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enjoy a relational semantics with an intuitive meaning.

= what about the rest? a seemingly reasonable approach: valuation of
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= In Fuzzy logics, distinguished algebra (standard) generating the
variety. reasonable to consider the modal logics over that particular
evaluation algebra

= Some modal MV logics have been axiomatised, but most have not.

= Godel modal logics can be seen as a hinge

semilinear extension of IL

one of three main FLs (BL + idempotency of &)
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(bounded) residuated lattice. i.e., A'is (A, A, V,—, 1) such that

= (A, A,V,0,1) is a bounded distributive lattice,

= Forall x,y€ A xOy < z<= x<y— z(residuation law),

= Forall x,y€ A, x—y)V (y— x) =1 (semilinearity).

We denote G the variety of Godel algebras, and by [0, 1] the Gédel
algebra with universe [0, 1].

(semantic) Gadel logics
I =c ¢ iff for any A € C and any h € Hom(Fm, A), if h[l['] C {1} then
h(p) =1.
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Godel Propositional Logic

Godel Logic G is given by the axiomatic system resulting from IPC +

(p =)V (¥ =) (or BL+ ¢ = p&p).
I =G @ iff there is some proof in G of ¢ from T.

Obs: T k¢ ¢ iff there is some finite g C,, [ s.t g k¢ .

For any ', o € Fm (pos. infinite) the following are equivalent:

I' |_G @,
M Ee @
M Fp., #

I ¢ o iff for any h € Hom(Fm, [0, 1] ) it holds inf,crh(v) < h(yp).
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A (standard) Godel Kripke model 901 is a [0, 1]-Kriple frame § = (W, R)
(W set, R: W2 — [0,1]) with an evaluation e: W x V — [0, 1].
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Crisp models: those over classical frames (R C W 2).

e(v,Op) = /\ e(w, p), e(v, Op) = \/ e(w, p)

Rvw Rvw

K¢, K denote resp. the classes of Gédel and crisp Godel Kripke models.

(semantic) Local Godel modal logics

Ilc ¢ (locally) iff for any 9t € C and any ve W, if (v, []) C {1}
then e(v, p) = 1.
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Rodriguez [2010]). The O fragment over crisp models coincides with
that over all models.

= O fragment over crisp models is axiomatized (Metcalfe, Olivetti
[2009]).

= |anguage with both modalities over all models is axiomatized
(Caicedo, Rodriguez [2015]). Coincides with Fischer-Servi Modal
Intuitionistic Logic plus prelinearity.

= |anguage with both modalities over crisp models was still not
axiomatized (previous proof used heavily the (0,1) values of R).
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(crisp) Godel Modal Logic K¢, is given by the axiomatic system
resulting from G and the following axiom schematas and rules:

(Ko) O = ¢) = (Bp = DY) (Ko) Oe V) = (OpV oY)
(P) Dle—=9) = (Cp—OyY) (FS2) (Op — DY) — O(p — v)
(Fo) =L (Ra) from ¢ infer Oy

(Cr) O(e V) = (Dp Vv oY)

Some derivable (meta) rules:
o [ e @ iff T, Th(KE) Fe ¢
» T Ypbkg @ iff T ke ¥ —
» [ bke ¢ implies O Fxe Ogp;
» Fre oV (¥ = x) implies Fre Op V (O — Ox).
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h(Oy) < e(g, ) for all Rhg follows from definition of the canonical
relation.
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To see h(Dp) = /gy, €8, ) we show for h(Op) = a < 1 that for any
€ > 0 there is g. € W such that Rhg. and g.(p) € [a, a + €).
There are three important sets of formulas:

» 071 = {¢) € Fm: h(Op) = 1}

w 07 = {¢ € Sub(x): o < h(Op) < 1}

» O<L:= {9 € Sub(x): h(Cp) <1

There is u € Hom(Fmg o, [0,1] ) such that

u(Th(Kg) = {1}, (O™ =1,
u(@~%) > u(yp), u(o<h) <1
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Completeness proof

There is an strictly increasing function o : [0, 1] — [0, 1] such that
a(u(v)) € [h(T), h(O)] for each O, G € SFm(p) and
a(u(x)) € [a, (a + €) A u(OX)].

The proof of the &-formulas is similar.

['Fke @ if and only if T IFke .

This can be extended also to infinite sets of formulas.
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Merci beaucoup!
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