Partial frames

Anneliese Schauerte and John Frith

University of Cape Town

Topology, Algebra and Categories in Logic 17 – 21 June 2019 Nice, France

Schauerte and Frith (UCT)

Partial frames: basic ideas

- A meet-semilattice is a partially ordered set with a top, 1, and bottom, 0, in which all finite meets exist.
- A partial frame, or *S*-frame, is a meet-semilattice in which certain joins exist and finite meets distribute over these joins.
- We specify the collections whose joins should exist by means of a *selection function*, denoted by *S*.
- Once a selection function has been chosen, we speak informally of the collections it picks as the *designated* subsets.

Definition

A selection function is a function, S, which assigns to each meet-semilattice A a collection SA of subsets of A, such that the following conditions hold (for all meet-semilattices A and B):

Definition

A selection function is a function, S, which assigns to each meet-semilattice A a collection SA of subsets of A, such that the following conditions hold (for all meet-semilattices A and B):

(S1) For all $x \in A$, $\{x\} \in SA$.

Definition

A selection function is a function, S, which assigns to each meet-semilattice A a collection SA of subsets of A, such that the following conditions hold (for all meet-semilattices A and B):

(S1) For all $x \in A$, $\{x\} \in SA$.

(S2) If $G, H \in SA$ then $G \land H = \{x \land y : x \in G, y \in H\} \in SA$.

Definition

A selection function is a function, S, which assigns to each meet-semilattice A a collection SA of subsets of A, such that the following conditions hold (for all meet-semilattices A and B):

(S1) For all $x \in A$, $\{x\} \in SA$.

(S2) If $G, H \in SA$ then $G \land H = \{x \land y : x \in G, y \in H\} \in SA$.

(S3) If $G \in SA$ and, for all $x \in G$, $x = \bigvee H_x$ for some $H_x \in SA$, then

 $\bigcup_{x\in G}H_x\in \mathcal{S}A.$

Definition

A selection function is a function, S, which assigns to each meet-semilattice A a collection SA of subsets of A, such that the following conditions hold (for all meet-semilattices A and B):

(S1) For all $x \in A$, $\{x\} \in SA$.

(S2) If $G, H \in SA$ then $G \land H = \{x \land y : x \in G, y \in H\} \in SA$.

(S3) If $G \in SA$ and, for all $x \in G$, $x = \bigvee H_x$ for some $H_x \in SA$, then

 $\bigcup_{x\in G}H_x\in \mathcal{S}A.$

(S4) For any meet-semilattice map $f : A \rightarrow B$,

 $\mathcal{S}(f[A]) = \{f[G] : G \in \mathcal{S}A\} \subseteq \mathcal{S}B.$

S-frames

Definition

Let S be a selection function.

An *S*-frame, *L*, is a meet-semilattice that satisfies the following two conditions:

(a) For all $G \in SL$, G has a join in L (i.e. $\bigvee G$ exists).

(b) For all
$$x \in L$$
, for all $G \in SL$, $x \land \bigvee G = \bigvee_{y \in G} x \land y$.

- 2 Let *L* and *M* be *S*-frames. An *S*-frame map $f : L \to M$ is a meet-semilattice map such that, for all $G \in SL$, $f(\bigvee G) = \bigvee_{v \in G} f(v)$.
- SFrm is the category of S-frames as objects and S-frame maps as morphisms.

< ロ > < 同 > < 回 > < 回 > < 回 >

Example

We give several selection functions, together with their corresponding categories of S-frames. Throughout, A is an arbitrary meet-semilattice.

- $SA = \{\{x\} : x \in A\}$. SFrm is just the category of meet-semilattices.
- S $A = \{G \subseteq A : G \text{ is finite}\}$. SFrm is the category of bounded distributive lattices.
- SA = { $G \subseteq A$: G is countable}. SFrm is the category of σ -frames.
- SA = {G ⊆ A : card(G) < κ}, where card(G) denotes the cardinality of G and κ is a regular cardinal. SFrm is the category of κ-frames.</p>
- SA = $\mathcal{P}A$, the power set of A. SFrm is the category of frames.

Algebraic ideas and constructions

Schauerte and Frith (UCT)

Image: A math the state of t

Algebraic ideas and constructions

Definition

Let *L* be an *S*-frame. We call $\theta \subseteq L \times L$ an *S*-congruence on *L* if it satisfies the following:

(1) θ is an equivalence relation.

(2) $(a, b), (c, d) \in \theta$ implies that $(a \land c, b \land d) \in \theta$. (3) If $\{(a_{\alpha}, b_{\alpha}) : \alpha \in A\} \subseteq \theta$ and $\{a_{\alpha} : \alpha \in A\}$ and $\{b_{\alpha} : \alpha \in A\}$ are designated subsets of *L*, then $(\bigvee_{\alpha \in A} a_{\alpha}, \bigvee_{\alpha \in A} b_{\alpha}) \in \theta$.

Algebraic ideas and constructions

Definition

Let *L* be an *S*-frame. We call $\theta \subseteq L \times L$ an *S*-congruence on *L* if it satisfies the following:

(1) θ is an equivalence relation.

(2) $(a, b), (c, d) \in \theta$ implies that $(a \land c, b \land d) \in \theta$. (3) If $\{(a_{\alpha}, b_{\alpha}) : \alpha \in A\} \subseteq \theta$ and $\{a_{\alpha} : \alpha \in A\}$ and $\{b_{\alpha} : \alpha \in A\}$ are designated subsets of *L*, then $(\bigvee_{\alpha \in A} a_{\alpha}, \bigvee_{\alpha \in A} b_{\alpha}) \in \theta$.

Definition

Let $f : L \to M$ be an S-frame map. We define the kernel of f, by

$$\ker f = \{(x, y) \in L \times L : f(x) = f(y)\}.$$

イロト イヨト イヨト

Lemma

• Let $f : L \to M$ and $g : L \to M'$ be S-frame maps between S-frames with f onto. If ker $f \subseteq \ker g$, there exists a unique S-frame map $h : M \to M'$ such that $h \circ f = g$, that is, making the following diagram commute:

• S-congruences correspond precisely to kernels and to quotients.

Schauerte and	Frith (UCT)	

A feature distinguishing partial frames from full frames is the fact that every frame map has a right adjoint: the right adjoint of $f : L \to M$ is a function *r* from *M* to *L*, given by $r(a) = \bigvee \{x \in L : f(x) \leq a\}$. This is not so for S-frame maps.

イロト イヨト イラト イラト

A feature distinguishing partial frames from full frames is the fact that every frame map has a right adjoint: the right adjoint of $f : L \to M$ is a function *r* from *M* to *L*, given by $r(a) = \bigvee \{x \in L : f(x) \leq a\}$. This is not so for S-frame maps.

The following data are equivalent on an S-frame L:

- An *S*-frame map *f* from *L* onto *M* has a right adjoint.
- An *S*-congruence has the property that every equivalence class has a largest member.
- $k: L \rightarrow L$ is a nucleus.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generators and relations

Begin with a meet-semilattice *A*. For each $a \in A$, specify C(a), a collection of designated subsets, each contained in $\downarrow a$.

Aim:

Obtain an S-frame $\mathbb{F}_{S}(A, C)$ and a meet-semilattice map $f : A \to \mathbb{F}_{S}(A, C)$ such that $f(a) = \bigvee \{f(s) : s \in S\}$, all $S \in C(a)$, with an appropriate universal property.

Method of construction:

(1) First form the free S-frame over A; this is given by the collection of S-generated downsets of A.

(2) Generate an S-congruence by $\{(\downarrow a, \downarrow S) : a \in A, S \in C(a)\}$ and factor out by this.

Examples

- Let *A* be a bounded distributive lattice. For $a \in A$, let $C(a) = \{S \subseteq A : S \text{ is finite and } \bigvee S = a\}$. The free *S*-frame over the bounded distributive lattice *A* is given by $A \to \mathbb{F}_{S}(A, C)$.
- Adjoining complements freely.
- Constructing coproducts.

通 とう ヨ とう ヨ と

The least dense quotient and the role of Booleanness

In a frame *N*, the pseudocomplement of *a* is $a^* = \bigvee \{t \in N \mid t \land a = 0\}$.

In a partial frame, pseudocomplements might not exist. Here is an example that is very simple, but will be of repeated use to us:

Example

Let *L* consist of all countable subsets of \mathbb{R} with top element \mathbb{R} . This is a σ -frame, with finite intersections and countable unions.

It is not a frame:

 $\{1\} \land \bigvee \{\{x\} : x \text{ irrational}\} = \{1\} \land \mathbb{R} = \{1\} \text{ whereas} \\ \bigvee \{\{1\} \land \{x\} : x \text{ irrational}\} = \emptyset.$

The element $\{1\}$ clearly has no pseudocomplement.

For a frame *N*, the nucleus $j : N \to N$ given by $j(a) = a^{**}$ produces the quotient, N_{**} , of *N* with two attractive properties:

The frame map $j : N \to N_{**}$ is the least dense quotient of N. This means that for any dense, onto frame map $h : N \to P$ where P is a frame, there exists a unique frame map $\bar{h} : P \to N_{**}$ such that $\bar{h} \circ h = j$.

2 The frame map $j : N \to N_{**}$ is the unique dense Boolean quotient of *N*.

Question: Does every S-frame have a least dense quotient?

Schauerte and Frith (UCT)

 TACL 2019
 13/27

(日) (四) (三) (三)

Question: Does every \mathcal{S} -frame have a least dense quotient? Answer: Yes.

Question: Does every S-frame have a least dense quotient? Answer: Yes.

Definition

Let L be an S-frame.

) For each
$$x \in L$$
 define $P_x = \{t \in L : t \land x = 0\}$.

Define
$$\pi_L = \{(\mathbf{x}, \mathbf{y}) \in \mathbf{L} \times \mathbf{L} : \mathbf{P}_{\mathbf{x}} = \mathbf{P}_{\mathbf{y}}\}.$$

Proposition

- The relation π_L is an S-congruence on L, called the Madden congruence of L.
- 2 The quotient map $p_L : L \to L/\pi_L$ is indeed the least dense quotient of *L*.

Scł	nauer	te and	Frith (UCT)	

Question: Does every \mathcal{S} -frame have a least dense quotient? Answer: Yes.

Definition

Let L be an S-frame.

) For each
$$x \in L$$
 define $P_x = \{t \in L : t \land x = 0\}$.

Define
$$\pi_L = \{(\mathbf{x}, \mathbf{y}) \in \mathbf{L} \times \mathbf{L} : \mathbf{P}_{\mathbf{x}} = \mathbf{P}_{\mathbf{y}}\}.$$

Proposition

- The relation π_L is an S-congruence on L, called the Madden congruence of L.
- 2 The quotient map $p_L : L \to L/\pi_L$ is indeed the least dense quotient of *L*.

Question: Does every S-frame have a unique dense Boolean quotient?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Question: Does every \mathcal{S} -frame have a least dense quotient? Answer: Yes.

Definition

Let L be an S-frame.

) For each
$$x \in L$$
 define $P_x = \{t \in L : t \land x = 0\}$.

Define
$$\pi_L = \{(\mathbf{x}, \mathbf{y}) \in \mathbf{L} \times \mathbf{L} : \mathbf{P}_{\mathbf{x}} = \mathbf{P}_{\mathbf{y}}\}.$$

Proposition

- The relation π_L is an S-congruence on L, called the Madden congruence of L.
- 2 The quotient map $p_L : L \to L/\pi_L$ is indeed the least dense quotient of *L*.

Question: Does every \mathcal{S} -frame have a unique dense Boolean quotient? Answer: No.

We have seen that $P_x = \{t \in L : t \land x = 0\}$ can play the role of x^* ; can we find something to play the role of x^{**} ?

(日) (四) (三) (三)

We have seen that $P_x = \{t \in L : t \land x = 0\}$ can play the role of x^* ; can we find something to play the role of x^{**} ?

Yes: let $Q_x = \{s \in L \mid s \land t = 0 \text{ for all } t \in P_x\}.$

Definition

For *L* an *S*-frame, let $QL = \{Q_x : x \in L\}$ and let $q_L : L \to QL$ be defined by $q_L(x) = Q_x$.

This provides an alternative presentation of the Madden quotient:

Proposition The poset $(\mathcal{Q}L, \subseteq)$ is order isomorphic to L/π_I .

Question: Which partial frames do have a Boolean least dense quotient?

We have seen that $P_x = \{t \in L : t \land x = 0\}$ can play the role of x^* ; can we find something to play the role of x^{**} ?

Yes: let $Q_x = \{s \in L \mid s \land t = 0 \text{ for all } t \in P_x\}.$

Definition

For *L* an *S*-frame, let $QL = \{Q_x : x \in L\}$ and let $q_L : L \to QL$ be defined by $q_L(x) = Q_x$.

This provides an alternative presentation of the Madden quotient:

Proposition The poset $(\mathcal{Q}L, \subseteq)$ is order isomorphic to L/π_I .

Question: Which partial frames do have a Boolean least dense quotient?

Answer: Those which satisfy the condition that, for all $x \in L$, there exists $y \in L$ with $P_x = Q_y$.

The Madden quotient of L and the Booleanization of the free frame over L

The free frame on the S-frame L is $\mathcal{H}_S L$, the frame of S-ideals of L, those ideals closed under taking joins of designated subsets. For any $x \in L$, $\downarrow x = \{t \in L : t \leq x\} \in \mathcal{H}_S L$.

Lemma

Let *L* be an *S*-frame, $x \in L$.

1 Both
$$P_x$$
 and Q_x are S-ideals of L.

2 In
$$\mathcal{H}_{\mathcal{S}}L$$
, $(\downarrow \mathbf{x})^* = \mathbf{P}_{\mathbf{x}}$.

$$In \mathcal{H}_{\mathcal{S}}L, (\downarrow \mathbf{x})^{**} = \mathbf{Q}_{\mathbf{x}}.$$

Let $j : \mathcal{H}_{\mathcal{S}}L \to (\mathcal{H}_{\mathcal{S}}L)_{**}$ be the Booleanization of $\mathcal{H}_{\mathcal{S}}L$, that is, $j(I) = I^{**}$.

Corollary

Let *L* be an *S*-frame. Then QL is a sub *S*-frame of $(\mathcal{H}_S L)_{**}$, which makes the following diagram commute. (Here "inc" refers to the inclusion map.)

Moreover, the image of *L* under $j \circ \downarrow$ is *QL*.

	<	· · · · · · · · · · · · · · · · · · ·	: 90C
Schauerte and Frith (UCT)	Partial frames	TACL 2019	16/27

We now have three ways of viewing the Madden quotient:

$$\bigcirc p_L: L \to L/\pi_L$$

$$Q q_L : L \to \mathcal{Q}L$$

③ *j* ∘ ↓ *L* → *QL* where *QL* is viewed as a sub *S*-frame of $(\mathcal{H}_{\mathcal{S}}L)_{**}$.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Skeletal maps provide a reflection

We call a partial frame d-reduced if it is isomorphic to its Madden quotient.

Frame version: Boolean frames.

We call an S-frame map $f : L \to M$ skeletal if $f[Q_x] \subseteq Q_{f(x)}$ for each $x \in L$. Frame version: $f(x^{**}) \leq f(x)^{**}$.

We note that *f* is skeletal iff $(f \times f)[\pi_L] \subseteq \pi_M$.

We denote the category of S-frames with skeletal maps by $SFrm_{Sk}$.

Proposition

Suppose that $f : L \to M$ is a skeletal S-frame map. Define $\overline{f} : L/\pi_L \to M/\pi_M$ by $\overline{f}([\mathbf{x}]) = [f(\mathbf{x})]$. Then \overline{f} is an S-frame map which makes the following diagram commute:

Conversely, if there is an S-frame map g such that $g \circ p_L = p_M \circ f$ then f is skeletal.

	4			-	Φ) Ψ (Φ
Schauerte and Frith (UCT)	Partial frames		TACL 2019	1	19/27

Corollary

The full subcategory of $SFrm_{Sk}$ consisting of the d-reduced objects is reflective in $SFrm_{Sk}$.

Use the diagram:

Here we use the fact that taking Madden quotients is idempotent.

	4	⊒ ► < Ξ	▶ ▲ 문 ▶	Ξ.	*) Q (*
Schauerte and Frith (UCT)	Partial frames		TACL 2019)	20 / 27

We have been using certain ideals of an S-frame to play the role of special elements that exist in frames, namely, pseudocomplements and double pseudocomplements.

Question: Can we model Heyting arrows in a similar way?

A B K A B K

We have been using certain ideals of an S-frame to play the role of special elements that exist in frames, namely, pseudocomplements and double pseudocomplements.

Question: Can we model Heyting arrows in a similar way?

Answer: Yes.

For any pair of elements *a* and *b* of an *S*-frame *L*, define $H_{(a,b)}$ to be $\{z \in L : z \land a \leq b\}$.

One can then prove that $H_{(a,b)}$ is in fact $\downarrow a \rightarrow \downarrow b$ in $\mathcal{H}_{\mathcal{S}}L$ and the usual identities for a Heyting arrow hold.

De Morgan partial frames

We recall that a de Morgan frame is one in which $x^* \lor x^{**} = 1$ for all x.

Definition

We call an S-frame L de Morgan if, for any $x \in L$, $P_x \lor Q_x = \downarrow 1$ in $\mathcal{H}_S L$.

For frames, the de Morgan condition is equivalent to (for all a, b):

$$(a \land b)^* = a^* \lor b^* \text{ or } (a \lor b)^{**} = a^{**} \lor b^{**}$$

Proposition

If *L* is a de Morgan S-frame then, for any $a, b \in L$, $P_a \vee P_b = P_{a \wedge b}$ and $Q_a \vee Q_b = Q_{a \vee b}$ in $\mathcal{H}_S L$.

The converse of the proposition above is false; in fact, it is possible to have $P_a \vee P_b = P_{a \wedge b}$ and $Q_a \vee Q_b = Q_{a \vee b}$ in $\mathcal{H}_S L$ for all a, b but $P_x \vee Q_x \neq \downarrow 1$ for some x:

Example

Let *L* be the collection of countable subsets of \mathbb{R} with top element \mathbb{R} . For a (non-empty) countable subset $X \subseteq \mathbb{R}$, we have: $P_X = \{A \subseteq \mathbb{R} : A \text{ is countable and } A \cap X = \emptyset\}$ and $Q_X = \downarrow X$. For such $X, P_X \lor Q_X \neq \downarrow 1$ since this would require two disjoint countable subsets of \mathbb{R} whose union is not countable. So *L* is not de Morgan. On the other hand, it is straightforward to check that $P_X \lor P_Y = P_{X \cap Y}$ and $Q_X \lor Q_Y = Q_{X \cup Y}$.

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ト … ヨ …

The frame of S-congruences, $C_S L$

Schauerte and Frith (UCT)

The frame of S-congruences, $C_S L$

It is a fact that $C_S L$ is a complete lattice.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

The frame of S-congruences, C_SL

It is a fact that $C_S L$ is a complete lattice. In fact, it is a frame.

This involves knowing that, for $\theta \in C_{\mathcal{S}}L$, we have $\theta = \bigvee \{\nabla_b \land \Delta_a : (a, b) \in \theta \text{ and } a \leq b\}.$

 ∇_a is the smallest *S*-congruence identifying 0 with *a*. Δ_b is the smallest *S*-congruence identifying *b* with 1.

There are restrictions on S.

A nice universal property

Theorem

Let $f : L \to N$ be an *S*-frame map where:

- *L* is an *S*-frame and *N* is a frame and
- the map f has complemented image in N.

Then there is a unique frame map $\overline{f} : C_S L \to N$ such that $f = \overline{f} \circ \nabla_L$, that is, the following diagram commutes.

And then

Corollary

Taking the S-congruence frame of an S-frame provides a functor C_S from S-frames to frames.

• • • • • • • • • • • •

Corollary

Taking the S-congruence frame of an S-frame provides a functor C_S from S-frames to frames.

Proposition

For *L* an *S*-frame, the congruence frame on *L*, $C_S L$, is isomorphic to the free frame on FC_SL, the freely complemented *S*-frame on *L*. That is

 $C_{\mathcal{S}}L \cong \mathcal{H}_{\mathcal{S}}FC_{\mathcal{S}}L$

Schauerte and Frith (UCT)

Partial frames

TACL 2019 27 / 27

It is clear that the congruence frame, $C_S L$, is generated by its complemented elements and is thus a zero-dimensional, and so completely regular, frame.

When is $C_{S}L$ compact?

It is clear that the congruence frame, $C_S L$, is generated by its complemented elements and is thus a zero-dimensional, and so completely regular, frame.

When is $C_S L$ compact? Exactly when *L* is Noetherian, that is, for each $x \in L$, if $x = \bigvee S$ where *S* is a designated subset of *L* then $x = s_1 \lor s_2 \lor \ldots \lor s_n$, for $s_1, s_2, \ldots, s_n \in S$.

A B A A B A

It is clear that the congruence frame, $C_S L$, is generated by its complemented elements and is thus a zero-dimensional, and so completely regular, frame.

When is $C_S L$ compact? Exactly when *L* is Noetherian, that is, for each $x \in L$, if $x = \bigvee S$ where *S* is a designated subset of *L* then $x = s_1 \lor s_2 \lor \ldots \lor s_n$, for $s_1, s_2, \ldots, s_n \in S$.

When is $C_{S}L$ spatial?

It is clear that the congruence frame, $C_S L$, is generated by its complemented elements and is thus a zero-dimensional, and so completely regular, frame.

When is $C_S L$ compact? Exactly when *L* is Noetherian, that is, for each $x \in L$, if $x = \bigvee S$ where *S* is a designated subset of *L* then $x = s_1 \lor s_2 \lor \ldots \lor s_n$, for $s_1, s_2, \ldots, s_n \in S$.

When is $C_S L$ spatial? Exactly when L/θ is a spatial S-frame for each θ in $C_S L$.