The spectrum of a localic semiring

Graham Manuell graham@manuell.me University of Edinburgh

TACL 2019, Nice

The Zariski spectrum

- The Zariski spectrum of a commutative ring R is a 'space' on which the elements of R behave like functions.
- Each element f ∈ R gives a basic open f corresponding the region on which it is nonzero. Note that:
 - 0 is never nonzero,
 - 1 is always nonzero,
 - If f + g is nonzero somewhere, then either f or g must be nonzero.
 - fg is nonzero precisely where both f and g are nonzero.
- So the Zariski spectrum is given by the frame presentation

$$\langle \overline{f} : f \in R \mid \overline{0} = 0, \ \overline{1} = 1, \ \overline{f + g} \leqslant \overline{f} \vee \overline{g}, \ \overline{fg} = \overline{f} \wedge \overline{g} \rangle.$$

- This frame is isomorphic to the frame of radical ideals of R.
- The points of the frame correspond to prime anti-ideals.

Other kinds of spectrum

- There are number of other very similar spectrum constructions.
- They apply to various different localic commutative semirings.

Class of semiring	Spectrum	Opens	Points
Commutative rings	Zariski	Radical ideals	Prime ideals*
Distributive lattices	Stone	Ideals	Prime filters
Commutative C*-algebras	Gelfand	Closed* ideals	Closed prime ideals
Continuous frames (Scott topology)	Hofmann– Lawson	Closed* ideals	Open prime filters

Open prime anti-ideals

- Let R be a localic semiring with zero/unit maps $\varepsilon_0, \varepsilon_1 \colon \mathfrak{OR} \to \Omega$ and addition/multiplication maps $\mu_+, \mu_\times \colon \mathfrak{OR} \to \mathfrak{OR} \oplus \mathfrak{OR}$.
- A point in a spectrum is given by an open prime anti-ideal, which we imagine containing the functions that are nonzero at that point.
- These opens should vary continuously over the spectrum.
- An open prime anti-ideal of R fibred over X is an element $u \in X \oplus \mathbb{O}R$ satisfying
 - $(X\oplus \varepsilon_0)(\mathfrak{u})=0$,
 - $(X \oplus \epsilon_1)(u) = 1$,
 - $(X \oplus \mu_+)(\mathfrak{u}) \leqslant (X \oplus \iota_1)(\mathfrak{u}) \lor (X \oplus \iota_2)(\mathfrak{u}),$
 - $(X \oplus \mu_{\times})(\mathfrak{u}) = (X \oplus \iota_1)(\mathfrak{u}) \wedge (X \oplus \iota_2)(\mathfrak{u}),$

where ι_1 and ι_2 are the coproduct injections.

Defining a general notion of spectrum

- We expect there to be an open prime anti-ideal v fibred over the spectrum Spec R which acts as if it contains the pairs (x, f) for which f(x) is nonzero.
- In fact, any open prime anti-ideal α fibred over X gives a family of places for elements of R to be nonzero. Since Spec R contains all such places this should define a locale map X → Spec R.
- Thus, we define a functor OPAI_R: Frm → Set such that OPAI_R(X) is the set of open prime anti-ideals over X.
- The spectrum of R is the representing object of $OPAI_R$ if it exists. (Here v is the universal element.)
- Spectra need not exist in general.

Closed* ideals as suplattice homomorphisms

- We expect the opens of the spectrum of R to correspond to some notion of closed* radical ideals in R.
- The closed sublocales of a frame L are in order-reversing bijection with the elements of L.
- At least classically, suplattice homomorphisms from L to $\Omega=\{0,1\}$ are also in order-reversing bijection with elements of L via the map $h\mapsto h_*(0).$
- A closed sublocale S then corresponds to a suplattice homomorphism a → [[S ≬ a]].
- So we will identify the ideals with certain suplattice homomorphisms from OR to Ω .

The quantale of ideals

- A suplattice Q equipped with a commutative monoid structure satisfying $a \bigvee_{\alpha} b_{\alpha} = \bigvee_{\alpha} a b_{\alpha}$ is called a (commutative) quantale.
- The homset $\mathbf{Sup}(\mathbb{O}\mathsf{R},\Omega)$ has the structure of a suplattice.
- The addition and multiplication operations on R then induce two quantale structures on Sup(OR, Ω).
- An ideal is an element a of $Sup(OR, \Omega)$ satisfying $0_+ \leq a$, $a + a \leq a$ and $a \times b \leq a$.
- The set IdI(R) of ideals inherits a quantale structure from the multiplicative quantale structure on Sup(OR, Ω).
- Every quantale Q has a universal quotient ρ: Q → L turning it into a frame (where multiplication is meet).
- Applying this to IdI(R) gives the frame of radical ideals, Rad(R).

The universal element

- We are hoping that Rad(R) is (often) the spectrum of R.
- For this we need a universal element $\upsilon \in \mathsf{OPAI}_R(\mathsf{Rad}(R)).$
- Recall that this element represents an open of $Rad(R) \oplus OR$ which "contains the pairs (x, f) for which f(x) is nonzero".
- Each 'function' f in R cuts out a cozero set. If R is spatial, we might try build υ as the union $\bigcup_f ((f)) \times \pi(f)$, where $\pi(f)$ is an open set of functions which are nonzero wherever f is.
- A subset S of a ring is called saturated if $fg\in S\implies f\in S.$
- We say an open $s \in OR$ is saturated if $\mu_{\times}(s) \leqslant \iota_1(s)$.
- We then set $\pi(I) = \bigwedge \{s \text{ saturated } | I \ () s\} \in \mathbb{O}R.$

• We call a localic semiring R approximable if for all $a \in OR$, $a \leq \bigvee_{I \check{Q} a} \pi(I)$.

Theorem

Let R be an overt approximable semiring. Then the spectrum of R exists and is isomorphic to Rad(R). The universal element is

$$\upsilon = \bigvee_{I \in \mathsf{IdI}(\mathsf{R})} \rho(I) \oplus \pi(I).$$

• As a corollary*, the aforementioned examples of spectra exist and are given by their usual constructions.