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TACL Conference
17-21 June 2019

When is the frame of nuclei spatial: A new approach 1/19



Frames

A frame is a complete lattice L satisfying the join-infinite distributive
law

a ∧
∨

S =
∨
{a ∧ s | s ∈ S}.

If S is a topological space, then the open subsets OS of S form a
frame. A frame isomorphic to OS for some S is called spatial.

This defines a contravariant functor O from topological spaces to
frames.
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Points

To define a functor from frames to topological spaces, we need to
work with points of a frame.

A point of a frame L is a completely prime filter of L.

There is a one-to-one correspondence between points of L,
meet-prime elements of L, and frame homomorphisms L→ 2.

Let pt(L) be the set of points of L. For a ∈ L, we set

η(a) = {x ∈ pt(L) | a ∈ x}.

Then {η(a) | a ∈ L} is a topology on pt(L).

pt defines a contravariant functor from frames to topological spaces.

O and pt yield a contravariant adjunction which restricts to a dual
equivalence between the category of spatial frames and the category
of sober spaces.
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Nuclei

Nuclei play an important role in pointfree topology as they are in 1-1
correspondence with onto frame homomorphisms, and hence describe
sublocales of locales.

A nucleus on a frame L is a map j : L→ L satisfying

• a ≤ ja;

• jja ≤ ja;

• j(a ∧ b) = ja ∧ jb.

Let N(L) be the set of all nuclei on L. It is a frame, where ≤ is the
pointwise order.

Some examples of nuclei.

ua(x) = a ∨ x ; va(x) = a→ x ; wa(x) = (x → a)→ a.
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Some Important Results about Nuclei

• Beazer and Macnab proved that if L is boolean, then N(L) is
isomorphic to L, and gave a necessary and sufficient condition for
N(L) to be boolean.

• Simmons proved that if S is T0, then N(OS) is boolean iff S is
scattered.

• Simmons also gave a necessary and sufficient condition for S to be
weakly scattered in terms of N(OS).

• Isbell proved that if S is sober, then N(OS) is spatial iff S is weakly
scattered.

• Niefield and Rosenthal gave necessary and sufficient conditions for
N(L) to be spatial, and derived that if N(L) is spatial, then so is L.
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Priestley Spaces

Our approach is to make fundamental use of the Priestley space of a
frame.

A Priestley space is a pair (X ,≤) where X is a compact space, ≤ is
a partial order on X , and the Priestley separation axiom holds:

If x 6≤ y , then there is a clopen upset U containing x and missing y .

The Priestley space XL of a bounded distributive lattice L is the set
XL of prime filters of L ordered by inclusion. The topology π on XL is
given by the basis

{ϕ(a) \ ϕ(b) | a, b ∈ L}

where
ϕ(a) = {x ∈ XL | a ∈ x}.
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Esakia Spaces

A Priestley space X is an Esakia space if U clopen in X implies that
↓U is clopen.

The clopen upsets of an Esakia space form a Heyting algebra.

Since frames are complete Heyting algebras, their dual Esakia spaces
satisfy an extra condition, which is an order-topological version of
extremal disconnectedness:

An Esakia space is extremally order-disconnected if the closure of
each open upset is clopen.

Theorem. (Pultr-Sichler) If L is a bounded distributive lattice and XL

its Priestley space, then L is a frame iff XL is an extremally
order-disconnected Esakia space.
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Nuclear Subsets of an Esakia Space

Definition. Let X be an extremally order-disconnected Esakia space.
A closed subset F of X is called a nuclear subset provided for each
clopen set U in X , the set ↓(U ∩ F ) is clopen in X .

Let N(X ) be the set of all nuclear subsets of X . It is a coframe with
the inclusion order.

Theorem. (B., Ghilardi) Let L be a frame and XL its Esakia space.
Then N(L) is dually isomorphic to N(XL).
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Nuclear Points

Definition. x ∈ X is a nuclear point if {x} is a nuclear subset of X .

For a frame L, let YL be the set of nuclear points of XL.

Let πu be the topology of open upsets of XL, a sub topology of the
Priestley topology π.

Lemma. (B., Gabelaia, Jibladze) y ∈ YL iff y is a completely prime
filter of L.

Thus, (YL, πu) is homeomorphic to the space of points of L.

The join-prime elements of N(XL) are precisely the singletons {y}
with y ∈ YL. From this we can see if N(L) is spatial then L is spatial.

When is the frame of nuclei spatial: A new approach 9/19



Nuclear Points

Definition. x ∈ X is a nuclear point if {x} is a nuclear subset of X .

For a frame L, let YL be the set of nuclear points of XL.

Let πu be the topology of open upsets of XL, a sub topology of the
Priestley topology π.

Lemma. (B., Gabelaia, Jibladze) y ∈ YL iff y is a completely prime
filter of L.

Thus, (YL, πu) is homeomorphic to the space of points of L.

The join-prime elements of N(XL) are precisely the singletons {y}
with y ∈ YL. From this we can see if N(L) is spatial then L is spatial.

When is the frame of nuclei spatial: A new approach 9/19



Nuclear Points

Definition. x ∈ X is a nuclear point if {x} is a nuclear subset of X .

For a frame L, let YL be the set of nuclear points of XL.

Let πu be the topology of open upsets of XL, a sub topology of the
Priestley topology π.

Lemma. (B., Gabelaia, Jibladze) y ∈ YL iff y is a completely prime
filter of L.

Thus, (YL, πu) is homeomorphic to the space of points of L.

The join-prime elements of N(XL) are precisely the singletons {y}
with y ∈ YL. From this we can see if N(L) is spatial then L is spatial.

When is the frame of nuclei spatial: A new approach 9/19



Nuclear Points

Definition. x ∈ X is a nuclear point if {x} is a nuclear subset of X .

For a frame L, let YL be the set of nuclear points of XL.

Let πu be the topology of open upsets of XL, a sub topology of the
Priestley topology π.

Lemma. (B., Gabelaia, Jibladze) y ∈ YL iff y is a completely prime
filter of L.

Thus, (YL, πu) is homeomorphic to the space of points of L.

The join-prime elements of N(XL) are precisely the singletons {y}
with y ∈ YL. From this we can see if N(L) is spatial then L is spatial.

When is the frame of nuclei spatial: A new approach 9/19



Nuclear Points

Definition. x ∈ X is a nuclear point if {x} is a nuclear subset of X .

For a frame L, let YL be the set of nuclear points of XL.

Let πu be the topology of open upsets of XL, a sub topology of the
Priestley topology π.

Lemma. (B., Gabelaia, Jibladze) y ∈ YL iff y is a completely prime
filter of L.

Thus, (YL, πu) is homeomorphic to the space of points of L.

The join-prime elements of N(XL) are precisely the singletons {y}
with y ∈ YL. From this we can see if N(L) is spatial then L is spatial.

When is the frame of nuclei spatial: A new approach 9/19



Nuclear Points

Definition. x ∈ X is a nuclear point if {x} is a nuclear subset of X .

For a frame L, let YL be the set of nuclear points of XL.

Let πu be the topology of open upsets of XL, a sub topology of the
Priestley topology π.

Lemma. (B., Gabelaia, Jibladze) y ∈ YL iff y is a completely prime
filter of L.

Thus, (YL, πu) is homeomorphic to the space of points of L.

The join-prime elements of N(XL) are precisely the singletons {y}
with y ∈ YL. From this we can see if N(L) is spatial then L is spatial.

When is the frame of nuclei spatial: A new approach 9/19



When are L and N(L) spatial?

Theorem. A frame L is spatial iff YL is dense in (XL, π). When this
happens, L is isomorphic to the frame of opens of (YL, πu).

Theorem. The following conditions are equivalent.

• N(L) is spatial.

• If N ∈ N(XL) is nonempty, then so is N ∩ YL.

• N(L) is isomorphic to Oπ(YL).

Thus, when L is spatial, it is isomorphic to the frame of opens of
(YL, πu), while when N(L) is spatial, it is isomorphic to the frame of
opens of (YL, π).

When is the frame of nuclei spatial: A new approach 10/19



When are L and N(L) spatial?

Theorem. A frame L is spatial iff YL is dense in (XL, π). When this
happens, L is isomorphic to the frame of opens of (YL, πu).

Theorem. The following conditions are equivalent.

• N(L) is spatial.

• If N ∈ N(XL) is nonempty, then so is N ∩ YL.

• N(L) is isomorphic to Oπ(YL).

Thus, when L is spatial, it is isomorphic to the frame of opens of
(YL, πu), while when N(L) is spatial, it is isomorphic to the frame of
opens of (YL, π).

When is the frame of nuclei spatial: A new approach 10/19



When are L and N(L) spatial?

Theorem. A frame L is spatial iff YL is dense in (XL, π). When this
happens, L is isomorphic to the frame of opens of (YL, πu).

Theorem. The following conditions are equivalent.

• N(L) is spatial.

• If N ∈ N(XL) is nonempty, then so is N ∩ YL.

• N(L) is isomorphic to Oπ(YL).

Thus, when L is spatial, it is isomorphic to the frame of opens of
(YL, πu), while when N(L) is spatial, it is isomorphic to the frame of
opens of (YL, π).

When is the frame of nuclei spatial: A new approach 10/19



When is N(L) boolean?

For a topological space S , let RC(S) be the boolean frame of regular
closed sets of S .

Lemma. (B., Gabelaia, Jibladze) If L is a frame, then its
booleanization is dually isomorphic to RC(XL).

Theorem. Let L be a frame and XL its Esakia space. Then the
following conditions are equivalent.

• N(L) is boolean;

• N(XL) = RC(XL);

• max(D) is clopen for each clopen downset D of XL.
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A Theorem of Beazer and Macnab

Recall that d ∈ L is dense if ¬d = 0. If a ∈ L, then ↑a is a frame,
and d ≥ a is dense in ↑a iff d → a = a.

As a consequence of the previous theorem, we obtain the following.

Theorem. (Beazer, Macnab) Let L be a frame. Then N(L) is boolean
iff for each a ∈ L the principal upset ↑a has a smallest dense element.
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Scattered and Weakly Scattered Spaces

For a topological space S , the front topology is that generated by
the subbasis of all open sets and all closed sets of S .

S is scattered if each nonempty closed subspace of S contains an
isolated point.

Let S be a topological space and T a subspace of S . A point x ∈ T
is weakly isolated in T if there is an open subset U of S such that
x ∈ T ∩ U ⊆ {x}.

S is weakly scattered if each nonempty closed subspace has a
weakly isolated point.
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A Generalization of Isbell’s Theorem

Theorem. For a topological space S , the space (YOS , πu) is
homeomorphic to the soberification of S .

Theorem. Let L be a spatial frame. Then N(L) is spatial iff (YL, πu)
is weakly scattered.

Theorem. Let S be a topological space. Then N(OS) is spatial iff
the soberification of S is weakly scattered.

Corollary. (Isbell) If S is T0, then S is sober and N(OS) is spatial iff
S is weakly scattered.
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N(OS) spatial but S not Weakly Scattered

Let S be the set of natural numbers with the usual order and the
topology of upsets.

0

1

2

S

↑0
↑1
↑2

∅
OS

0

1

2

∞

XOS

S is not weakly scattered since it has no weakly isolated points.

YOS = XOS and is weakly scattered. Therefore, N(OS) is spatial.
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Simmons’s Theorem about Weakly Scattered Spaces

Define σ from N(OS) to the opens of the front topology of S by

σ(j) =
⋃
{j(U) \ U | U ∈ OS}

for each j ∈ N(OS). The map σ is an onto frame homomorphism.

As a consequence of our results, we obtain the following.

Theorem. (Simmons) A topological space S is weakly scattered iff
σ : N(OS)→ OF (S) is an isomorphism.
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Simmons’s Theorem about Scattered Spaces

Theorem. For a spatial frame L, the following conditions are
equivalent.

• N(L) is boolean.

• N(L) is a complete and atomic boolean algebra.

• (YL, πu) is scattered.

Since scattered spaces are sober and subspaces of scattered spaces
are scattered, we recover Simmons’s result for T0-spaces.

Theorem. (Simmons) Let S be a T0-space. Then N(OS) is boolean
iff S is scattered.

By making use of the T0-reflection, we can drop the T0 assumption in
the previous theorem and obtain the full version of Simmons’s result.
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When is N(OS) spatial for an Alexandroff Space S

Recently we have used these results to show that if S is a preorder
with the topology of upsets, N(OS) is spatial iff the infinite binary
tree does not embed in S .
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Thanks to the organizers for the invitation to speak at this conference and
thanks for your attention.
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