The coproduct of frames as encoding d-frame structure

Anna Laura Suarez

Joint work with Achim Jung and Jorge Picado

University of Birmingham

axs1431@cs.bham.ac.uk

June 18, 2019

A. L. Suarez (Birmingham)

Coproducts and d-frames

Overview

Bitopological spaces

- Intuition and motivation
- The category **BiTop**
- D-frames
 - Intuition and motivation
 - The category **dFrm**

The con and tot subsets as subspaces

- The cons as Galois connections
- The tots as finitary filters

4 The finitary assembly of a coproduct

- A d-frame of cons and tots
- An assembly-like universal property

• The Euclidian topology on \mathbb{R} is generated by the lower open intervals $\{(-\infty, r) : r \in \mathbb{R}\}$ and the upper ones $\{(r, \infty) : r \in \mathbb{R}\}$.

- The Euclidian topology on \mathbb{R} is generated by the lower open intervals $\{(-\infty, r) : r \in \mathbb{R}\}$ and the upper ones $\{(r, \infty) : r \in \mathbb{R}\}$.
- For a Priestley space (X, ≤) the topology is the join of two spectral topologies: the ones of open upsets and open downsets.

- The Euclidian topology on \mathbb{R} is generated by the lower open intervals $\{(-\infty, r) : r \in \mathbb{R}\}$ and the upper ones $\{(r, \infty) : r \in \mathbb{R}\}$.
- For a Priestley space (X, ≤) the topology is the join of two spectral topologies: the ones of open upsets and open downsets.
- The Vietoris hyperspace VX of a compact Hausdorff space X has as underlying set the closed subsets $\{X \setminus U : U \in \Omega(X)\}$.

- The Euclidian topology on \mathbb{R} is generated by the lower open intervals $\{(-\infty, r) : r \in \mathbb{R}\}$ and the upper ones $\{(r, \infty) : r \in \mathbb{R}\}$.
- For a Priestley space (X, ≤) the topology is the join of two spectral topologies: the ones of open upsets and open downsets.
- The Vietoris hyperspace VX of a compact Hausdorff space X has as underlying set the closed subsets $\{X \setminus U : U \in \Omega(X)\}$. The topology is the join of the *upper* and *lower* topologies, with bases:
 - $\Box U = \{C \in VX : C \subseteq U\}.$
 - $\Diamond U = \{ C \in VX : C \cap U \neq \emptyset \}.$

Where U varies over $\Omega(X)$.

A bitopological space is a structure (X, τ^+, τ^-) where X is a set and τ^+ and τ^- two topologies on it. We call τ^+ the upper, or positive, topology. We call τ^- the negative, or lower, topology.

The category **BiTop** has bitopological spaces as objects, *bicontinuous* functions as maps.

D-frames are quadruples $(L^+, L^-, \text{con}, \text{tot})$ where L^+ and L^- are frames, and con, tot $\subseteq L^+ \times L^-$; satisfying some axioms. The intuition is:

- L^+ and L^- are the frames of positive and negative **opens** respectively.
- The pairs of opens in **con** are the **disjoint** pairs.
- The pairs of opens in **tot** are the **covering** pairs (i.e. those whose union covers the whole space).

D-frames: two simple examples

- We can set **con** and **tot** to be as small as the axioms allow. We may define:
 - $x^+x^- \in \operatorname{con}_m$ if and only if $x^+ = 0^+$ or $x^- = 0^-$.
 - $x^+x^- \in \mathsf{tot}_m$ if and only if $x^+ = 1^+$ or $x^- = 1^-$.

D-frames: two simple examples

• We can set **con** and **tot** to be as small as the axioms allow. We may define:

•
$$x^+x^- \in \operatorname{con}_m$$
 if and only if $x^+ = 0^+$ or $x^- = 0^-$.

- $x^+x^- \in \operatorname{tot}_m$ if and only if $x^+ = 1^+$ or $x^- = 1^-$.
- The following is a bitopological space with its d-frame of opens.

D-frames: axioms

A quadruple $(L^+, L^-, \text{con}, \text{tot})$ where L^+ and L^- are frames and con, tot $\subseteq L^+ \times L^-$ is a *d*-frame if the following five axioms hold:

- (con-D) con is closed downwards.
- (con-j) Whenever $\{a_i^+a^- : i \in I\} \subseteq \text{con also } (\bigvee_i a_i^+, a^-) \in \text{con.}$ Similarly for families in L^- .

D-frames: axioms

A quadruple $(L^+, L^-, \text{con}, \text{tot})$ where L^+ and L^- are frames and con, tot $\subseteq L^+ \times L^-$ is a *d*-frame if the following five axioms hold:

- (con-D) con is closed downwards.
- (con-j) Whenever $\{a_i^+a^- : i \in I\} \subseteq \text{con also } (\bigvee_i a_i^+, a^-) \in \text{con.}$ Similarly for families in L^- .
- (tot-U) tot is closed upwards.
- (tot-fm) Whenever $\{a_i^+a^- : i \in F\} \subseteq$ tot for F finite also $(\bigwedge_i a_i^+, a^-) \in$ tot. Similarly for families in L^- .

A quadruple $(L^+, L^-, \text{con}, \text{tot})$ where L^+ and L^- are frames and con, tot $\subseteq L^+ \times L^-$ is a *d*-frame if the following five axioms hold:

- (con-D) con is closed downwards.
- (con-j) Whenever $\{a_i^+a^- : i \in I\} \subseteq \text{con also } (\bigvee_i a_i^+, a^-) \in \text{con.}$ Similarly for families in L^- .
- (tot-U) tot is closed upwards.
- (tot-fm) Whenever {a⁺_ia⁻ : i ∈ F} ⊆ tot for F finite also (∧_ia⁺_i, a⁻) ∈ tot. Similarly for families in L⁻.
- (Balance). Whenever $a^+b^- \in \text{con and } a^+c^- \in \text{tot we have } b^- \leq c^-$. Similarly whenever $b^+a^- \in \text{con and } c^+a^- \in \text{tot we have } b^+ \leq c^+$.

Definition

For $a^+ \in L^+$, the element $\sim a^+ := \bigvee \{x^- \in L^- : a^+x^- \in \mathsf{con}\}$ is the *d*-pseudocomplement of a^+ .

Definition

For $a^+ \in L^+$, the element $\sim a^+ := \bigvee \{x^- \in L^- : a^+x^- \in \mathsf{con}\}$ is the *d*-pseudocomplement of a^+ .

For any $a^+ \in L^+$:

 $(a^+, \sim a^+) \in \operatorname{con}.$

The category **dFrm** has d-frames as objects. As morphisms it has pairs of frame maps respecting the **con** and **tot** subsets.

The category **dFrm** has d-frames as objects. As morphisms it has pairs of frame maps respecting the **con** and **tot** subsets.

Theorem

There is a Stone-type adjunction $\Omega : BiTop = dFrm^{op} : pt$.

Abstract subspaces of d-frames are surjections. Let us look at all the possible con and tot subsets of $L^+ \times L^-$.

Abstract subspaces of d-frames are surjections. Let us look at all the possible con and tot subsets of $L^+ \times L^-$. The cons are closed subspaces.

The con and tot subsets as subspaces

The tots are intersections of open subspaces.

June 18, 2019

The con and tot surjections generate all surjections from a d-frame $(L^+, L^- \operatorname{con}_m, \operatorname{tot}_m)$.

The con and tot surjections generate all surjections from a d-frame $(L^+, L^- \operatorname{con}_m, \operatorname{tot}_m)$.

- We call $\operatorname{con}(L^+ \times L^-)$ the poset of suitable con subsets of $L^+ \times L^-$.
- We call $tot(L^+ \times L^-)$ the poset of suitable tot subsets of $L^+ \times L^-$.

The con and tot surjections generate all surjections from a d-frame $(L^+, L^- \operatorname{con}_m, \operatorname{tot}_m)$.

- We call $\operatorname{con}(L^+ \times L^-)$ the poset of suitable con subsets of $L^+ \times L^-$.
- We call $tot(L^+ \times L^-)$ the poset of suitable tot subsets of $L^+ \times L^-$.

Proposition

The posets $con(L^+ \times L^-)$ and $tot(L^+ \times L^-)$ are frames.

The con and tot surjections generate all surjections from a d-frame $(L^+, L^- \operatorname{con}_m, \operatorname{tot}_m)$.

- We call $\operatorname{con}(L^+ \times L^-)$ the poset of suitable con subsets of $L^+ \times L^-$.
- We call $tot(L^+ \times L^-)$ the poset of suitable tot subsets of $L^+ \times L^-$.

Proposition

The posets $\operatorname{con}(L^+ \times L^-)$ and $\operatorname{tot}(L^+ \times L^-)$ are frames. They form sublocales of $\mathcal{D}(L^+ \times L^-)$ and $\mathcal{U}(L^+ \times L^-)$ respectively.

Antitone Galois connections between frames L, M are antitone maps $f: L \leftrightarrows M : g$ such that $x \leq f(y)$ if and only if $y \leq g(x)$.

Antitone Galois connections between frames L, M are antitone maps $f: L \leftrightarrows M : g$ such that $x \leq f(y)$ if and only if $y \leq g(x)$. Galois connections between frames L^+, L^- can be ordered pointwise giving a frame $\operatorname{Gal}(L^+, L^-)$.

Antitone Galois connections between frames L, M are antitone maps $f: L \leftrightarrows M : g$ such that $x \leq f(y)$ if and only if $y \leq g(x)$. Galois connections between frames L^+, L^- can be ordered pointwise giving a frame $\operatorname{Gal}(L^+, L^-)$. We have already encountered a particular Galois connection. For a certain **con** subset we have equivalences:

$$\frac{x^+ \leq \sim x^-}{x^- \leq \sim x^+}$$
$$x^+ x^- \in \operatorname{con}$$

Antitone Galois connections between frames L, M are antitone maps $f: L \leftrightarrows M : g$ such that $x \leq f(y)$ if and only if $y \leq g(x)$. Galois connections between frames L^+, L^- can be ordered pointwise giving a frame $\operatorname{Gal}(L^+, L^-)$. We have already encountered a particular Galois connection. For a certain **con** subset we have equivalences:

$$\frac{x^+ \le \sim x^-}{x^- \le \sim x^+}$$
$$\frac{x^+ x^- \in \operatorname{con}}{x^+ x^- \in \operatorname{con}}$$

Lemma

There is an order isomorphism $con(L^+ \times L^-) \cong Gal(L^+, L^-)$.

The frame of Galois connections satisfies an important universal property in **Frm**.

Theorem (Wigner, 1979)

There is a frame isomorphism $L^+ \oplus L^- \cong \operatorname{Gal}(L^+, L^-)$.

The frame of Galois connections satisfies an important universal property in **Frm**.

Theorem (Wigner, 1979)

There is a frame isomorphism $L^+ \oplus L^- \cong \operatorname{Gal}(L^+, L^-)$.

Corollary

There is a frame isomorphism $L^+ \oplus L^- \cong \operatorname{con}(L^+ \times L^-)$.

Since L^+, L^- are subframes of $L^+ \oplus L^-$, for simplicity we will assume notationally that $L^+, L^- \subseteq L^+ \oplus L^-$.

Consider the subframe of $\mathsf{Filt}(L^+ \oplus L^-)$ generated by $\{\uparrow x^+ : x^+ \in L^+\} \cup \{\uparrow x^- : x^- \in L^-\}.$

Consider the subframe of $\mathsf{Filt}(L^+\oplus L^-)$ generated by $\{\uparrow x^+ : x^+ \in L^+\} \cup \{\uparrow x^- : x^- \in L^-\}$. We denote this as $\mathsf{filt}(L^+\oplus L^-)$ and call its elements *finitary filters*.

Consider the subframe of $\mathsf{Filt}(L^+\oplus L^-)$ generated by $\{\uparrow x^+ : x^+ \in L^+\} \cup \{\uparrow x^- : x^- \in L^-\}$. We denote this as $\mathsf{filt}(L^+\oplus L^-)$ and call its elements *finitary filters*.

Proposition

The following is an order isomorphism:

$$i: \operatorname{tot}(L^+ \times L^-) \cong \operatorname{filt}(L^+ \oplus L^-)$$
$$i: t \mapsto \bigvee \{\uparrow x^+ \cap \uparrow x^- : x^+ x^- \in t\}$$

For any frame L, there is a naturally occurring Galois connection:

$$\uparrow:L\leftrightarrows \mathsf{Filt}(L):\bigwedge$$

But Galois connections are con subsets. Then we may define a con subset $Con \subseteq (L^+ \oplus L^-) \times (filt(L^+ \oplus L^-))$ as follows:

$$\frac{xF \in \mathsf{Con}}{F \subseteq \uparrow x}$$
$$\frac{xF \subseteq \land x}{x \leq \bigwedge F}$$

For any frame L, there is a naturally occurring Galois connection:

$$\uparrow:L\leftrightarrows \mathsf{Filt}(L):\bigwedge$$

But Galois connections are con subsets. Then we may define a con subset $Con \subseteq (L^+ \oplus L^-) \times (filt(L^+ \oplus L^-))$ as follows:

$$\frac{xF \in \mathsf{Con}}{F \subseteq \uparrow x}$$
$$\frac{xF \subseteq \uparrow x}{x \leq \bigwedge F}$$

Define also Tot, as:

$$\frac{xF \in \mathsf{Tot}}{\uparrow x \subseteq F}$$

The structure $(L^+ \oplus L^-, \text{filt}(L^+ \oplus L^-), \text{Con}, \text{Tot})$ is a d-frame.

The structure $(L^+ \oplus L^-, \text{filt}(L^+ \oplus L^-), \text{Con}, \text{Tot})$ is a d-frame.

What is special about this d-frame?

A. L. Suarez (Birmingham)

Coproducts and d-frames

June 18, 2019

The structure $(L^+ \oplus L^-, \text{filt}(L^+ \oplus L^-), \text{Con}, \text{Tot})$ is a d-frame.

What is special about this d-frame?

Consider the **free frame** from generators $L^+ \oplus L^-$, filt $(L^+ \oplus L^-)$ and relations Con, Tot. We call this frame the *finitary assembly* of $L^+ \oplus L^-$ and denote it as $cong(L^+ \oplus L^-)$.

For any frame L its assembly Cong(L) is a frame.

For any frame L its assembly Cong(L) is a frame. There is an embedding $\nabla : L \to \text{Cong}(L)$ such that $\nabla(x)$ is **complemented** for all $x \in L$. This is universal in **Frm** with this property (Joyal and Tierney, 1984).

The finitary assembly has **finitary analogue** of this universal property.

The finitary assembly has **finitary analogue** of this universal property. Every $x \in L^+ \oplus L^-$ can be expressed uniquely as $\bigvee_i x_i^+ \wedge x_i^-$. We say that x is *finitary* if this join is finite.

The finitary assembly has **finitary analogue** of this universal property. Every $x \in L^+ \oplus L^-$ can be expressed uniquely as $\bigvee_i x_i^+ \wedge x_i^-$. We say that x is *finitary* if this join is finite.

Proposition

Consider the canonical embedding of generators in the free frame:

$$[-]: L^+ \oplus L^- \to \operatorname{cong}(L^+ \oplus L^-).$$

This is such that [x] is complemented for every finitary $x \in L^+ \oplus L^-$. The map is universal in **Frm** with this property.

Theorem

The following are all isomorphic frames.

- The finitary assembly $cong(L^+ \oplus L^-)$.
- The subframe of $\operatorname{Cong}(L^+ \oplus L^-)$ generated by $\{\Delta(x) : x \in L^+ \cup L^-\} \cup \{\nabla(x) : x \in L^+ \cup L^-\}.$
- The ∧-subsemilattice of Cong(L⁺ ⊕ L⁻) generated by the congruences of extremal epis from (L⁺, L⁻, L⁺ ⊕ L⁻) in BiFrm.
- The frame of congruences on $L^+ \oplus L^-$ of the form $\bigvee_i \Delta(x_i^+ \lor x_i^-) \cap \nabla(y_i^+ \land y_i^-).$

References

A. Jung, M. A. Moshier (2006)

On the bitopological nature of Stone duality *Preprint*.

J. Picado, A. Pultr (2012)

Frames and Locales *Book*, Birkhuser.

T. Jakl $\left(2018\right)$

D-frames as algebraic duals of bitopological spaces

PhD thesis, University of Birmingham.

O.K. Klinke (2013)

A presentation of the assembly of a frame by generators and relations exhibits its bitopological structure

Article, Algebra Univers., 71: 55.

P. T. Johnstone (1982) Article, Cambridge Studies in Advanced Mathematics. Stone spaces