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Natural question: What is the relation between these?

m A procedure of transforming frames of one kind into equivalent
frames of the other kind?

m Given a class of frames of one kind, what class of frames of the
other kind yields the same logic?

Additional motivations:

m Many-valued models are simpler, but Routley-Meyer models have a
clearer epistemic interpretation (support by pieces of information...)

m Many-valued PDL makes very good sense (variables of a

non-Boolean type), but the Routley-Meyer modelling is somewhat
more tangible...



Results so far:

m Turning countermodels to ¢ of one kind to countermodels of the
other kind.

m A class of lattice-based Kripke frames giving the logic of all
Routley-Meyer frames.



FlL-type: A, V, \,+,/,1,0; mFL-type adds unary O.

A modal FL-algebra is a mFL-type algebra M where the FL-type reduct
is a FL-algebra

B (A, A, V) lattice

m (A, . 1) monoid
ma-b<ciffb<a\ciffa <c/b
and

m O(aANb)=0aANDb

Formula algebras: F'm is an absolutely free mFL-type algebra with a
countable set Prop of generators; F' is an absolutely free FL-type alge-
bra over Prop.



A Routley-Meyer frame is % = (S, <, T, F, R3, Ro)

(S, <) poset

T, I subsets of S upwards closed under <

R3 ternary, antitone in first two positions, monotone in third
Rs, binary, antitone in first position, monotone in second
s<tiffJu e T : R3sut

Rgstuw iff Rgs(tu)w
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The Routley-Meyer frame of M is
th = <P’I"(M),§,Ttm,th,R§m,Rgm>
m Pr(M) set of prime filters on M
B Tm={P;1eP}
B Fm={P;0¢c P}
m R, ={(PP,Q);YVa,be M:acP & be P
= a+beQ)}
m R, ={(PQ);VacM:0acP = acQ)}

Theorem 1.

(@ h:aw— {P;ac P}embeds M into (Myy)“.
(b) ¢ valid in M if valid in (M, ).

(c) ¢ valid in M if valid in M.
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% is a complete distributive mFL-algebra.
(.7 %) is based on a complete distributive FL-algebra.

If A is complete distributive, then (F'):m is a Routley-Meyer frame.

Theorem 5. The logic of all Routley-Meyer frames is the logic of all
Kripke frames based on complete distributive FL-algebras.

In general, if

FeHX = FeK

then the logic of % is the logic of Kripke frames based on K.
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