The coproduct of frames as encoding d-frame structure

Anna Laura Suarez

Joint work with Achim Jung and Jorge Picado

University of Birmingham
axs1431@cs.bham.ac.uk

June 18, 2019

Overview

(1) Bitopological spaces

- Intuition and motivation
- The category BiTop
(2) D-frames
- Intuition and motivation
- The category dFrm
(3) The con and tot subsets as subspaces
- The cons as Galois connections
- The tots as finitary filters
(4) The finitary assembly of a coproduct
- A d-frame of cons and tots
- An assembly-like universal property

Bitopological spaces

Some topologies naturally arise as the join of two other ones.

- The Euclidian topology on \mathbb{R} is generated by the lower open intervals $\{(-\infty, r): r \in \mathbb{R}\}$ and the upper ones $\{(r, \infty): r \in \mathbb{R}\}$.

Bitopological spaces

Some topologies naturally arise as the join of two other ones.

- The Euclidian topology on \mathbb{R} is generated by the lower open intervals $\{(-\infty, r): r \in \mathbb{R}\}$ and the upper ones $\{(r, \infty): r \in \mathbb{R}\}$.
- For a Priestley space (X, \leq) the topology is the join of two spectral topologies: the ones of open upsets and open downsets.

Bitopological spaces

Some topologies naturally arise as the join of two other ones.

- The Euclidian topology on \mathbb{R} is generated by the lower open intervals $\{(-\infty, r): r \in \mathbb{R}\}$ and the upper ones $\{(r, \infty): r \in \mathbb{R}\}$.
- For a Priestley space (X, \leq) the topology is the join of two spectral topologies: the ones of open upsets and open downsets.
- The Vietoris hyperspace $V X$ of a compact Hausdorff space X has as underlying set the closed subsets $\{X \backslash U: U \in \Omega(X)\}$.

Bitopological spaces

Some topologies naturally arise as the join of two other ones.

- The Euclidian topology on \mathbb{R} is generated by the lower open intervals $\{(-\infty, r): r \in \mathbb{R}\}$ and the upper ones $\{(r, \infty): r \in \mathbb{R}\}$.
- For a Priestley space (X, \leq) the topology is the join of two spectral topologies: the ones of open upsets and open downsets.
- The Vietoris hyperspace $V X$ of a compact Hausdorff space X has as underlying set the closed subsets $\{X \backslash U: U \in \Omega(X)\}$. The topology is the join of the upper and lower topologies, with bases:
- $\square U=\{C \in V X: C \subseteq U\}$.
- $\diamond U=\{C \in V X: C \cap U \neq \emptyset\}$.

Where U varies over $\Omega(X)$.

Bitopological spaces

A bitopological space is a structure $\left(X, \tau^{+}, \tau^{-}\right)$where X is a set and τ^{+} and τ^{-}two topologies on it. We call τ^{+}the upper, or positive, topology. We call τ^{-}the negative, or lower, topology.

The category BiTop has bitopological spaces as objects, bicontinuous functions as maps.

D-frames: intuition

D-frames are quadruples $\left(L^{+}, L^{-}\right.$, con, tot) where L^{+}and L^{-}are frames, and con, tot $\subseteq L^{+} \times L^{-}$; satisfying some axioms. The intuition is:

- L^{+}and L^{-}are the frames of positive and negative opens respectively.
- The pairs of opens in con are the disjoint pairs.
- The pairs of opens in tot are the covering pairs (i.e. those whose union covers the whole space).

D-frames: two simple examples

- We can set con and tot to be as small as the axioms allow. We may define:
- $x^{+} x^{-} \in \operatorname{con}_{m}$ if and only if $x^{+}=0^{+}$or $x^{-}=0^{-}$.
- $x^{+} x^{-} \in \operatorname{tot}_{m}$ if and only if $x^{+}=1^{+}$or $x^{-}=1^{-}$.

D-frames: two simple examples

- We can set con and tot to be as small as the axioms allow. We may define:
- $x^{+} x^{-} \in \operatorname{con}_{m}$ if and only if $x^{+}=0^{+}$or $x^{-}=0^{-}$.
- $x^{+} x^{-} \in \operatorname{tot}_{m}$ if and only if $x^{+}=1^{+}$or $x^{-}=1^{-}$.
- The following is a bitopological space with its d-frame of opens.

D-frames: axioms

A quadruple $\left(L^{+}, L^{-}\right.$, con, tot) where L^{+}and L^{-}are frames and con, tot $\subseteq L^{+} \times L^{-}$is a d-frame if the following five axioms hold:

- (con-D) con is closed downwards.
- (con-j) Whenever $\left\{a_{i}^{+} a^{-}: i \in I\right\} \subseteq$ con also $\left(\bigvee_{i} a_{i}^{+}, a^{-}\right) \in$ con. Similarly for families in L^{-}.

D-frames: axioms

A quadruple $\left(L^{+}, L^{-}\right.$, con, tot) where L^{+}and L^{-}are frames and con, tot $\subseteq L^{+} \times L^{-}$is a d-frame if the following five axioms hold:

- (con-D) con is closed downwards.
- (con-j) Whenever $\left\{a_{i}^{+} a^{-}: i \in I\right\} \subseteq$ con also $\left(\bigvee_{i} a_{i}^{+}, a^{-}\right) \in$ con. Similarly for families in L^{-}.
- (tot-U) tot is closed upwards.
- (tot-fm) Whenever $\left\{a_{i}^{+} a^{-}: i \in F\right\} \subseteq$ tot for F finite also $\left(\bigwedge_{i} a_{i}^{+}, a^{-}\right) \in$ tot. Similarly for families in L^{-}.

D-frames: axioms

A quadruple $\left(L^{+}, L^{-}\right.$, con, tot) where L^{+}and L^{-}are frames and con, tot $\subseteq L^{+} \times L^{-}$is a d-frame if the following five axioms hold:

- (con-D) con is closed downwards.
- (con-j) Whenever $\left\{a_{i}^{+} a^{-}: i \in I\right\} \subseteq$ con also $\left(\bigvee_{i} a_{i}^{+}, a^{-}\right) \in$ con. Similarly for families in L^{-}.
- (tot-U) tot is closed upwards.
- (tot-fm) Whenever $\left\{a_{i}^{+} a^{-}: i \in F\right\} \subseteq$ tot for F finite also $\left(\bigwedge_{i} a_{i}^{+}, a^{-}\right) \in$ tot. Similarly for families in L^{-}.
- (Balance). Whenever $a^{+} b^{-} \in$ con and $a^{+} c^{-} \in$ tot we have $b^{-} \leq c^{-}$. Similarly whenever $b^{+} a^{-} \in$ con and $c^{+} a^{-} \in$ tot we have $b^{+} \leq c^{+}$.

D-pseudocomplemets

Definition

For $a^{+} \in L^{+}$, the element $\sim a^{+}:=\bigvee\left\{x^{-} \in L^{-}: a^{+} x^{-} \in \operatorname{con}\right\}$ is the d-pseudocomplement of a^{+}.

D-pseudocomplemets

Definition

For $a^{+} \in L^{+}$, the element $\sim a^{+}:=\bigvee\left\{x^{-} \in L^{-}: a^{+} x^{-} \in \operatorname{con}\right\}$ is the d-pseudocomplement of a^{+}.

For any $a^{+} \in L^{+}$:

$$
\left(a^{+}, \sim a^{+}\right) \in \mathrm{con} .
$$

The category dFrm

The category dFrm has d-frames as objects. As morphisms it has pairs of frame maps respecting the con and tot subsets.

The category dFrm

The category dFrm has d-frames as objects. As morphisms it has pairs of frame maps respecting the con and tot subsets.

Theorem

There is a Stone-type adjunction $\Omega: \boldsymbol{B i T o p} \leftrightarrows \boldsymbol{d F r m}^{o p}: \mathrm{pt}$.

The con and tot subsets as subspaces

Abstract subspaces of d-frames are surjections. Let us look at all the possible con and tot subsets of $L^{+} \times L^{-}$.

The con and tot subsets as subspaces

Abstract subspaces of d-frames are surjections. Let us look at all the possible con and tot subsets of $L^{+} \times L^{-}$.
The cons are closed subspaces.

The con and tot subsets as subspaces

The tots are intersections of open subspaces.

The con and tot subsets as subspaces

Proposition

The con and tot surjections generate all surjections from a d-frame $\left(L^{+}, L^{-} \operatorname{con}_{m}\right.$, tot $\left._{m}\right)$.

The con and tot subsets as subspaces

Proposition

The con and tot surjections generate all surjections from a d-frame $\left(L^{+}, L^{-} \operatorname{con}_{m}\right.$, tot $\left._{m}\right)$.

- We call con $\left(L^{+} \times L^{-}\right)$the poset of suitable con subsets of $L^{+} \times L^{-}$.
- We call tot $\left(L^{+} \times L^{-}\right)$the poset of suitable tot subsets of $L^{+} \times L^{-}$.

The con and tot subsets as subspaces

Proposition

The con and tot surjections generate all surjections from a d-frame $\left(L^{+}, L^{-} \operatorname{con}_{m}\right.$, tot $\left._{m}\right)$.

- We call con $\left(L^{+} \times L^{-}\right)$the poset of suitable con subsets of $L^{+} \times L^{-}$.
- We call $\operatorname{tot}\left(L^{+} \times L^{-}\right)$the poset of suitable tot subsets of $L^{+} \times L^{-}$.

Proposition

The posets $\operatorname{con}\left(L^{+} \times L^{-}\right)$and $\operatorname{tot}\left(L^{+} \times L^{-}\right)$are frames.

The con and tot subsets as subspaces

Proposition

The con and tot surjections generate all surjections from a d-frame $\left(L^{+}, L^{-} \operatorname{con}_{m}\right.$, tot $\left._{m}\right)$.

- We call con $\left(L^{+} \times L^{-}\right)$the poset of suitable con subsets of $L^{+} \times L^{-}$.
- We call $\operatorname{tot}\left(L^{+} \times L^{-}\right)$the poset of suitable tot subsets of $L^{+} \times L^{-}$.

Proposition

The posets $\operatorname{con}\left(L^{+} \times L^{-}\right)$and $\operatorname{tot}\left(L^{+} \times L^{-}\right)$are frames. They form sublocales of $\mathcal{D}\left(L^{+} \times L^{-}\right)$and $\mathcal{U}\left(L^{+} \times L^{-}\right)$respectively.

Galois connections

Antitone Galois connections between frames L, M are antitone maps $f: L \leftrightarrows M: g$ such that $x \leq f(y)$ if and only if $y \leq g(x)$.

Galois connections

Antitone Galois connections between frames L, M are antitone maps $f: L \leftrightarrows M: g$ such that $x \leq f(y)$ if and only if $y \leq g(x)$. Galois connections between frames L^{+}, L^{-}can be ordered pointwise giving a frame $\operatorname{Gal}\left(L^{+}, L^{-}\right)$.

Galois connections

Antitone Galois connections between frames L, M are antitone maps $f: L \leftrightarrows M: g$ such that $x \leq f(y)$ if and only if $y \leq g(x)$. Galois connections between frames L^{+}, L^{-}can be ordered pointwise giving a frame $\operatorname{Gal}\left(L^{+}, L^{-}\right)$. We have already encountered a particular Galois connection. For a certain con subset we have equivalences:

$$
\frac{\frac{x^{+} \leq \sim x^{-}}{x^{-} \leq \sim x^{+}}}{x^{+} x^{-} \in \operatorname{con}}
$$

Galois connections

Antitone Galois connections between frames L, M are antitone maps $f: L \leftrightarrows M: g$ such that $x \leq f(y)$ if and only if $y \leq g(x)$. Galois connections between frames L^{+}, L^{-}can be ordered pointwise giving a frame $\operatorname{Gal}\left(L^{+}, L^{-}\right)$. We have already encountered a particular Galois connection. For a certain con subset we have equivalences:

$$
\frac{\frac{x^{+} \leq \sim x^{-}}{x^{-} \leq \sim x^{+}}}{x^{+} x^{-} \in \operatorname{con}}
$$

Lemma

There is an order isomorphism $\operatorname{con}\left(L^{+} \times L^{-}\right) \cong \operatorname{Gal}\left(L^{+}, L^{-}\right)$.

The con subsets in the coproduct

The frame of Galois connections satisfies an important universal property in Frm.

Theorem (Wigner, 1979)

There is a frame isomorphism $L^{+} \oplus L^{-} \cong \operatorname{Gal}\left(L^{+}, L^{-}\right)$.

The con subsets in the coproduct

The frame of Galois connections satisfies an important universal property in Frm.

Theorem (Wigner, 1979)

There is a frame isomorphism $L^{+} \oplus L^{-} \cong \operatorname{Gal}\left(L^{+}, L^{-}\right)$.

Corollary

There is a frame isomorphism $L^{+} \oplus L^{-} \cong \operatorname{con}\left(L^{+} \times L^{-}\right)$.
Since L^{+}, L^{-}are subframes of $L^{+} \oplus L^{-}$, for simplicity we will assume notationally that $L^{+}, L^{-} \subseteq L^{+} \oplus L^{-}$.

The tot subsets in the coproduct

Consider the subframe of $\operatorname{Filt}\left(L^{+} \oplus L^{-}\right)$generated by $\left\{\uparrow x^{+}: x^{+} \in L^{+}\right\} \cup\left\{\uparrow x^{-}: x^{-} \in L^{-}\right\}$.

The tot subsets in the coproduct

Consider the subframe of Filt $\left(L^{+} \oplus L^{-}\right)$generated by $\left\{\uparrow x^{+}: x^{+} \in L^{+}\right\} \cup\left\{\uparrow x^{-}: x^{-} \in L^{-}\right\}$. We denote this as filt $\left(L^{+} \oplus L^{-}\right)$ and call its elements finitary filters.

The tot subsets in the coproduct

Consider the subframe of Filt $\left(L^{+} \oplus L^{-}\right)$generated by $\left\{\uparrow x^{+}: x^{+} \in L^{+}\right\} \cup\left\{\uparrow x^{-}: x^{-} \in L^{-}\right\}$. We denote this as filt $\left(L^{+} \oplus L^{-}\right)$ and call its elements finitary filters.

Proposition

The following is an order isomorphism:

$$
\begin{gathered}
i: \operatorname{tot}\left(L^{+} \times L^{-}\right) \cong \operatorname{filt}\left(L^{+} \oplus L^{-}\right) \\
i: t \mapsto \bigvee\left\{\uparrow x^{+} \cap \uparrow x^{-}: x^{+} x^{-} \in t\right\} .
\end{gathered}
$$

A d-frame of cons and tots

For any frame L, there is a naturally occurring Galois connection:

$$
\uparrow: L \leftrightarrows \operatorname{Filt}(L): \bigwedge
$$

But Galois connections are con subsets. Then we may define a con subset Con $\subseteq\left(L^{+} \oplus L^{-}\right) \times\left(\right.$filt $\left.\left(L^{+} \oplus L^{-}\right)\right)$as follows:

$$
\frac{x F \in \text { Con }}{\frac{F \subseteq \uparrow x}{x \leq \bigwedge F}}
$$

A d-frame of cons and tots

For any frame L, there is a naturally occurring Galois connection:

$$
\uparrow: L \leftrightarrows \operatorname{Filt}(L): \bigwedge
$$

But Galois connections are con subsets. Then we may define a con subset Con $\subseteq\left(L^{+} \oplus L^{-}\right) \times\left(\operatorname{filt}\left(L^{+} \oplus L^{-}\right)\right)$as follows:

$$
\frac{x F \in \text { Con }}{\frac{F \subseteq \uparrow x}{x \leq \bigwedge F}}
$$

Define also Tot, as:

$$
\frac{x F \in \text { Tot }}{\uparrow x \subseteq F}
$$

An assembly-like universal property

Proposition

The structure $\left(L^{+} \oplus L^{-}\right.$, filt $\left(L^{+} \oplus L^{-}\right)$, Con, Tot) is a d-frame.

An assembly-like universal property

Proposition

The structure $\left(L^{+} \oplus L^{-}\right.$, filt $\left(L^{+} \oplus L^{-}\right)$, Con, Tot) is a d-frame.
What is special about this d-frame?

An assembly-like universal property

Proposition

The structure $\left(L^{+} \oplus L^{-}\right.$, filt $\left(L^{+} \oplus L^{-}\right)$, Con, Tot) is a d-frame.
What is special about this d-frame?
Consider the free frame from generators $L^{+} \oplus L^{-}$, filt $\left(L^{+} \oplus L^{-}\right)$and relations Con, Tot. We call this frame the finitary assembly of $L^{+} \oplus L^{-}$and denote it as cong $\left(L^{+} \oplus L^{-}\right)$.

An assembly-like universal property

For any frame L its assembly $\operatorname{Cong}(L)$ is a frame.

An assembly-like universal property

For any frame L its assembly $\operatorname{Cong}(L)$ is a frame. There is an embedding $\nabla: L \rightarrow \operatorname{Cong}(L)$ such that $\nabla(x)$ is complemented for all $x \in L$. This is universal in Frm with this property (Joyal and Tierney, 1984).

An assembly-like universal property

The finitary assembly has finitary analogue of this universal property.

An assembly-like universal property

The finitary assembly has finitary analogue of this universal property. Every $x \in L^{+} \oplus L^{-}$can be expressed uniquely as $\bigvee_{i} x_{i}^{+} \wedge x_{i}^{-}$. We say that x is finitary if this join is finite.

An assembly-like universal property

The finitary assembly has finitary analogue of this universal property. Every $x \in L^{+} \oplus L^{-}$can be expressed uniquely as $\bigvee_{i} x_{i}^{+} \wedge x_{i}^{-}$. We say that x is finitary if this join is finite.

Proposition

Consider the canonical embedding of generators in the free frame:

$$
[-]: L^{+} \oplus L^{-} \rightarrow \operatorname{cong}\left(L^{+} \oplus L^{-}\right)
$$

This is such that $[x]$ is complemented for every finitary $x \in L^{+} \oplus L^{-}$. The map is universal in $\boldsymbol{F r m}$ with this property.

Characterizations of the finitary assembly

Theorem

The following are all isomorphic frames.

- The finitary assembly cong $\left(L^{+} \oplus L^{-}\right)$.
- The subframe of $\operatorname{Cong}\left(L^{+} \oplus L^{-}\right)$generated by $\left\{\Delta(x): x \in L^{+} \cup L^{-}\right\} \cup\left\{\nabla(x): x \in L^{+} \cup L^{-}\right\}$.
- The \wedge-subsemilattice of $\operatorname{Cong}\left(L^{+} \oplus L^{-}\right)$generated by the congruences of extremal epis from ($L^{+}, L^{-}, L^{+} \oplus L^{-}$) in BiFrm.
- The frame of congruences on $L^{+} \oplus L^{-}$of the form $\bigvee_{i} \Delta\left(x_{i}^{+} \vee x_{i}^{-}\right) \cap \nabla\left(y_{i}^{+} \wedge y_{i}^{-}\right)$.

References

R A．Jung，M．A．Moshier（2006）
On the bitopological nature of Stone duality
Preprint．
嗇 J．Picado，A．Pultr（2012）
Frames and Locales

Book，Birkhuser．

囯 T．Jakl（2018）
D－frames as algebraic duals of bitopological spaces
PhD thesis，University of Birmingham．
嗇 O．K．Klinke（2013）
A presentation of the assembly of a frame by generators and relations exhibits its bitopological structure
Article，Algebra Univers．，71： 55.
P．T．Johnstone（1982）Article，Cambridge Studies in Advanced Mathematics． Stone spaces

