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Introduction

I Part A: motivating categorical fibrations from logic
I Part B: fibrations of toposes



Part A: categorical fibrations from logic



I Recall that the Axiom Schema of Comprehension of ZF:

∀w1, . . . ,wn ∀A∃B ∀x (x ∈ B ⇔ [x ∈ A ∧ ϕ(x ,w1, . . . ,wn,A)])

where ϕ is a formula in the language of set theory with free variables
x ,w1, ...,wn,A.

I We get a predicate P : A→ {True,False} once extra parameters w1, ...,wn have
been specified as sets.

I Comprehension essentially says that given a set A and a predicate P with a free
variable x whose values range over A, we can find a subset B of A whose members
are precisely the members of A that satisfy P .

I By the axiom of extensionality the set B is unique and is denoted by
{a ∈ A : P(a) = True}.
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A categorical comprehension scheme

I Categorifying “comprehension” naturally leads to the notion of subobject classifier
(of an elementary topos, say E ).

I True is represented as a monomorphism True : 1� Ω, and {a ∈ A : P(a) = True}
is given by the object B of the pullback of True : 1� Ω and P : A→ Ω.
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I (Lawvere, 1970) For a hyperdoctrine

A functor Top → Cat where T is a category of “types”.

P, a comprehension schema is a pair of
adjoint functors

P(X ) T/X⊥
L

R



I It is often the case that a comprehension scheme for a hyperdoctrine arises in
situations when we have
1. A factorization system (E,M) on the category T.
2. An object Ω in T which classifies (equivalence classes of) M-objects, i.e. we have

natural isomorphisms
T(X ,Ω) ∼= M(X )



I (Lawvere, 1970) For a hyperdoctrine

A functor Top → Cat where T is a category of “types”.

P, a comprehension schema is a pair of
adjoint functors

P(X ) T/X⊥
L

R

I T: elementary topos
P := T(−,ΩT), and (E,M): the usual epi-mono factorization.
Therefore, P(X ) ∼= T(X ,Ω) ∼= M(X ). The unit (η) of adjunction above is given
by the image factorization:

Y

Yf X

f
e

m
with η(f ) = e.



n-Categorical levels

I Consider the following chain of categories (equipped with their notion of structural
identity of objects) and adjoint functors

({∗},=) ({∅ → {∅}},=) (Set,∼=)

⊥

⊥

⊥

⊥

||−||
−1

{∅}

||−||
−2

∅



n-Categorical levels

I The above chain of categories can be extended to the following chain of
2-categories and (strict) 2-functors.

1 {⊥ → >} Set (Cat,')

⊥

⊥

⊥

⊥

⊥

⊥

(−)ind

||−||
0

(−)d

||−||
−1

>

||−||
−2

⊥



n-Categorical levels

I And the chaing of 3-categories and 3-functors:

1 {⊥ → >} Set (Cat,') (2Catpsd ,')

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

(−)ind

(−)d

||−||
1

(−)ind

||−||
0

(−)d

||−||
−1

>

||−||
−2

⊥



A 2-categorical comprehension scheme

I Note that in the categorical comprehension we relied on the structure of subobject
classifier True : 1� Ω whose fibres are subsingletons, i.e. they are (−1)-level
“types”.



A 2-categorical comprehension scheme

I Note that in the categorical comprehension we relied on the structure of subobject
classifier True : 1� Ω whose fibres are subsingletons, i.e. they are (−1)-level
“types”.

I (Street and Walters, 1978) and (Weber, 2007) observed that for a 2-categorical
comprehension the generic subobject True : 1� Ω should be replaced with the
discrete opfibration U : Set• → Set whose fibres are discrete, aka sets, aka 0-level
“types”.



A 2-categorical comprehension scheme

I For a (small) category C and a functor X : C→ Set, we have

C Set
X

Pullback along U//

CoX Set•

C Set

πX

π1

p
U

X

forgetful //

CoX

C

πX

The composite process is the well-known Grothendieck construction.



A 2-categorical comprehension scheme

I An equivalence of categories:

discrete opfibrations functors

Functor of fibres

Grothendieck construction

F

Set

C

Cp P



A 2-categorical comprehension scheme

I U : Set• → Set classifies discrete opfibrations, and for a discrete fibration
p : E→ B we have a functor

cmpp,C : Cat(C,B)
'−→ doFib /C

which is an equivalence of categories and natural in C.

Note: A natural transformation α : X⇒ Y : C⇒ B is taken to a functor
`(α) : X∗p → Y∗p in doFib /C.



A 2-categorical comprehension scheme

I U : Set• → Set classifies discrete opfibrations, and for a discrete fibration
p : E→ B we have a functor

cmpp,C : Cat(C,B)
'−→ doFib /C

which is an equivalence of categories and natural in C.

Note: A natural transformation α : X⇒ Y : C⇒ B is taken to a functor
`(α) : X∗p → Y∗p in doFib /C.

I The equivalence
Cat(C, Set) ∼−→ doFib /C

is the counterpart of the natural isomorphism

T(X ,Ω) ∼= P(X )

.



Factorization systems of discrete categorical comprehension

(Street and Walters, 1978) give two factorization systems corresponding to the discrete
categorical comprehension construction:
1. (initial functors, discrete opfibrations)
2. (final functors, discrete fibrations)

They should be seen as generalizations of (epi, mono) factorization system.



I The discrete comprehension construction above can be imitated in any 2-category:
one would need to require that discrete fibrations to be carrable, i.e. their strict
pullback along any 1-morphisms exists.

I We can generalized the comprehension construction from 0-type valued predicates
(i.e. functors to Set) to 1-type valued predicates (i.e. functors to Cat). To
formulate the comprehension construction for 1-type valued predicates we need the
notion of Grothendeick opfibration: here the fibres are (in general non-discrete)
categories which covariantly depend on the objects of the base.

I More generally, we can perform the comprehension construction for the 1-type
valued predicates along Johnstone fibrations internal to any 2-category.
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Johnstone’s fibrations in 2-categories

Definition (P. Johnstone, 93)
Suppose K is a 2-category. A 1-morphism p : E → B is an (internal) opfibration in K if

1. it is bicarrable, and

2. for any 2-morphism α : f ⇒ g : A⇒ B in K, there exist a 1-morphism `(α) : f ∗E → g∗E , a
2-morphism α̃ : p∗f ⇒ p∗g ◦ `(α), and an invertible 2-morphism τ(α) : f ∗p ⇒ g∗p ◦ `(α)
satisfying five coherence axioms.

g∗E E

f ∗E E

A B

A B

p∗g

g∗p
p

p∗f

f ∗p
pg

f

α

7→

g∗E E

f ∗E E

A B

A B

p∗g

g∗p
p

`(α)

p∗f

f ∗p
p

α̃

∼=τ(α)
g

f

α
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Johnstone’s fibrations in 2-categories

I The five coherence conditions are about the coherence of the lifting structure with
respect to the unit and composition of 2-morphisms targeted at B , the whiskering
of 2-morphisms targeted at B with compatible 1-morphisms, and finally the
cartesianness of the lift α̃.



Johnstone’s fibrations in 2-categories

I The five coherence conditions are about the coherence of the lifting structure with
respect to the unit and composition of 2-morphisms targeted at B , the whiskering
of 2-morphisms targeted at B with compatible 1-morphisms, and finally the
cartesianness of the lift α̃.

I (Hazratpour and Vickers, 2018) They can be summarized as a single condition in
terms of 1-cartesianness and 2-cartesianness with respect to the 2-functor
cod : KD → K.

KD cyl∼=(K)

K
cod cod

where D is a distinguished class of “display morphisms” in K such that
1. Every identity 1-morphism is in D.
2. If x : x → x is in D, and f : y → x in K, then there is some bipullback y of x along f

such that y ∈ D.



I From the structure of Johnstone fibration we get a pseudo-functor

cmpp,A : K(A,B)→ opFib(K) � A

(Note: opFib(K) � A is the pseudo-slice (aka homotopy slice) 2-category.)

I Note that the pseudo functor cmpp,A is not an equivalence. (e.g. a discretely
equifibred category over 2.)

I p is called a univalent opfibration if the equivalence of fibres induces an iso
2-morphism in K.

Core(K(A,B)) Core(opFib(K) � A)

K(A,B) opFib(K) � A
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Fibrations of toposes



I Crucially, Johnstone’s definition does not require strictness of the 2-category nor
the existence of the structure of strict pullbacks and comma objects.

I This definition is most suitable for 2-categories with weak limits such as the
2-category of toposes where the limits are weak and diagrams are in general not
expected to commute strictly.



Classifying toposes as representing objects

I Let T be a geometric theory, and S an elementary topos with nno. Consider the
pseudo-functor

T -Mod- : (BTop/S)op → Cat

I To an S-topos E it assigns the category T -Mod- E of models T in E .
I To a geometric morphism (f ∗, f∗) : F → E of S-toposes it assigns the functor

f ∗ : T -Mod- E → T -Mod- F .
I Note that T -Mod- (f ◦ g) ∼= (T -Mod- f ) ◦ (T -Mod- g)

I The classifying topos S[T] of a geometric theory/context T can be seen as a
representing object for this pseudo-functor, i.e.

BTop/S(E , S[T]) ' T -Mod- E

naturally in E .



Given
p : E → S : a bounded geometric morphism,
U : T1 → T0 : an extension of geometric theories,
and M is a (strict) model of theory T0 in the base topos S,
then define

T1/M(E ) : = (strict) models of T1 in E which reduce to p?M via U



Fibrations of toposes from fibrational extension of theories

Theorem (S.H, S. Vickers, 2018)
If U : T1 → T0 is a (op)fibrational extension of theories, and M is any model of T0 in an elementary
topos S, then p : S[T1/M]→ S is an (op)fibration of toposes.

Moreover, for any geometric (not necessarily bounded) morphism f : A→ S, the
classifying topos A[T1/f

?M] is got by bipullback of p along f :

A[T1/f
?M] S[T1/M]

A S

f ∗p p

f

∼=

Sina Hazratpour and Steven Vickers. “Fibrations of AU-contexts beget fibrations of
toposes”. In: arXiv:1808.08291 (2018). Submitted to Theory and Application of
Categories (TAC).
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We actually proved the theorem above for the more general case of “AU-contexts”
which are the logical theories of Arithmetic Universes.



Arithmetic Universe(AU)= list-arithmetic pretopos: a category with finite
limits, stable disjoint coproducts, stable effective quotients by monic equivalence
relations and parameterized list-objects.

Maria Emilia Maietti. “Joyal’s arithmetic universe as list-arithmetic pretopos”. In:
Theory and Applications of Categories 24 (2010), pp. 39–83



Arithmetic Universe(AU)= list-arithmetic pretopos: a category with finite
limits, stable disjoint coproducts, stable effective quotients by monic equivalence
relations and parameterized list-objects.

Maria Emilia Maietti. “Joyal’s arithmetic universe as list-arithmetic pretopos”. In:
Theory and Applications of Categories 24 (2010), pp. 39–83

The above definition of AU parallels Giraud’s characterization of relative Grothendieck
toposes, except that AUs have only finitary fragment of geometric logic, and instead of
infinitary disjunctions being supplied extrinsically by a base topos (e.g. the structure of
small-indexed coproducts), we have sort constructors for parametrized list object
that allow some, infinities intrinsically: e.g. point-free continuum.



Arithmetic Universes Grothendieck toposes
Classifying category AU〈T〉 S [T]

T1 → T2 AU〈T2〉 → AU〈T1〉 S [T1]→ S [T2]

Base Base independent Base S
Infinities Intrinsic; provided by List Extrinsic; got from S

e.g. N = List(1) e.g. infinite coproducts
Results A single result in AUs A family of results by

varying S



In our approach geometric theories are replaced by AU-contexts – presented by
finite-limit-colimit sketches with a parametrized list object – and geometric morphisms
are replaced by AU-functors, corresponding to the inverse image functors.



In our approach geometric theories are replaced by AU-contexts – presented by
finite-limit-colimit sketches with a parametrized list object – and geometric morphisms
are replaced by AU-functors, corresponding to the inverse image functors.

AU-contexts provide a base-independent model for generalized point-free spaces in the
sense that they form a 2-category Con which gets embedded into BTop/S, for all base
toposes S, via their classifying AUs.



Our AU technique has the many advantages to topos techniques of Johnstone: Our
proofs are
I conceptually stronger,
I predicative,
I base-independent, and
I finitary and decidable, and therefore susceptible to formalization.

Sina Hazratpour and Steven Vickers. “Fibrations of AU-contexts beget fibrations of
toposes”. In: arXiv:1808.08291 (2018). Submitted to Theory and Application of
Categories (TAC).



Basic examples

I Etale morphisms of toposes are opfibrations.

S0: an elementary topos,
S : a bounded S0 topos
T0 = O = {X} and T1 = O• = {X , x : X}

S /M ' S [T1/M] S0[O•] = S0[X ][T1/X ]

S S0[O]

M∗p p

M



Basic examples

I Fibrewise Stone bundles (spectra of Boolean Algebras) are fibrations constructed
from the extension BA• of the theory BA of Boolean Algebras.

I Internal Algebraic dcpos as opfibrations
I Spectral spaces as fibrations
I SFP domains as bifibrations
I Internal groups equipped with an action as fibrations
I Internal categories equipped with a torsor as opfibrations
I Internal modules as bifibrations
I Bag domains as opfibrations
I . . .



Some further questions in this direction

I What is the class of topos (op)fibrations induced from fibrational extension of
theories?

I Conjecture: fibrations of toposes and local geometric morphisms should form a
weak bicategorical factorization system for toposes.

I To what extent AUs can replace Grothendieck toposes as models of spaces?
I (Riehl and Verity, 2017) provide a comprehension construction for objects of
∞-cosmoi which generalizes Lurie’s straigthening and unstraigthening construction
of quasi-categories (Yoneda Lemma for quasi-categories). What is the higher topos
formulation of their comprehension construction and how does it relate to fibration
of higher toposes?
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End!

Thanks for your attention!


