  $a, b \in (\mathbb{F}_2)^+$ . In this case we say that  $\mathbb{F}_2$  is a *p*-morphic image of  $\mathbb{F}_1$ .



 $(\emptyset, \emptyset) = (S, T) : \mathbb{F}_1 \to \mathbb{F}_2.$  $\mathbb{F}_2$  is a p-morphic image of  $\mathbb{F}_1.$ 

# (Counter)example



Indeed,  $(T^{(0)}[a_2])^{\downarrow} = \emptyset \neq \{a_1, b_1\} = S^{(0)}[(a_2)^{\uparrow}]$  violating a Lemma.

## Filter-ideal extensions

#### Definition

The *filter-ideal frame* of an  $\mathcal{L}$ -algebra  $\mathbb{A}$  is  $\mathbb{A}_{\star} = (\mathfrak{F}_{\mathbb{A}}, \mathfrak{I}_{\mathbb{A}}, N^{\star}, \mathcal{R}_{\mathcal{F}}^{\star}, \mathcal{R}_{\mathcal{G}}^{\star})$  defined as follows:

- 1.  $\mathfrak{F}_{\mathbb{A}} = \{F \subseteq \mathbb{A} \mid F \text{ is a filter}\};$
- 2.  $\mathfrak{I}_{\mathbb{A}} = \{I \subseteq \mathbb{A} \mid I \text{ is an ideal}\};$
- 3.  $FN^*I$  if and only if  $F \cap I \neq \emptyset$ ;
- 4. for any  $f \in \mathcal{F}$  and any  $\overline{F} \in \overline{\mathfrak{F}}^{\epsilon_f}$ ,  $R_f^{\star}(I, \overline{F})$  if and only  $f(\overline{a}) \in I$  for some  $\overline{a} \in \overline{F}$ ;
- 5. for any  $g \in \mathcal{G}$  and any  $\overline{I} \in \overline{\mathfrak{I}}^{\epsilon_g}$ ,  $R_g^{\star}(F, \overline{I})$  if and only if  $g(\overline{a}) \in F$  for some  $\overline{a} \in \overline{I}$ .

#### Definition

Let  $\mathbb F$  be an  $\mathcal L$ -frame. The filter-ideal extension of  $\mathbb F$  is the  $\mathcal L$ -frame  $(\mathbb F^+)_{\star}.$ 

## Ultraproducts of LE-frames

- *L*-frames as (multi-sorted) first-order structures.
- Given a family {F<sub>i</sub> | j ∈ J} of L-frames and an ultrafilter U over J, the ultraproduct (∏<sub>i∈I</sub> F<sub>i</sub>)/U is defined as usual.
- $(\prod_{i \in I} \mathbb{F}_i) / \mathcal{U}$  is an  $\mathcal{L}$ -frame, by Łos Theorem.
- Let  $\mathbb{F}^J/\mathcal{U}$  be the ultrapower of  $\mathbb{F}$ .

# Enlargement property

#### Theorem (Enlargement property)

There exists a surjective p-morphism (S,T) :  $\mathbb{F}^J/\mathcal{U} \to (\mathbb{F}^+)_{\star}$  for some set *J* and some ultrafilter  $\mathcal{U}$  over *J*.

$$sSI \iff s^{-1}[\llbracket c \rrbracket] \in \mathcal{U} \text{ for some } c \in I$$
 (4)

$$tTF \iff t^{-1}[(c)] \in \mathcal{U} \text{ for some } c \in F.$$
 (5)

# Goldblatt-Thomason theorem for LE-logics

#### Theorem

Let  $\mathcal{L}$  be an LE signature and let K be a class of  $\mathcal{L}$ -frames that is closed under taking ultrapowers. Then K is  $\mathcal{L}$ -definable if and only if K is closed under p-morphic images, generated subframes and co-products, and reflects filter-ideal extensions.

#### Proof.

Let  $\mathbb F$  be an  $\mathcal L\text{-frame}$  validating the  $\mathcal L\text{-theory}$  of K. By Birkhoff's Theorem:

$$\mathbb{F}^+ \twoheadleftarrow \mathbb{A} \hookrightarrow (\coprod_{i \in I} \mathbb{F}_i)^+.$$

This gives

$$(\mathbb{F}^+)_{\star} \hookrightarrow \mathbb{A}_{\star} \twoheadleftarrow ((\coprod_{i \in I} \mathbb{F}_i)^+)_{\star} \twoheadleftarrow (\coprod_{i \in I} \mathbb{F}_i)^J / \mathcal{U}.$$

#### Examples revisited: Difference

The first-order condition  $R_{\Box} = N^c$  is not  $\mathcal{L}$ -definable:



## Examples revisited: Irreflexivity

The first-order condition  $R^c \subseteq N$  is not  $\mathcal{L}$ -definable:



## Examples revisited: Every point has a predecessor

The following first-order condition  $\forall u \exists w (\neg w R u)$  is not  $\mathcal{L}$ -definable:



# Thank you!