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Consider a logic ⊢, algebraized by a quasivariety K of algebras.

It may happen (as in classical prop. logic) that the derivable
inference rules of ⊢ are determined by a single set of ‘truth
tables’, i.e., by the operation tables of a single member of K.

This happens just in case

K = Q(A) = ISPPU(A) for some A ∈ K . . . (∗).

Subtlety: When some A ∈ K determines the finite rules of ⊢,
then another B ∈ K determines all of the rules.

Note: When K is a variety, it does not suffice (for (∗)) that
K = V(A) = HSP(A) for some A ∈ K.
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Theorem [essentially Maltsev 1966; Łoś & Suszko 1958].
The following conditions on a quasivariety K are equivalent.

(1) K = Q(A) for some A ∈ K (i.e., K is ‘singly generated’).

(2) K has the joint embedding property (JEP), i.e., any two non-
trivial members of K both embed into some third member.

(3) For every set X ⊆ K, there exists B ∈ K s.t. X ⊆ IS(B).

(4) [a robust ‘relevance principle ’]:
For any finite set Γ ∪∆ ∪ {α ≈ β} of equations, where Γ is
satisfiable in a nontrivial member of K and involves different
variables from ∆ ∪ {α ≈ β},

if K |= (&(Γ ∪∆)) ⇒ α ≈ β, then K |= (&∆) ⇒ α ≈ β.

Note. (2) is obviously categorical, therefore so are the others.
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Examples. (1) {Boolean algebras} = Q(2) has the JEP.

(2) So do all subquasivarieties of HA := {Heyting algebras}.

(As a feature of intuitionistic logic, ‘HA = GQω(A)’ is
unexpected, but the algebra A can’t be chosen countable
[Wroński 1974].)

(3) [algebras of relevance logic]:
RA := {relevant algebras} has the JEP [Tokarz 1979], but
DMM := {De Morgan monoids} does not.

The varieties RA and DMM algebraize the Anderson-Belnap
logic R (without ‘Ackermann constants’) and its conservative
expansion Rt (with the constants t , f ).
The literature on R emphasizes a more fragile ‘relevance
principle’: if ⊢R α→ β, then α and β have a common variable.
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As the JEP is a relevance principle, failing in DMM, our aim is to
describe the (quasi)varieties of De Morgan monoids
that have the JEP, or related ‘completeness’ properties.

(These algebras will be defined later.)
It is profitable to conduct a universal-algebraic analysis first.

An algebra is said to be 0-generated if it has a distinguished
element and no proper subalgebra.

Fact. In a quasivariety K with the JEP and a constant symbol,
(1) the nontrivial 0-generated algebras are isomorphic, and
(2) either every algebra has a trivial subalgebra, or no nontrivial

algebra does.
(3) when existing, the unique nontrivial 0-generated A ∈ K is
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A member A of a quasivariety K is said to be relatively
subdirectly irreducible if its identity congruence idA is not an
intersection of non-identity congruences θ s.t. A/θ ∈ K.

Theorem. If K has the JEP, and if its nontrivial members lack
trivial subalgebras, then there’s a relatively simple A ∈ K such
that ISPU(A) includes every relatively simple algebra B ∈ K.

(I.e., every such B models the universal theory of A.)

In particular, if K is also relatively semisimple (i.e., its relatively
subdirectly irreducible members are relatively simple), then

K = Q(A) for some relatively simple A ∈ K.
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Although the JEP persists under category equivalences, it is
not hereditary, i.e., it need not persist in sub(quasi)varieties.

Known variants of the JEP (with logically inspired names):

Definition. A quasivariety K is

(i) structurally complete (SC) if K = Q(F K(ℵ0));
(ii) passively structurally complete (PSC) if any two nontrivial

members of K satisfy the same existential positive sentences
∃x1 . . . ∃xn Φ (Φ a disjunction of conjunctions of equations).

Note. PSC is hereditary. Also, SC implies PSC.

Theorem. Every PSC quasivariety has the JEP (hereditarily).

[Use: B models the existential positive theory of A iff A can be
mapped homomorphically into an ultrapower of B.]
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Theorem. A quasivariety K of finite type, with a finite nontrivial
member, is PSC iff the class KNT of nontrivial members of K
has a common retract, i.e.,

there exists C ∈ K s.t. for each B ∈ KNT, there are homo-
morphisms g : C −→ B and h : B −→ C, with h ◦ g = idC .

The common retract C is finite and either relatively simple or
trivial. A nontrivial common retract is unique, up to ∼=.

E.g.: {groups}, {Heyting algebras}, {lattices}.

Corollary. If, moreover, the nontrivial members of K lack trivial
subalgebras, then K has a unique relatively simple member.
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The common retract C is finite and either relatively simple or
trivial. A nontrivial common retract is unique, up to ∼=.

E.g.: {groups}, {Heyting algebras}, {lattices}.

Corollary. If, moreover, the nontrivial members of K lack trivial
subalgebras, then K has a unique relatively simple member.
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Definition. The variety DMM of De Morgan monoids
A = ⟨A;∧,∨,¬, ·,e⟩ consists of all distributive lattice-ordered
commutative monoids with an ‘involution’ ¬, satisfying

x ⩽ x2 := x · x ¬¬x ≈ x
x · y ⩽ z =⇒ x · ¬z ⩽ ¬y .

Theorem. The maximal PSC subquasivarieties of DMM are
exactly the classes
Ret(DMM,A) := {B ∈ DMM : A is a retract of B, or |B| = 1},
where A is any 0-generated De Morgan monoid.
Every nontrivial PSC quasivariety of De Morgan monoids is
contained in just one of these.

Results of Slaney (1985) help to show that there are just 68
0-generated De Morgan monoids A, all of which are finite.
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When A is trivial, Ret(DMM,A) is the well-understood variety
of odd Sugihara monoids, i.e., De Morgan monoids s.t. ¬e = e.

It consists of idempotent subdirect products of chains.

It is generated by the chain Z of all integers, in which e = 0,
¬x = −x and x · y is whichever of x , y has the larger absolute
value—or is x ∧ y if |x | = |y |.

Its subquasivarieties are varieties and they form a transparent
chain of order type ω + 1.
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For PSC/JEP in varieties of De Morgan monoids, we need:

Fact. The simple 0–generated De Morgan monoids are just

s
se
f

2 :

ss
ssf 2

f
e

¬(f 2)

C4 : s�� s
@@
s��s

@@

f 2

e f

¬(f 2)

D4 : (where f := ¬e).

Theorem. A variety K of De Morgan monoids has the JEP iff
one of the following (mutually exclusive) conditions holds.
(1) K is PSC (classified further in the next theorem).
(2) K = V(A) for a simple De Morgan monoid A that has D4 as

a proper subalgebra.
(3) K = Q(A) for a De Morgan monoid A that has a simple

subalgebra B, where C4 is a proper subalgebra of B.

T. Moraschini, J.G. Raftery and J.J. Wannenburg Singly generated quasivarieties



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

For PSC/JEP in varieties of De Morgan monoids, we need:

Fact. The simple 0–generated De Morgan monoids are just

s
se
f

2 :

ss
ssf 2

f
e

¬(f 2)

C4 : s�� s
@@
s��s

@@

f 2

e f

¬(f 2)

D4 : (where f := ¬e).

Theorem. A variety K of De Morgan monoids has the JEP iff
one of the following (mutually exclusive) conditions holds.
(1) K is PSC (classified further in the next theorem).
(2) K = V(A) for a simple De Morgan monoid A that has D4 as

a proper subalgebra.
(3) K = Q(A) for a De Morgan monoid A that has a simple

subalgebra B, where C4 is a proper subalgebra of B.

T. Moraschini, J.G. Raftery and J.J. Wannenburg Singly generated quasivarieties



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

For PSC/JEP in varieties of De Morgan monoids, we need:

Fact. The simple 0–generated De Morgan monoids are just

s
se
f

2 :

ss
ssf 2

f
e

¬(f 2)

C4 : s�� s
@@
s��s

@@

f 2

e f

¬(f 2)

D4 : (where f := ¬e).

Theorem. A variety K of De Morgan monoids has the JEP iff
one of the following (mutually exclusive) conditions holds.
(1) K is PSC (classified further in the next theorem).
(2) K = V(A) for a simple De Morgan monoid A that has D4 as

a proper subalgebra.
(3) K = Q(A) for a De Morgan monoid A that has a simple

subalgebra B, where C4 is a proper subalgebra of B.

T. Moraschini, J.G. Raftery and J.J. Wannenburg Singly generated quasivarieties



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

For PSC/JEP in varieties of De Morgan monoids, we need:

Fact. The simple 0–generated De Morgan monoids are just

s
se
f

2 :

ss
ssf 2

f
e

¬(f 2)

C4 : s�� s
@@
s��s

@@

f 2

e f

¬(f 2)

D4 : (where f := ¬e).

Theorem. A variety K of De Morgan monoids has the JEP iff
one of the following (mutually exclusive) conditions holds.
(1) K is PSC (classified further in the next theorem).
(2) K = V(A) for a simple De Morgan monoid A that has D4 as

a proper subalgebra.
(3) K = Q(A) for a De Morgan monoid A that has a simple

subalgebra B, where C4 is a proper subalgebra of B.

T. Moraschini, J.G. Raftery and J.J. Wannenburg Singly generated quasivarieties



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

For PSC/JEP in varieties of De Morgan monoids, we need:

Fact. The simple 0–generated De Morgan monoids are just

s
se
f

2 :

ss
ssf 2

f
e

¬(f 2)

C4 : s�� s
@@
s��s

@@

f 2

e f

¬(f 2)

D4 : (where f := ¬e).

Theorem. A variety K of De Morgan monoids has the JEP iff
one of the following (mutually exclusive) conditions holds.
(1) K is PSC (classified further in the next theorem).
(2) K = V(A) for a simple De Morgan monoid A that has D4 as

a proper subalgebra.
(3) K = Q(A) for a De Morgan monoid A that has a simple

subalgebra B, where C4 is a proper subalgebra of B.

T. Moraschini, J.G. Raftery and J.J. Wannenburg Singly generated quasivarieties



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ret(DMM,2) [resp. Ret(DMM,D4)] has no nontrivial
subvariety, other than V(2) [resp. V(D4)].

But Ret(DMM,C4) has 2ℵ0 subvarieties, and it has a largest
subvariety M—which is axiomatized, relative to DMM, by

e ⩽ f and x ⩽ f 2 and f 2 · ¬((f · x)∧ (f · ¬x)) ≈ f 2.

Theorem. A variety K of De Morgan monoids is PSC iff one of
the following (mutually exclusive) conditions holds.

(1) K is V(2) or V(D4).
(2) K consists of odd Sugihara monoids.
(3) K is a nontrivial subvariety of M.

In (1) and (2), K is structurally complete (SC).

So, except for (1),(2), all SC subvarieties of DMM lie within M.
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subvariety M—which is axiomatized, relative to DMM, by

e ⩽ f and x ⩽ f 2 and f 2 · ¬((f · x)∧ (f · ¬x)) ≈ f 2.

Theorem. A variety K of De Morgan monoids is PSC iff one of
the following (mutually exclusive) conditions holds.

(1) K is V(2) or V(D4).
(2) K consists of odd Sugihara monoids.
(3) K is a nontrivial subvariety of M.

In (1) and (2), K is structurally complete (SC).

So, except for (1),(2), all SC subvarieties of DMM lie within M.
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In contrast with (1),(2), we can prove:

Claim. M has 2ℵ0 (locally finite) subvarieties K that are
structurally incomplete —i.e., K = V(L) for some proper
subquasivariety L of K; in particular, Q(F K(ℵ0)) ⊊ K.

(Where K algebraizes a logic ⊢, this means that ⊢ possesses
proper extensions having no new theorems.)

To prove the claim, we exploit a connection between De
Morgan monoids and Brouwerian algebras (i.e., possibly
unbounded Heyting algebras).
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Every De Morgan monoid A has a ‘negative cone’
A− = ⟨A−;∧,∨,→,e⟩ that is a Brouwerian algebra, where
A− := {a ∈ A : a ⩽ e} and a → b := e ∧¬(a · ¬b) for all
a,b ∈ A−.

Conversely, each
Brouwerian
algebra B has a
‘reflection’
R(B) ∈ M,
illustrated
on the right
[Meyer 1973].

f 2

f

e

¬(f 2)

r
rHHHrc

b

r���
r

c′
b′

rr
rr

&%
'$

r

&%
'$

B

for x , y ∈ B, z ∈ R(B):
x · y = x ∧ y
x · y ′ = (x → y)′

x ′ · y ′ = f 2

z · ¬(f 2) = ¬(f 2)

z · f 2 = f 2 (z ̸= ¬(f 2))

T. Moraschini, J.G. Raftery and J.J. Wannenburg Singly generated quasivarieties



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Every De Morgan monoid A has a ‘negative cone’
A− = ⟨A−;∧,∨,→,e⟩ that is a Brouwerian algebra, where
A− := {a ∈ A : a ⩽ e} and a → b := e ∧¬(a · ¬b) for all
a,b ∈ A−.

Conversely, each
Brouwerian
algebra B has a
‘reflection’
R(B) ∈ M,
illustrated
on the right
[Meyer 1973].

f 2

f

e

¬(f 2)

r
rHHHrc

b

r���
r

c′
b′

rr
rr

&%
'$

r

&%
'$

B

for x , y ∈ B, z ∈ R(B):
x · y = x ∧ y
x · y ′ = (x → y)′

x ′ · y ′ = f 2

z · ¬(f 2) = ¬(f 2)

z · f 2 = f 2 (z ̸= ¬(f 2))

T. Moraschini, J.G. Raftery and J.J. Wannenburg Singly generated quasivarieties



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Every De Morgan monoid A has a ‘negative cone’
A− = ⟨A−;∧,∨,→,e⟩ that is a Brouwerian algebra, where
A− := {a ∈ A : a ⩽ e} and a → b := e ∧¬(a · ¬b) for all
a,b ∈ A−.

Conversely, each
Brouwerian
algebra B has a
‘reflection’
R(B) ∈ M,
illustrated
on the right
[Meyer 1973].

f 2

f

e

¬(f 2)

r
rHHHrc

b

r���
r

c′
b′

rr
rr

&%
'$

r

&%
'$

B

for x , y ∈ B, z ∈ R(B):
x · y = x ∧ y
x · y ′ = (x → y)′

x ′ · y ′ = f 2

z · ¬(f 2) = ¬(f 2)

z · f 2 = f 2 (z ̸= ¬(f 2))

T. Moraschini, J.G. Raftery and J.J. Wannenburg Singly generated quasivarieties



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Every De Morgan monoid A has a ‘negative cone’
A− = ⟨A−;∧,∨,→,e⟩ that is a Brouwerian algebra, where
A− := {a ∈ A : a ⩽ e} and a → b := e ∧¬(a · ¬b) for all
a,b ∈ A−.

Conversely, each
Brouwerian
algebra B has a
‘reflection’
R(B) ∈ M,
illustrated
on the right
[Meyer 1973].

f 2

f

e

¬(f 2)

r
rHHHrc

b

r���
r

c′
b′

rr
rr

&%
'$

r

&%
'$

B

for x , y ∈ B, z ∈ R(B):
x · y = x ∧ y
x · y ′ = (x → y)′

x ′ · y ′ = f 2

z · ¬(f 2) = ¬(f 2)

z · f 2 = f 2 (z ̸= ¬(f 2))

T. Moraschini, J.G. Raftery and J.J. Wannenburg Singly generated quasivarieties



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Every De Morgan monoid A has a ‘negative cone’
A− = ⟨A−;∧,∨,→,e⟩ that is a Brouwerian algebra, where
A− := {a ∈ A : a ⩽ e} and a → b := e ∧¬(a · ¬b) for all
a,b ∈ A−.

Conversely, each
Brouwerian
algebra B has a
‘reflection’
R(B) ∈ M,
illustrated
on the right
[Meyer 1973].

f 2

f

e

¬(f 2)

r
rHHHrc

b

r���
r

c′
b′

rr
rr

&%
'$

r

&%
'$

B

for x , y ∈ B, z ∈ R(B):
x · y = x ∧ y
x · y ′ = (x → y)′

x ′ · y ′ = f 2

z · ¬(f 2) = ¬(f 2)

z · f 2 = f 2 (z ̸= ¬(f 2))

T. Moraschini, J.G. Raftery and J.J. Wannenburg Singly generated quasivarieties



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lemma. The map K 7→ V({R(B) : B ∈ K}) (from varieties of
Brouwerian algebras to subvarieties of M) is injective and
preserves structural incompleteness (and local finiteness).

The lemma reduces our task to that of exhibiting 2ℵ0 structurally
incomplete (locally finite) varieties of Brouwerian algebras.

Kuznetsov (1975) exhibited a set of ℵ0 finite Brouwerian
algebras, distinct subsets of which generate distinct varieties.

His algebras can be modified so that, after a certain extra
algebra B is added to the set, distinct subsets containing B
generate distinct structurally incomplete subvarieties (that are
locally finite).
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The new algebras are best described via their dual
(upper-bounded) posets of prime filters. The corresponding
posets of Kuznetsov are modified as in the example below.
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For each doubleton {x , y} at depth 3, a new element exy is
added, which has no strict lower bound; its set of strict upper
bounds is the upward closure of {x , y} in the original poset.

The up-sets of the above-right poset form the extra algebra B.
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For each doubleton {x , y} at depth 3, a new element exy is
added, which has no strict lower bound; its set of strict upper
bounds is the upward closure of {x , y} in the original poset.

The up-sets of the above-right poset form the extra algebra B.
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