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De Groot duality of stably compact spaces

A topological space is stably compact if it is sober, locally compact,
and finite intersections of compact saturated subsets are compact.
I Compact Hausdorff spaces.
I Scott topologies of continuous domains.
I Spectral spaces

De Groot dual Xd of a stably compact space X is a set X with the
topology generated from complements of compact saturated subsets.
The space Xd is stably compact and (Xd)

d
= X.

Example

1. (Lower vs. Upper) Lower and upper Dedekind cuts of [0, 1].
2. (Open vs. Closed) Scott topology Σ(X) and Lower powerdomain

PL(X): Σ(X)d ∼= PL(X).
3. (Closed vs. Compact) Lower powerdomain PL(X) and Upper

powerdomain PU(X): PL(Xd) ∼= PU(X)d.
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Aim

Give a pointfree account of de Groot duality for stably compact locales.

“How to present de Groot duality”



Stably compact locales

Definition
A locale X is spectral if it is the ideals of a distributive lattice.

Proposition
A locale is stably compact if and only if it is a retract of a spectral locale.

Corollary
The category of stably compact locales is equivalent to the splitting of
idempotents Split(Spec) of the category Spec of spectral locales.

I An object of Split(Spec) is an idempotent (i.e. f : X → X s.t.
f ◦ f = f ) in Spec.

I A morphism g : (f : X → X)→ (f ′ : X′ → X′) in Split(Spec) is a
continuous map g : X → X′ in Spec such that f ′ ◦ g = g = g ◦ f .
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Spectral locales

A relation r ⊆ D× D′ between distributive lattices D and D′ is
approximable if

1. ra def
= {b ∈ D′ | a r b} is a filter,

2. r−b def
= {a ∈ D | a r b} is an ideal,

3. a r 0′ =⇒ a = 0,
4. a r b ∨′ c =⇒ (∃b′, c′ ∈ D) a ≤ b′ ∨ c′ & b′ r b & c′ r c.

Distributive lattices and approximable relations form a category DLAP.

Proposition
The category DLAP is equivalent to the category of spectral locales.



Strong proximity lattices (Jung & Sünderhauf 1996)

A strong proximity lattice is an object of Split(DLAP), i.e. a
distributive lattice D equipped with an idempotent relation ≺ ⊆ S× S
such that
1. ↓ a def

= {b ∈ D | b ≺ a} is an ideal,
2. a ≺ 0 =⇒ a = 0,
3. a ≺ b ∨ c =⇒ (∃b′ ≺ b) (∃c′ ≺ c) a ≤ b′ ∨ c′,

4. ↑ a def
= {b ∈ D | b � a} is a filter,

5. 1 ≺ a =⇒ a = 1,
6. a ∧ b ≺ c =⇒ (∃a′ � a) (∃b′ � b) a′ ∧ b′ ≤ c.

Remark The stably compact locale represented by a proximity lattice
(D,≺) is the collection of rounded ideals of (D,≺), where an ideal
I ⊆ D is rounded if

a ∈ I ⇐⇒ (∃b � a) b ∈ I.
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Continuous entailment relations (cf. Coquand & Zhang 2003)

An entailment relation on a set S is a binary relation ` on the finite
subsets of S such that

a ∈ S
a ` a

A ` B
A′,A ` B,B′

A ` B, a a,A ` B
A ` B

where a denotes {a} and “A,B” denotes A ∪ B.
Remark Every entailment relation (S,`) presents a distributive lattice
with generators S and relations

∧
A ≤

∨
B for each A ` B.

An entailment relation (S,`) is continuous if it is equipped with an
idempotent relation ≺ on S such that

(∃C ∈ Fin(S)) A ≺U C ` B ⇐⇒ (∃D ∈ Fin(S)) A ` D ≺L B
where

A ≺U B def⇐⇒ (∀b ∈ B) (∃a ∈ A) a ≺ b

A ≺L B def⇐⇒ (∀a ∈ A) (∃b ∈ B) a ≺ b.



Continuous entailment relations

Proposition
The category of continuous entailment relations is equivalent to the
category of strong proximity lattices.

Proof.
I If (D,≺) is a strong proximity lattice, then (D,`D) defined by

A `D B def⇐⇒
∧

A ≤D
∨

B

together with ≺ is a continuous entailment relation.
I If (S,`,≺) is a continuous entailment relation, then the lattice DS

generated by (S,`) together with the relation� on DS defined by∨
i<N

∧
Ai �

∧
j<M

∨
Bj

def⇐⇒ ∀i < N∀j < M∃C [Ai ≺U C ` Bj]

is a strong proximity lattice.



Presentation by axioms

Let R be a set of pairs of finite subsets of a set S (R: set of axioms).

An entailment relation (S,`) is generated by R if it is the smallest
entailment relation on S that contains R, i.e. ` is generated by

(A,B) ∈ R
A ` B

a ∈ S
a ` a

A ` B
A′,A ` B,B′

A ` B, a a,A ` B
A ` B

Proposition
Let (S,`) be the entailment relation generated by a set R of axioms,
and let ≺ be an idempotent relation on S. Then (S,`,≺) is continuous
if and only if
1. A ≺U C & (C,D) ∈ R =⇒ (∃E ∈ Fin(S)) A ` E ≺L D
2. (C,D) ∈ R & D ≺L B =⇒ (∃E ∈ Fin(S)) C ≺U E ` B



Presentation by axioms

A model of a continuous entailment relation (S,`,≺) is a subset
α ⊆ S such that
1. A ` B & A ⊆ α =⇒ (∃b ∈ B) b ∈ α;
2. a ∈ α ⇐⇒ (∃b ≺ a) b ∈ α.

Example
If X is a locale presented by a strong proximity lattice (D,≺), the Scott
topology Σ(X) can be presented by a continuous entailment relation

(D,`Σ,�),

where `Σ is generated by the axioms:

`Σ 0 a, b `Σ a ∨ b a `Σ b (a ≥ b)

The models of (D,`Σ,�) are rounded ideals of (D,≺).



Intrinsic duality

I Strong proximity lattice (D, 0,∨, 1,∧,≺):
1. ↓ a = {b ∈ D | b ≺ a} is an ideal,
2. a ≺ 0 =⇒ a = 0,
3. a ≺ b ∨ c =⇒ (∃b′ ≺ b) (∃c′ ≺ c) a ≤ b′ ∨ c′,

4–6. The dual properties for 1 and ∧.
The dual (D, 1,∧, 0,∨,�) of (D,≺) is a strong proximity lattice.

I Continuous entailment relation (S,`,≺):(
(A,B) ∈ R

A ` B

)
a ∈ S
a ` a

A ` B
A′,A ` B,B′

A ` B, a a,A ` B
A ` B

(∃C ∈ Fin(S)) A ≺U C ` B ⇐⇒ (∃D ∈ Fin(S)) A ` D ≺L B

The dual (S,a,�) of (S,`,≺) is a continuous entailment relation.



Intrinsic duality

Proposition
The equivalence between continuous entailment relations and strong
proximity lattices commutes with the dualities.

Question
If X is the stably compact locale presented by (D,≺), does (Dd,�)
present the de Groot dual of X?
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De Groot duality

Definition (Escardó 2000)
The de Groot dual Xd of a stably compact locale X is the collection of
Scott open filters on X.

Note. Scott open filters on X ∼= models of PU(X)

where PU(X) is the upper powerlocale of X.

Lemma
If X and Y are stably compact locales, then

Xd ∼= Y ⇐⇒ PU(X) ∼= Σ(Y).

Theorem
Let (D,≺) be a strong proximity lattice, and X and Y be stably compact
locales presented by (D,≺) and (Dd,�) respectively. Then

PU(X) ∼= Σ(Y).
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De Groot duality in strong proximity lattices

Theorem
Let X and Y be stably compact locales presented by strong proximity
lattices (D,≺) and (Dd,�) respectively. Then PU(X) ∼= Σ(Y).

Proof.
I The upper powerlocale PU(X) is presented by an entailment

relation on D generated by

` 1 a, b ` a ∧ b a ` b (a ≤ b)

with an idempotent relation ≺.
I The Scott topology Σ(X) is presented by an entailment relation

on D generated by

` 0 a, b ` a ∨ b a ` b (a ≥ b)

with an idempotent relation �.



De Groot duality in strong proximity lattices

Theorem
Let X and Y be stably compact locales presented by strong proximity
lattices (D,≺) and (Dd,�) respectively. Then PU(X) ∼= Σ(Y).

Proof.
I The upper powerlocale PU(X) is presented by an entailment
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Vietoris powerlocales PV(X)

Proposition
If X is stably compact then PV(X)d ∼= PV(Xd).

Proof.
Let X be a stably compact locale presented by a strong proximity
lattice (D,≺).
The Vietoris powerlocale PV(X) is presented by an entailment relation
on {3a | a ∈ D} ∪ {2a | a ∈ D} generated by

30 ` 3(a ∨ b) ` 3a,3b 3a ` 3b (a ≤ b)

` 21 2a,2b ` 2(a ∧ b) 2a ` 2b (a ≤ b)

2a,3b ` 3(a ∧ b)

2(a ∨ b) ` 2a,3b

The idempotent relation associated with PV(X) is

3a ≺ 3b def⇐⇒ a � b, 2a ≺ 2b def⇐⇒ a ≺ b.
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The space of valuations

Definition
A probabilistic valuation on a locale X is a Scott continuous map
µ : Ω(X)→ [0, 1]L to the lower reals [0, 1]L satisfying µ(0) = 0,
µ(1) = 1, and the modular law: µ(x) + µ(y) = µ(x ∧ y) + µ(x ∨ y).

A covaluation on X is a Scott continuous map ν : Ω(X)→ [0, 1]U
to the upper reals [0, 1]U satisfying ν(1) = 0, ν(0) = 1, and the
modular law.

I The space of valuations V(X) is a locale whose models are
valuations on X.

I The space of covaluations C(X) is a locale whose models are
covaluations on X.



The space of valuations

If X is a locale presented by a strong proximity lattice (D,≺), then
the space of valuations V(X) is presented by an entailment relation on

S = {〈p, a〉 | p ∈ Q, a ∈ D}
generated by the axioms

∅ ` 〈p, 0〉 (p < 0) 〈p, 0〉 ` ∅ (0 < p)

∅ ` 〈p, 1〉 (p < 1) 〈p, 1〉 ` ∅ (1 < p)

〈p, a〉 ` 〈q, b〉 (p ≥ q & a ≤ b)

〈p, a〉, 〈q, b〉 a` 〈r, a ∧ b〉, 〈s, a ∨ b〉 (p + q = r + s)
with an idempotent relation 〈p, a〉 ≺V 〈q, b〉

def⇐⇒ p > q & a ≺ b.

Note. A model m ⊆ S of (S,`,≺V) corresponds to a valuation µ on
the ideals of (D,≺) given by

µ(I) = sup
a∈I

sup
〈p,a〉∈m

p.

so that 〈p, a〉 ∈ m ⇐⇒ p < µ(a).



The space of valuations

Proposition
If X is a stably compact locale, then V(X)d ∼= C(Xd).

Proof.
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Summary

By representing a stably compact locale by a continuous entailment
relation, one may have some insight on what its de Groot dual is.
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