The spectrum of a localic semiring

Graham Manuell
graham@manuell.me
University of Edinburgh

TACL 2019, Nice

The Zariski spectrum

- The Zariski spectrum of a commutative ring R is a 'space' on which the elements of R behave like functions.
- Each element $f \in R$ gives a basic open \bar{f} corresponding the region on which it is nonzero. Note that:
- 0 is never nonzero,
- 1 is always nonzero,
- If $f+g$ is nonzero somewhere, then either f or g must be nonzero.
- $f g$ is nonzero precisely where both f and g are nonzero.
- So the Zariski spectrum is given by the frame presentation

$$
\langle\overline{\mathrm{f}}: \mathrm{f} \in \mathrm{R} \mid \overline{0}=0, \overline{1}=1, \overline{\mathrm{f}+\mathrm{g}} \leqslant \overline{\mathrm{f}} \vee \overline{\mathrm{~g}}, \overline{\mathrm{fg}}=\overline{\mathrm{f}} \wedge \overline{\mathrm{~g}}\rangle .
$$

- This frame is isomorphic to the frame of radical ideals of R.
- The points of the frame correspond to prime anti-ideals.

Other kinds of spectrum

- There are number of other very similar spectrum constructions.
- They apply to various different localic commutative semirings.

Class of semiring Spectrum Opens Points

Commutative rings	Zariski	Radical ideals	Prime ideals*
Distributive lattices	Stone	Ideals	Prime filters
Commutative	Gelfand	Closed* C*-algebras	Closed prime ideals
Continuous frames (Scott topology)	Hofmann-	Closed*	Open prime
Lawson	ideals	filters	

Open prime anti-ideals

- Let R be a localic semiring with zero/unit maps $\varepsilon_{0}, \varepsilon_{1}: \mathcal{O R} \rightarrow \Omega$ and addition/multiplication maps $\mu_{+}, \mu_{\times}: \mathcal{O R} \rightarrow \mathcal{O} \mathrm{O} \oplus \mathcal{O}$.
- A point in a spectrum is given by an open prime anti-ideal, which we imagine containing the functions that are nonzero at that point.
- These opens should vary continuously over the spectrum.
- An open prime anti-ideal of R fibred over X is an element $u \in X \oplus \mathcal{O R}$ satisfying
- $\left(X \oplus \varepsilon_{0}\right)(u)=0$,
- $\left(X \oplus \varepsilon_{1}\right)(u)=1$,
- $\left(X \oplus \mu_{+}\right)(u) \leqslant\left(X \oplus \mathfrak{t}_{1}\right)(u) \vee\left(X \oplus \mathfrak{t}_{2}\right)(u)$,
- $\left(X \oplus \mu_{\times}\right)(u)=\left(X \oplus \mathfrak{t}_{1}\right)(u) \wedge\left(X \oplus \mathfrak{\imath}_{2}\right)(u)$,
where t_{1} and t_{2} are the coproduct injections.

Defining a general notion of spectrum

- We expect there to be an open prime anti-ideal v fibred over the spectrum Spec R which acts as if it contains the pairs (x, f) for which $f(x)$ is nonzero.
- In fact, any open prime anti-ideal a fibred over X gives a family of places for elements of R to be nonzero. Since Spec R contains all such places this should define a locale map $X \rightarrow$ Spec R.
- Thus, we define a functor $\mathrm{OPAI}_{\mathrm{R}}: \mathbf{F r m} \rightarrow$ Set such that $\mathrm{OPAI}_{\mathrm{R}}(\mathrm{X})$ is the set of open prime anti-ideals over X .
- The spectrum of R is the representing object of $O P A I_{R}$ if it exists. (Here v is the universal element.)
- Spectra need not exist in general.

Closed* ideals as suplattice homomorphisms

- We expect the opens of the spectrum of R to correspond to some notion of closed* radical ideals in R.
- The closed sublocales of a frame L are in order-reversing bijection with the elements of L .
- At least classically, suplattice homomorphisms from L to $\Omega=\{0,1\}$ are also in order-reversing bijection with elements of L via the map $h \mapsto h_{*}(0)$.
- A closed sublocale S then corresponds to a suplattice homomorphism $a \mapsto \llbracket S \gamma a \rrbracket$.
- So we will identify the ideals with certain suplattice homomorphisms from $\mathcal{O R}$ to Ω.

The quantale of ideals

- A suplattice Q equipped with a commutative monoid structure satisfying a $\bigvee_{\alpha} b_{\alpha}=\bigvee_{\alpha} a b_{\alpha}$ is called a (commutative) quantale.
- The homset $\operatorname{Sup}(\mathcal{O R}, \Omega)$ has the structure of a suplattice.
- The addition and multiplication operations on R then induce two quantale structures on $\operatorname{Sup}(O R, \Omega)$.
- An ideal is an element a of $\operatorname{Sup}(O R, \Omega)$ satisfying $0_{+} \leqslant a$, $a+a \leqslant a$ and $a \times b \leqslant a$.
- The set $\operatorname{Idl}(R)$ of ideals inherits a quantale structure from the multiplicative quantale structure on $\operatorname{Sup}(O R, \Omega)$.
- Every quantale Q has a universal quotient $\rho: \mathrm{Q} \rightarrow \mathrm{L}$ turning it into a frame (where multiplication is meet).
- Applying this to $\operatorname{IdI}(R)$ gives the frame of radical ideals, $\operatorname{Rad}(R)$.

The universal element

- We are hoping that $\operatorname{Rad}(R)$ is (often) the spectrum of R.
- For this we need a universal element $v \in \operatorname{OPAI}_{R}(\operatorname{Rad}(R))$.
- Recall that this element represents an open of $\operatorname{Rad}(R) \oplus \mathcal{O R}$ which "contains the pairs (x, f) for which $f(x)$ is nonzero".
- Each 'function' f in R cuts out a cozero set. If R is spatial, we might try build v as the union $\bigcup_{f}((f)) \times \pi(f)$, where $\pi(f)$ is an open set of functions which are nonzero wherever f is.
- A subset S of a ring is called saturated if $f g \in S \Longrightarrow f \in S$.
- We say an open $s \in \mathcal{O R}$ is saturated if $\mu_{\times}(s) \leqslant \iota_{1}(s)$.
- We then set $\pi(\mathrm{I})=\bigwedge\{s$ saturated $\mid \mathrm{I} \ell \mathrm{s}\} \in \mathcal{O}$.

Approximable semirings

- We call a localic semiring R approximable if for all $a \in \mathcal{O} R$, $a \leqslant \bigvee_{I \chi a} \pi(I)$.

Theorem

Let R be an overt approximable semiring. Then the spectrum of R exists and is isomorphic to $\operatorname{Rad}(\mathrm{R})$. The universal element is

$$
v=\bigvee_{\mathrm{I} \in \operatorname{ldl}(\mathrm{R})} \rho(\mathrm{I}) \oplus \pi(\mathrm{I}) .
$$

- As a corollary*, the aforementioned examples of spectra exist and are given by their usual constructions.

