Two Approaches to Substructural Modal Logic: Some Elementary Observations

Igor Sedlár

The Czech Academy of Sciences, Institute of Computer Science

TACL 2019, Nice June 20, 2019

1

 Relevance approach: Kripke frames with additional relations + two-valued valuations (Routley-Meyer1970s, Fuhrmann 1990s, Mares-Meyer 1990s)

- Relevance approach: Kripke frames with additional relations + two-valued valuations (Routley-Meyer1970s, Fuhrmann 1990s, Mares-Meyer 1990s)
- Many-valued approach: Kripke frames + many-valued valuations (Segerberg 1960s, Ostermann 1980s, Fitting 1990s, Priest 2000s)

- Relevance approach: Kripke frames with additional relations + two-valued valuations (Routley-Meyer1970s, Fuhrmann 1990s, Mares-Meyer 1990s)
- Many-valued approach: Kripke frames + many-valued valuations (Segerberg 1960s, Ostermann 1980s, Fitting 1990s, Priest 2000s)

Natural question: What is the relation between these?

- Relevance approach: Kripke frames with additional relations + two-valued valuations (Routley-Meyer1970s, Fuhrmann 1990s, Mares-Meyer 1990s)
- Many-valued approach: Kripke frames + many-valued valuations (Segerberg 1960s, Ostermann 1980s, Fitting 1990s, Priest 2000s)

Natural question: What is the relation between these?

A procedure of transforming frames of one kind into equivalent frames of the other kind?

- Relevance approach: Kripke frames with additional relations + two-valued valuations (Routley-Meyer1970s, Fuhrmann 1990s, Mares-Meyer 1990s)
- Many-valued approach: Kripke frames + many-valued valuations (Segerberg 1960s, Ostermann 1980s, Fitting 1990s, Priest 2000s)

Natural question: What is the relation between these?

- A procedure of transforming frames of one kind into equivalent frames of the other kind?
- Given a class of frames of one kind, what class of frames of the other kind yields the same logic?

- Relevance approach: Kripke frames with additional relations + two-valued valuations (Routley-Meyer1970s, Fuhrmann 1990s, Mares-Meyer 1990s)
- Many-valued approach: Kripke frames + many-valued valuations (Segerberg 1960s, Ostermann 1980s, Fitting 1990s, Priest 2000s)

Natural question: What is the relation between these?

- A procedure of transforming frames of one kind into equivalent frames of the other kind?
- Given a class of frames of one kind, what class of frames of the other kind yields the same logic?

Additional motivations:

 Many-valued models are simpler, but Routley-Meyer models have a clearer epistemic interpretation (support by pieces of information...)

- Relevance approach: Kripke frames with additional relations + two-valued valuations (Routley-Meyer1970s, Fuhrmann 1990s, Mares-Meyer 1990s)
- Many-valued approach: Kripke frames + many-valued valuations (Segerberg 1960s, Ostermann 1980s, Fitting 1990s, Priest 2000s)

Natural question: What is the relation between these?

- A procedure of transforming frames of one kind into equivalent frames of the other kind?
- Given a class of frames of one kind, what class of frames of the other kind yields the same logic?

Additional motivations:

- Many-valued models are simpler, but Routley-Meyer models have a clearer epistemic interpretation (support by pieces of information...)
- Many-valued PDL makes very good sense (variables of a non-Boolean type), but the Routley-Meyer modelling is somewhat more tangible...

Results so far:

- Turning countermodels to φ of one kind to countermodels of the other kind.
- A class of lattice-based Kripke frames giving the logic of all Routley-Meyer frames.

A modal FL-algebra is a mFL-type algebra M where the FL-type reduct is a FL-algebra

- $\langle A, \wedge, \vee \rangle$ lattice

•
$$a \cdot b \leq c \text{ iff } b \leq a \setminus c \text{ iff } a \leq c/b$$

and

$$\square (a \land b) = \square a \land \square b$$

Formula algebras: Fm is an absolutely free mFL-type algebra with a countable set Prop of generators; F is an absolutely free FL-type algebra over Prop.

A Routley-Meyer frame is $\mathscr{F} = \langle S, \leq, T, F, R_3, R_2 \rangle$

- $\ \ \, (S,\leq) \text{ poset}$
- $\blacksquare \ T, F \text{ subsets of } S \text{ upwards closed under} \leq$
- \blacksquare R_3 ternary, antitone in first two positions, monotone in third
- \blacksquare R_2 , binary, antitone in first position, monotone in second
- $s \leq t \text{ iff } \exists u \in T : R_3 sut$
- $\blacksquare R_3 stuw \text{ iff } R_3 s(tu)w$

A Routley-Meyer frame is $\mathscr{F}=\langle S,\leq,T,F,R_3,R_2\rangle$

The full complex algebra of
$$\mathscr{F}$$
 is
 $\mathscr{F}^{\mathfrak{ca}} = \langle Up(\mathscr{F}), \cap, \cup, \backslash_{\mathfrak{ca}}, \bullet_{\mathfrak{ca}}, /_{\mathfrak{ca}}, \Box_{\mathfrak{ca}}, 1_{\mathfrak{ca}}, 0_{\mathfrak{ca}} \rangle$
u $p(\mathscr{F})$ upwards closed subsets of \mathscr{F}
 $X \backslash_{\mathfrak{ca}} Y = \{s ; \forall t, u : R_3 tsu \& t \in X \Longrightarrow u \in Y\}$
 $Y /_{\mathfrak{ca}} X = \{s ; \forall t, u : R_3 stu \& t \in X \Longrightarrow u \in Y\}$
 $X \bullet_{\mathfrak{ca}} Y = \{s ; \exists t, u : R_3 tus \& t \in X \& u \in Y\}$
 $\Box_{\mathfrak{ca}} X = \{s ; \forall t : R_2 st \Longrightarrow t \in X\}$
 $1_{\mathfrak{ca}} = T \text{ and } 0_{\mathfrak{ca}} = F$

A Routley-Meyer frame is $\mathscr{F} = \langle S, \leq, T, F, R_3, R_2 \rangle$

The full complex algebra of
$$\mathscr{F}$$
 is
 $\mathscr{F}^{\mathfrak{ca}} = \langle Up(\mathscr{F}), \cap, \cup, \backslash_{\mathfrak{ca}}, \bullet_{\mathfrak{ca}}, /_{\mathfrak{ca}}, \Box_{\mathfrak{ca}}, 1_{\mathfrak{ca}}, 0_{\mathfrak{ca}} \rangle$
up(\mathscr{F}) upwards closed subsets of \mathscr{F}
 $X \backslash_{\mathfrak{ca}} Y = \{s ; \forall t, u : R_3 tsu \& t \in X \implies u \in Y\}$
 $Y /_{\mathfrak{ca}} X = \{s ; \forall t, u : R_3 stu \& t \in X \implies u \in Y\}$
 $X \bullet_{\mathfrak{ca}} Y = \{s ; \exists t, u : R_3 tus \& t \in X \& u \in Y\}$
 $\Box_{\mathfrak{ca}} X = \{s ; \forall t : R_2 st \implies t \in X\}$
 $1_{\mathfrak{ca}} = T \text{ and } 0_{\mathfrak{ca}} = F$

A model based on \mathscr{F} is $\mathscr{M} = \langle \mathscr{F}, V \rangle$ where $V : \operatorname{Prop} \longrightarrow Up(\mathscr{F})$; the latter extends to a hom. \overline{V} from Fm to $\mathscr{F}^{\mathfrak{ca}}$. Validity as $T \subseteq \overline{V}(\varphi)$ for all V.

A Routley-Meyer frame is $\mathscr{F} = \langle S, \leq, T, F, R_3, R_2 \rangle$

The full complex algebra of
$$\mathscr{F}$$
 is
 $\mathscr{F}^{\mathfrak{ca}} = \langle Up(\mathscr{F}), \cap, \cup, \backslash_{\mathfrak{ca}}, \bullet_{\mathfrak{ca}}, /_{\mathfrak{ca}}, \Box_{\mathfrak{ca}}, 0_{\mathfrak{ca}} \rangle$
u $p(\mathscr{F})$ upwards closed subsets of \mathscr{F}
 $X \backslash_{\mathfrak{ca}} Y = \{s ; \forall t, u : R_3 tsu \& t \in X \implies u \in Y\}$
 $Y /_{\mathfrak{ca}} X = \{s ; \forall t, u : R_3 stu \& t \in X \implies u \in Y\}$
 $X \bullet_{\mathfrak{ca}} Y = \{s ; \exists t, u : R_3 tus \& t \in X \& u \in Y\}$
 $\Box_{\mathfrak{ca}} X = \{s ; \forall t : R_2 st \implies t \in X\}$
 $\Box_{\mathfrak{ca}} = T \text{ and } 0_{\mathfrak{ca}} = F$

A model based on \mathscr{F} is $\mathscr{M} = \langle \mathscr{F}, V \rangle$ where $V : \operatorname{Prop} \longrightarrow Up(\mathscr{F})$; the latter extends to a hom. \overline{V} from Fm to $\mathscr{F}^{\mathfrak{ca}}$. Validity as $T \subseteq \overline{V}(\varphi)$ for all V.

Fact. $\mathscr{F}^{\mathfrak{ca}}$ a modal FL algebra; φ valid in \mathscr{F} iff valid in $\mathscr{F}^{\mathfrak{ca}}$.

The Routley-Meyer frame of ${old M}$ is

$$\boldsymbol{M}_{\mathfrak{rm}} = \langle Pr(\boldsymbol{M}), \subseteq, T_{\mathfrak{rm}}, F_{\mathfrak{rm}}, R^3_{\mathfrak{rm}}, R^2_{\mathfrak{rm}} \rangle$$

Pr(
$$M$$
) set of prime filters on M

$$T_{\mathfrak{rm}} = \{P ; 1 \in P\}$$

•
$$F_{\mathfrak{rm}} = \{P ; 0 \in P\}$$

$$R^3_{\mathfrak{rm}} = \{ \langle P, P', Q \rangle ; (\forall a, b \in M : a \in P \& b \in P' \\ \implies a \cdot b \in Q) \}$$

$$\blacksquare R^2_{\mathfrak{rm}} = \{ \langle P, Q \rangle ; (\forall a \in \mathbf{M} : \Box a \in P \implies a \in Q) \}$$

The Routley-Meyer frame of M is

$$\boldsymbol{M}_{\mathfrak{rm}} = \langle Pr(\boldsymbol{M}), \subseteq, T_{\mathfrak{rm}}, F_{\mathfrak{rm}}, R^3_{\mathfrak{rm}}, R^2_{\mathfrak{rm}} \rangle$$

$$Pr(oldsymbol{M})$$
 set of prime filters on $oldsymbol{M}$

$$T_{\mathfrak{rm}} = \{P ; 1 \in P\}$$

•
$$F_{\mathfrak{rm}} = \{P ; 0 \in P\}$$

$$R^3_{\mathfrak{rm}} = \{ \langle P, P', Q \rangle ; (\forall a, b \in M : a \in P \& b \in P' \\ \implies a \cdot b \in Q) \}$$

$$\blacksquare R^2_{\mathfrak{rm}} = \{ \langle P, Q \rangle ; (\forall a \in \mathbf{M} : \Box a \in P \implies a \in Q) \}$$

Theorem 1.

(a) $h: a \mapsto \{P ; a \in P\}$ embeds M into $(M_{rm})^{ca}$. (b) φ valid in M if valid in $(M_{rm})^{ca}$. (c) φ valid in M if valid in M_{rm} .

A model based on \mathcal{F}_A is $\mathcal{M}_A = \langle \mathcal{F}_A, v \rangle$ where $v : \mathsf{Prop} \to (S \to A)$.

A model based on \mathcal{F}_A is $\mathcal{M}_A = \langle \mathcal{F}_A, v \rangle$ where $v : \mathsf{Prop} \to (S \to A)$.

We define $\bar{v}: \mathbf{Fm} \to (S \to \mathbf{A})$:

• \bar{v}_{φ} an FL-homomorphism

•
$$\bar{v}_{\Box\varphi}(s) := \bigwedge \{ \bar{v}_{\varphi}(t) ; Rst \}$$

A model based on \mathcal{F}_A is $\mathcal{M}_A = \langle \mathcal{F}_A, v \rangle$ where $v : \operatorname{Prop} \to (S \to A)$. We define $\bar{v} : Fm \to (S \to A)$:

• \bar{v}_{φ} an FL-homomorphism

•
$$\bar{v}_{\Box\varphi}(s) := \bigwedge \{ \bar{v}_{\varphi}(t) ; Rst \}$$

The full complex algebra of \mathcal{F}_A is $\mathcal{F}_A^{\mathfrak{ca}} = \langle A^S, \{ \nabla^{\mathfrak{ca}} ; \nabla \in \mathsf{mFL operators} \} \rangle$ where

•
$$(\nabla^{\mathfrak{ca}}(f_1,\ldots,f_n))(s) = \nabla^{\mathbf{A}}(f_1(s),\ldots,f_n(s))$$
 if ∇ is FL op.

 $\bullet \ (\Box^{\mathfrak{ca}}f)(s) = \bigwedge^{\boldsymbol{A}} \{f(t) \ ; Rst\}$

A model based on \mathcal{F}_A is $\mathcal{M}_A = \langle \mathcal{F}_A, v \rangle$ where $v : \operatorname{Prop} \to (S \to A)$. We define $\bar{v} : Fm \to (S \to A)$:

• \bar{v}_{φ} an FL-homomorphism

•
$$\bar{v}_{\Box\varphi}(s) := \bigwedge \{ \bar{v}_{\varphi}(t) ; Rst \}$$

The full complex algebra of \mathcal{F}_A is $\mathcal{F}_A^{\mathfrak{ca}} = \langle A^S, \{ \nabla^{\mathfrak{ca}} ; \nabla \in \mathsf{mFL operators} \} \rangle$ where

•
$$(\nabla^{\mathfrak{ca}}(f_1,\ldots,f_n))(s) = \nabla^{\mathbf{A}}(f_1(s),\ldots,f_n(s))$$
 if ∇ is FL op.

$$(\Box^{\mathfrak{ca}}f)(s) = \bigwedge^{\boldsymbol{A}} \{f(t) ; Rst\}$$

Fact. $\mathcal{F}_{A}^{\mathfrak{ca}}$ is a mFL-algebra; φ valid in \mathcal{F}_{A} iff valid in $\mathcal{F}_{A}^{\mathfrak{ca}}$.

A model based on \mathcal{F}_A is $\mathcal{M}_A = \langle \mathcal{F}_A, v \rangle$ where $v : \operatorname{Prop} \to (S \to A)$. We define $\bar{v} : Fm \to (S \to A)$:

• \bar{v}_{φ} an FL-homomorphism

•
$$\bar{v}_{\Box\varphi}(s) := \bigwedge \{ \bar{v}_{\varphi}(t) ; Rst \}$$

The full complex algebra of \mathcal{F}_A is $\mathcal{F}_A^{\mathfrak{ca}} = \langle A^S, \{ \nabla^{\mathfrak{ca}} ; \nabla \in \mathsf{mFL operators} \} \rangle$ where

•
$$(\nabla^{\mathfrak{ca}}(f_1,\ldots,f_n))(s) = \nabla^{\mathbf{A}}(f_1(s),\ldots,f_n(s))$$
 if ∇ is FL op.

$$(\Box^{\mathfrak{ca}}f)(s) = \bigwedge^{\boldsymbol{A}} \{f(t) ; Rst\}$$

Fact. $\mathcal{F}_{A}^{\mathfrak{ca}}$ is a mFL-algebra; φ valid in \mathcal{F}_{A} iff valid in $\mathcal{F}_{A}^{\mathfrak{ca}}$. Theorem 2. φ valid in \mathcal{F}_{A} if valid in $(\mathcal{F}_{A}^{\mathfrak{ca}})_{\mathfrak{rm}}$.

The lattice-based frame of M with non-modal reduct A is $M_{\mathfrak{lb}} = \langle Hom(A^M), R, A \rangle$

 $\blacksquare Rhg \text{ iff } \forall a \in \boldsymbol{M} : h(\Box a) = g(a) \quad (\textit{not } h(\Box a) \leq g(a)!)$

The lattice-based frame of M with non-modal reduct A is $M_{\mathfrak{lb}} = \langle Hom(A^M), R, A \rangle$

 $\blacksquare \ Rhg \ \text{iff} \ \forall a \in \boldsymbol{M}: h(\Box a) = g(a) \quad (\textit{not} \ h(\Box a) \leq g(a)!)$

Theorem 3.

(a) $\theta : a \mapsto f_a$, where $f_a(h) = h(a)$, embeds M into $(M_{lb})^{ca}$. (b) φ valid in M if valid in $(M_{lb})^{ca}$. (c) φ valid in M if valid in M_{lb} . The lattice-based frame of M with non-modal reduct A is $M_{\mathfrak{lb}} = \langle Hom(A^M), R, A \rangle$

 $\blacksquare \ Rhg \ \text{iff} \ \forall a \in {\boldsymbol{M}}: h(\Box a) = g(a) \quad (\textit{not} \ h(\Box a) \leq g(a)!)$

Theorem 3.

(a) $\theta : a \mapsto f_a$, where $f_a(h) = h(a)$, embeds M into $(M_{lb})^{ca}$. (b) φ valid in M if valid in $(M_{lb})^{ca}$. (c) φ valid in M if valid in M_{lb} .

Theorem 4. φ valid in \mathscr{F} if valid in $(\mathscr{F}^{\mathfrak{ca}})_{\mathfrak{lb}}$.

 $(\mathscr{F}^{\mathfrak{ca}})_{\mathfrak{lb}}$ is based on a complete distributive FL-algebra.

 $(\mathscr{F}^{\mathfrak{ca}})_{\mathfrak{lb}}$ is based on a complete distributive FL-algebra.

If A is complete distributive, then $(\mathcal{F}_A^{\mathfrak{ca}})_{\mathfrak{rm}}$ is a Routley-Meyer frame.

 $(\mathscr{F}^{\mathfrak{ca}})_{\mathfrak{lb}}$ is based on a complete distributive FL-algebra.

If A is complete distributive, then $(\mathcal{F}_A^{\mathfrak{ca}})_{\mathfrak{rm}}$ is a Routley-Meyer frame.

Theorem 5. The logic of all Routley-Meyer frames is the logic of all Kripke frames based on complete distributive FL-algebras.

 $(\mathscr{F}^{\mathfrak{ca}})_{\mathfrak{lb}}$ is based on a complete distributive FL-algebra.

If A is complete distributive, then $(\mathcal{F}_A^{\mathfrak{ca}})_{\mathfrak{rm}}$ is a Routley-Meyer frame.

Theorem 5. The logic of all Routley-Meyer frames is the logic of all Kripke frames based on complete distributive FL-algebras.

In general, if

$$\mathscr{F} \in \mathscr{K} \implies \mathscr{F}^{\mathfrak{ca}-} \in \mathsf{K}$$

 $A \in \mathsf{K} \implies (\mathcal{F}_A^{\mathfrak{ca}})_{\mathfrak{rm}} \in \mathscr{K}$

then the logic of \mathcal{K} is the logic of Kripke frames based on K.