Axiomatizing the crisp Gödel modal logic

Ricardo Rodriguez and Amanda Vidal

University of Buenos Aires,

Institute of Computer Science, Czech Academy of Sciences

TACL 2019, Nice 17-21 June

 Intuitive idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)

- Intuitive idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.

- Intuitive idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.
- what about the rest?

- Intuitive idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.
- what about the rest? a seemingly reasonable approach: valuation of Kripke models/frames over classes of algebras

- Intuitive idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.
- what about the rest? a seemingly reasonable approach: valuation of Kripke models/frames over classes of algebras
 - In Fuzzy logics, distinguished algebra (standard) generating the variety.

- Intuitive idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.
- what about the rest? a seemingly reasonable approach: valuation of Kripke models/frames over classes of algebras
 - In Fuzzy logics, distinguished algebra (standard) generating the variety. reasonable to consider the modal logics over that particular evaluation algebra

- Intuitive idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.
- what about the rest? a seemingly reasonable approach: valuation of Kripke models/frames over classes of algebras
 - In Fuzzy logics, distinguished algebra (standard) generating the variety. reasonable to consider the modal logics over that particular evaluation algebra
 - Some modal MV logics have been axiomatised, but most have not.

- Intuitive idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.
- what about the rest? a seemingly reasonable approach: valuation of Kripke models/frames over classes of algebras
 - In Fuzzy logics, distinguished algebra (standard) generating the variety. reasonable to consider the modal logics over that particular evaluation algebra
 - Some modal MV logics have been axiomatised, but most have not.

Definition

A Gödel algebra is a semilinear Heyting algebra = idempotent (bounded) residuated lattice. i.e., **A** is $\langle A, \wedge, \vee, \rightarrow, 1 \rangle$ such that

- $\langle {\it A}, \wedge, \vee, 0, 1 \rangle$ is a bounded distributive lattice,
- For all $x, y \in A, x \odot y \le z \iff x \le y \to z$ (residuation law),
- For all $x, y \in A, x \to y$ $\lor (y \to x) = 1$ (semilinearity).

Definition

A Gödel algebra is a semilinear Heyting algebra = idempotent (bounded) residuated lattice. i.e., **A** is $\langle A, \wedge, \vee, \rightarrow, 1 \rangle$ such that

- $\langle {\it A}, \wedge, \vee, 0, 1 \rangle$ is a bounded distributive lattice,
- For all $x, y \in A, x \odot y \le z \iff x \le y \to z$ (residuation law),
- For all $x, y \in A$, $x \to y$) $\lor (y \to x) = 1$ (semilinearity).

We denote $\mathbb G$ the variety of Gödel algebras, and by $[{\bf 0},{\bf 1}]_G$ the Gödel algebra with universe [0,1].

Definition

A Gödel algebra is a semilinear Heyting algebra = idempotent (bounded) residuated lattice. i.e., **A** is $\langle A, \wedge, \vee, \rightarrow, 1 \rangle$ such that

- $\langle {\it A}, \wedge, \vee, 0, 1 \rangle$ is a bounded distributive lattice,
- For all $x, y \in A, x \odot y \le z \iff x \le y \to z$ (residuation law),
- For all $x, y \in A, x \rightarrow y$ $\lor (y \rightarrow x) = 1$ (semilinearity).

We denote $\mathbb G$ the variety of Gödel algebras, and by $[{\bf 0},{\bf 1}]_G$ the Gödel algebra with universe [0,1].

(semantic) Gödel logics

 $\[Gamma \models_{\mathcal{C}} \varphi \text{ iff for any } \mathbf{A} \in \mathcal{C} \text{ and any } h \in Hom(\mathbf{Fm}, \mathbf{A}), \text{ if } h[\Gamma] \subseteq \{1\} \text{ then } h(\varphi) = 1. \]$

Gödel Propositional Logic

Gödel Logic G is given by the axiomatic system resulting from IPC + $(\varphi \rightarrow \psi) \lor (\psi \rightarrow \varphi)$ (or $BL + \varphi \rightarrow \varphi \& \varphi$).

Gödel Propositional Logic

Gödel Logic G is given by the axiomatic system resulting from IPC + $(\varphi \rightarrow \psi) \lor (\psi \rightarrow \varphi)$ (or $BL + \varphi \rightarrow \varphi \& \varphi$). $\Gamma \vdash_{\mathsf{G}} \varphi$ iff there is some proof in G of φ from Γ .

Gödel Propositional Logic

Gödel Logic G is given by the axiomatic system resulting from IPC + $(\varphi \rightarrow \psi) \lor (\psi \rightarrow \varphi)$ (or $BL + \varphi \rightarrow \varphi \& \varphi$). $\Gamma \vdash_{G} \varphi$ iff there is some proof in G of φ from Γ .

Obs: $\Gamma \vdash_{\mathsf{G}} \varphi$ iff there is some finite $\Gamma_0 \subseteq_{\omega} \Gamma$ s.t $\Gamma_0 \vdash_{\mathsf{G}} \varphi$.

Gödel Propositional Logic

Gödel Logic G is given by the axiomatic system resulting from IPC + $(\varphi \rightarrow \psi) \lor (\psi \rightarrow \varphi)$ (or $BL + \varphi \rightarrow \varphi \& \varphi$). $\Gamma \vdash_{\mathsf{G}} \varphi$ iff there is some proof in G of φ from Γ .

Obs: $\Gamma \vdash_{\mathsf{G}} \varphi$ iff there is some finite $\Gamma_0 \subseteq_{\omega} \Gamma$ s.t $\Gamma_0 \vdash_{\mathsf{G}} \varphi$.

Strong Standard Completeness

For any $\Gamma, \varphi \subseteq Fm$ (pos. infinite) the following are equivalent:

•
$$\Gamma \vdash_{\mathsf{G}} \varphi$$
,

Γ ⊨_{[0,1]_G} φ.

Gödel Propositional Logic

Gödel Logic G is given by the axiomatic system resulting from IPC + $(\varphi \rightarrow \psi) \lor (\psi \rightarrow \varphi)$ (or $BL + \varphi \rightarrow \varphi \& \varphi$). $\Gamma \vdash_{\mathsf{G}} \varphi$ iff there is some proof in G of φ from Γ .

Obs: $\Gamma \vdash_{\mathsf{G}} \varphi$ iff there is some finite $\Gamma_0 \subseteq_{\omega} \Gamma$ s.t $\Gamma_0 \vdash_{\mathsf{G}} \varphi$.

Strong Standard Completeness

For any $\Gamma, \varphi \subseteq Fm$ (pos. infinite) the following are equivalent:

•
$$\Gamma \vdash_{\mathsf{G}} \varphi$$
,

• $\Gamma \models_{[\mathbf{0},\mathbf{1}]_G} \varphi$.

Strong "DT"

 $\Gamma \vdash_{\mathsf{G}} \varphi$ iff for any $h \in Hom(\mathbf{Fm}, [0, 1]_G)$ it holds $inf_{\gamma \in \Gamma} h(\gamma) \leq h(\varphi)$.

Definition

A (standard) Gödel Kripke model \mathfrak{M} is a [0,1]-Kriple frame $\mathfrak{F} = \langle W, R \rangle$ (*W* set, *R*: $W^2 \rightarrow [0,1]$) with an evaluation *e*: $W \times V \rightarrow [0,1]$.

Definition

A (standard) Gödel Kripke model \mathfrak{M} is a [0,1]-Kriple frame $\mathfrak{F} = \langle W, R \rangle$ (*W* set, *R*: $W^2 \rightarrow [0,1]$) with an evaluation *e*: $W \times V \rightarrow [0,1]$.

$$e(v,\varphi\{\wedge,\vee,\rightarrow\}\psi) = e(v,\varphi)\{\wedge,\vee,\rightarrow\}e(v,\psi)$$
$$e(v,\Box\varphi) = \bigwedge_{w\in W} \{R(v,w) \to e(w,\varphi)\}, \quad e(v,\Diamond\varphi) = \bigvee_{w\in W} \{R(v,w) \wedge e(w,\varphi)\}$$

Definition

A (standard) Gödel Kripke model \mathfrak{M} is a [0,1]-Kriple frame $\mathfrak{F} = \langle W, R \rangle$ (*W* set, *R*: $W^2 \rightarrow [0,1]$) with an evaluation *e*: $W \times V \rightarrow [0,1]$.

$$e(v,\varphi\{\wedge,\vee,\rightarrow\}\psi) = e(v,\varphi)\{\wedge,\vee,\rightarrow\}e(v,\psi)$$
$$e(v,\Box\varphi) = \bigwedge_{w\in W} \{R(v,w) \to e(w,\varphi)\}, \quad e(v,\Diamond\varphi) = \bigvee_{w\in W} \{R(v,w) \wedge e(w,\varphi)\}$$

Crisp models: those over classical frames ($R \subseteq W^2$).

Definition

A (standard) Gödel Kripke model \mathfrak{M} is a [0,1]-Kriple frame $\mathfrak{F} = \langle W, R \rangle$ (*W* set, *R*: $W^2 \rightarrow [0,1]$) with an evaluation *e*: $W \times V \rightarrow [0,1]$.

$$e(v,\varphi\{\wedge,\vee,\rightarrow\}\psi) = e(v,\varphi)\{\wedge,\vee,\rightarrow\}e(v,\psi)$$
$$e(v,\Box\varphi) = \bigwedge_{w\in W} \{R(v,w) \to e(w,\varphi)\}, \quad e(v,\Diamond\varphi) = \bigvee_{w\in W} \{R(v,w) \wedge e(w,\varphi)\}$$

Crisp models: those over classical frames $(R \subseteq W^2)$. $e(v, \Box \varphi) = \bigwedge_{Rvw} e(w, \varphi), \qquad e(v, \Diamond \varphi) = \bigvee_{Rvw} e(w, \varphi)$

Definition

A (standard) Gödel Kripke model \mathfrak{M} is a [0,1]-Kriple frame $\mathfrak{F} = \langle W, R \rangle$ (*W* set, *R*: $W^2 \rightarrow [0,1]$) with an evaluation *e*: $W \times V \rightarrow [0,1]$.

$$e(v,\varphi\{\wedge,\vee,\rightarrow\}\psi) = e(v,\varphi)\{\wedge,\vee,\rightarrow\}e(v,\psi)$$
$$e(v,\Box\varphi) = \bigwedge_{w\in W} \{R(v,w) \to e(w,\varphi)\}, \quad e(v,\Diamond\varphi) = \bigvee_{w\in W} \{R(v,w) \wedge e(w,\varphi)\}$$

Crisp models: those over classical frames $(R \subseteq W^2)$. $e(v, \Box \varphi) = \bigwedge_{Rvw} e(w, \varphi), \qquad e(v, \Diamond \varphi) = \bigvee_{Rvw} e(w, \varphi)$

 $\mathbb{K}_{\textit{G}},\,\mathbb{K}_{\textit{G}}^{c}$ denote resp. the classes of Gödel and crisp Gödel Kripke models.

Definition

A (standard) Gödel Kripke model \mathfrak{M} is a [0,1]-Kriple frame $\mathfrak{F} = \langle W, R \rangle$ (*W* set, *R*: $W^2 \rightarrow [0,1]$) with an evaluation *e*: $W \times V \rightarrow [0,1]$.

$$e(v,\varphi\{\wedge,\vee,\rightarrow\}\psi) = e(v,\varphi)\{\wedge,\vee,\rightarrow\}e(v,\psi)$$
$$e(v,\Box\varphi) = \bigwedge_{w\in W} \{R(v,w) \to e(w,\varphi)\}, \quad e(v,\Diamond\varphi) = \bigvee_{w\in W} \{R(v,w) \wedge e(w,\varphi)\}$$

Crisp models: those over classical frames
$$(R \subseteq W^2)$$
.
 $e(v, \Box \varphi) = \bigwedge_{Rvw} e(w, \varphi), \qquad e(v, \Diamond \varphi) = \bigvee_{Rvw} e(w, \varphi)$

 $\mathbbm{K}_{G},\,\mathbbm{K}_{G}^{c}$ denote resp. the classes of Gödel and crisp Gödel Kripke models.

(semantic) Local Gödel modal logics $\Gamma \Vdash_{\mathcal{C}} \varphi$ (locally) iff for any $\mathfrak{M} \in \mathcal{C}$ and any $v \in W$, if $e(v, [\Gamma]) \subseteq \{1\}$ then $e(v, \varphi) = 1$.

 □ and ◇ fragments over all models are axiomatized (Caicedo, Rodriguez [2010]). The □ fragment over crisp models coincides with that over all models.

- □ and ◇ fragments over all models are axiomatized (Caicedo, Rodriguez [2010]). The □ fragment over crisp models coincides with that over all models.
- \$\lapha\$ fragment over crisp models is axiomatized (Metcalfe, Olivetti [2009]).

- □ and ◇ fragments over all models are axiomatized (Caicedo, Rodriguez [2010]). The □ fragment over crisp models coincides with that over all models.
- \$\lapha\$ fragment over crisp models is axiomatized (Metcalfe, Olivetti [2009]).
- Language with both modalities over all models is axiomatized (Caicedo, Rodriguez [2015]).

- □ and ◇ fragments over all models are axiomatized (Caicedo, Rodriguez [2010]). The □ fragment over crisp models coincides with that over all models.
- \$\lapha\$ fragment over crisp models is axiomatized (Metcalfe, Olivetti [2009]).
- Language with both modalities over all models is axiomatized (Caicedo, Rodriguez [2015]). Coincides with Fischer-Servi Modal Intuitionistic Logic plus prelinearity.

- □ and ◇ fragments over all models are axiomatized (Caicedo, Rodriguez [2010]). The □ fragment over crisp models coincides with that over all models.
- \$\lapha\$ fragment over crisp models is axiomatized (Metcalfe, Olivetti [2009]).
- Language with both modalities over all models is axiomatized (Caicedo, Rodriguez [2015]). Coincides with Fischer-Servi Modal Intuitionistic Logic plus prelinearity.
- Language with both modalities over crisp models was still not axiomatized (previous proof used heavily the (0,1) values of R).

(crisp) Gödel Modal Logic

(crisp) Gödel Modal Logic K_{G}^{c} is given by the axiomatic system resulting from G and the following axiom schematas and rules: $(K_{\Box}) \quad \Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi) \quad (K_{\Diamond}) \quad \diamondsuit(\varphi \lor \psi) \rightarrow (\diamondsuit \varphi \lor \diamondsuit \psi)$ $(P) \quad \Box(\varphi \rightarrow \psi) \rightarrow (\diamondsuit \varphi \rightarrow \diamondsuit \psi) \quad (FS2) \quad (\diamondsuit \varphi \rightarrow \Box \psi) \rightarrow \Box(\varphi \rightarrow \psi)$ $(F_{\Diamond}) \quad \neg \diamondsuit \bot \qquad (R_{\Box}) \quad \text{from } \varphi \text{ infer } \Box \varphi$ $(Cr) \quad \Box(\varphi \lor \psi) \rightarrow (\Box \varphi \lor \diamondsuit \psi)$

(crisp) Gödel Modal Logic

Some derivable (meta) rules:

• $\Gamma \vdash_{\mathsf{K}_{\mathsf{G}}^{\mathsf{c}}} \varphi$ iff " Γ , $Th(\mathsf{K}_{\mathsf{G}}^{\mathsf{c}}) \vdash_{\mathsf{G}} \varphi$ ";

(crisp) Gödel Modal Logic

(crisp) Gödel Modal Logic K_{G}^{c} is given by the axiomatic system resulting from G and the following axiom schematas and rules: $(K_{\Box}) \quad \Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi) \quad (K_{\Diamond}) \quad \diamondsuit(\varphi \lor \psi) \rightarrow (\diamondsuit \varphi \lor \diamondsuit \psi)$ $(P) \quad \Box(\varphi \rightarrow \psi) \rightarrow (\diamondsuit \varphi \rightarrow \diamondsuit \psi) \quad (FS2) \quad (\diamondsuit \varphi \rightarrow \Box \psi) \rightarrow \Box(\varphi \rightarrow \psi)$ $(F_{\Diamond}) \quad \neg \diamondsuit \bot \qquad (R_{\Box}) \quad \text{from } \varphi \text{ infer } \Box \varphi$ $(Cr) \quad \Box(\varphi \lor \psi) \rightarrow (\Box \varphi \lor \diamondsuit \psi)$

Some derivable (meta) rules:

- $\Gamma \vdash_{\mathsf{K}_{\mathsf{G}}^{\mathsf{c}}} \varphi$ iff " Γ , $Th(\mathsf{K}_{\mathsf{G}}^{\mathsf{c}}) \vdash_{\mathsf{G}} \varphi$ ";
- $\Gamma, \psi \vdash_{\mathsf{K}^{\mathsf{c}}_{\mathsf{G}}} \varphi \text{ iff } \Gamma \vdash_{\mathsf{K}^{\mathsf{c}}_{\mathsf{G}}} \psi \to \varphi;$

(crisp) Gödel Modal Logic

(crisp) Gödel Modal Logic K_{G}^{c} is given by the axiomatic system resulting from G and the following axiom schematas and rules: $(K_{\Box}) \quad \Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi) \quad (K_{\Diamond}) \quad \diamondsuit(\varphi \lor \psi) \rightarrow (\diamondsuit \varphi \lor \diamondsuit \psi)$ $(P) \quad \Box(\varphi \rightarrow \psi) \rightarrow (\diamondsuit \varphi \rightarrow \diamondsuit \psi) \quad (FS2) \quad (\diamondsuit \varphi \rightarrow \Box \psi) \rightarrow \Box(\varphi \rightarrow \psi)$ $(F_{\Diamond}) \quad \neg \diamondsuit \bot \qquad (R_{\Box}) \quad \text{from } \varphi \text{ infer } \Box \varphi$ $(Cr) \quad \Box(\varphi \lor \psi) \rightarrow (\Box \varphi \lor \diamondsuit \psi)$

Some derivable (meta) rules:

- $\Gamma \vdash_{\mathsf{K}_{\mathsf{G}}^{\mathsf{c}}} \varphi$ iff " Γ , $Th(\mathsf{K}_{\mathsf{G}}^{\mathsf{c}}) \vdash_{\mathsf{G}} \varphi$ ";
- $\Gamma, \psi \vdash_{\mathsf{K}^{\mathsf{c}}_{\mathsf{G}}} \varphi$ iff $\Gamma \vdash_{\mathsf{K}^{\mathsf{c}}_{\mathsf{G}}} \psi \to \varphi$;
- $\Gamma \vdash_{\mathsf{K}^{\mathsf{c}}_{\mathsf{G}}} \varphi$ implies $\Box \Gamma \vdash_{\mathsf{K}^{\mathsf{c}}_{\mathsf{G}}} \Box \varphi$;

(crisp) Gödel Modal Logic

(crisp) Gödel Modal Logic K_{G}^{c} is given by the axiomatic system resulting from G and the following axiom schematas and rules: $(K_{\Box}) \quad \Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi) \quad (K_{\Diamond}) \quad \diamondsuit(\varphi \lor \psi) \rightarrow (\diamondsuit \varphi \lor \diamondsuit \psi)$ $(P) \quad \Box(\varphi \rightarrow \psi) \rightarrow (\diamondsuit \varphi \rightarrow \diamondsuit \psi) \quad (FS2) \quad (\diamondsuit \varphi \rightarrow \Box \psi) \rightarrow \Box(\varphi \rightarrow \psi)$ $(F_{\Diamond}) \quad \neg \diamondsuit \bot \qquad (R_{\Box}) \quad \text{from } \varphi \text{ infer } \Box \varphi$ $(Cr) \quad \Box(\varphi \lor \psi) \rightarrow (\Box \varphi \lor \diamondsuit \psi)$

Some derivable (meta) rules:

- $\Gamma \vdash_{\mathsf{K}_{\mathsf{G}}^{\mathsf{c}}} \varphi$ iff " Γ , $Th(\mathsf{K}_{\mathsf{G}}^{\mathsf{c}}) \vdash_{\mathsf{G}} \varphi$ ";
- $\Gamma, \psi \vdash_{\mathsf{K}^{\mathsf{c}}_{\mathsf{G}}} \varphi \text{ iff } \Gamma \vdash_{\mathsf{K}^{\mathsf{c}}_{\mathsf{G}}} \psi \to \varphi;$
- $\Gamma \vdash_{\mathsf{K}^{\mathsf{c}}_{\mathsf{G}}} \varphi$ implies $\Box \Gamma \vdash_{\mathsf{K}^{\mathsf{c}}_{\mathsf{G}}} \Box \varphi$;
- $\vdash_{\mathsf{K}^{\mathsf{c}}_{\mathsf{G}}} \varphi \lor (\psi \to \chi) \text{ implies } \vdash_{\mathsf{K}^{\mathsf{c}}_{\mathsf{G}}} \diamond \varphi \lor (\diamond \psi \to \diamond \chi).$

For each $\not\vdash_{\mathsf{K}_{\mathsf{C}}^{\mathsf{c}}} \chi$ we define a canonical crisp Gödel Kripke model.

- $W := \{h \in Hom(Fm_{\Box,\diamondsuit}, [\mathbf{0}, \mathbf{1}]_{\mathcal{G}}) \colon h(Th(\mathsf{K}^{\mathsf{c}}_{\mathsf{G}})) = \{1\}\},\$
- Rhg iff for all $\psi \in Sub(\chi)$, $h(\Box \psi) \leq g(\psi) \leq h(\Diamond \psi)$,
- e(h, p) = h(p).

For each $\not\vdash_{\mathsf{K}_{\mathsf{C}}^{\mathsf{c}}} \chi$ we define a canonical crisp Gödel Kripke model.

- $W := \{h \in \operatorname{Hom}(\operatorname{Fm}_{\Box,\diamond}, [\mathbf{0}, \mathbf{1}]_G) : h(\operatorname{Th}(\mathsf{K}^{\mathsf{c}}_{\mathsf{G}})) = \{1\}\},\$
- Rhg iff for all $\psi \in Sub(\chi)$, $h(\Box \psi) \leq g(\psi) \leq h(\Diamond \psi)$,
- e(h, p) = h(p).

The objective is to see that for any $\psi \in Sub(\chi)$, $e(h, \psi)) = h(\psi)$. We give here some ideas for $\psi = \Box \varphi$. For each $\not\vdash_{\mathsf{K}_{\mathsf{C}}^{\mathsf{c}}} \chi$ we define a canonical crisp Gödel Kripke model.

- $W := \{h \in \operatorname{Hom}(\operatorname{Fm}_{\Box,\diamond}, [\mathbf{0}, \mathbf{1}]_G) : h(\operatorname{Th}(\mathsf{K}^{\mathsf{c}}_{\mathsf{G}})) = \{1\}\},\$
- Rhg iff for all $\psi \in Sub(\chi)$, $h(\Box \psi) \leq g(\psi) \leq h(\Diamond \psi)$,
- e(h, p) = h(p).

The objective is to see that for any $\psi \in Sub(\chi)$, $e(h, \psi)) = h(\psi)$. We give here some ideas for $\psi = \Box \varphi$.

 $h(\Box \varphi) \leq e(g, \varphi)$ for all *Rhg* follows from definition of the canonical relation.

Completeness

To see $h(\Box \varphi) = \bigwedge_{Rhg} e(g, \varphi)$ we show for $h(\Box \varphi) = \alpha < 1$ that for any $\epsilon > 0$ there is $g_{\epsilon} \in W$ such that Rhg_{ϵ} and $g_{\epsilon}(\varphi) \in [\alpha, \alpha + \epsilon)$.

Completeness

To see $h(\Box \varphi) = \bigwedge_{Rhg} e(g, \varphi)$ we show for $h(\Box \varphi) = \alpha < 1$ that for any $\epsilon > 0$ there is $g_{\epsilon} \in W$ such that Rhg_{ϵ} and $g_{\epsilon}(\varphi) \in [\alpha, \alpha + \epsilon)$. There are three important sets of formulas:

•
$$\Box^{=1} := \{ \psi \in Fm \colon h(\Box \varphi) = 1 \}$$

•
$$\Box^{>\alpha} \coloneqq \{ \psi \in Sub(\chi) \colon \alpha < h(\Box \varphi) < 1 \}$$

•
$$\diamondsuit^{<1} \coloneqq \{\psi \in Sub(\chi) \colon h(\diamondsuit \varphi) < 1$$

Completeness

To see $h(\Box \varphi) = \bigwedge_{Rhg} e(g, \varphi)$ we show for $h(\Box \varphi) = \alpha < 1$ that for any $\epsilon > 0$ there is $g_{\epsilon} \in W$ such that Rhg_{ϵ} and $g_{\epsilon}(\varphi) \in [\alpha, \alpha + \epsilon)$. There are three important sets of formulas:

•
$$\Box^{=1} := \{ \psi \in \mathit{Fm} : \mathit{h}(\Box \varphi) = 1 \}$$

•
$$\Box^{>\alpha} \coloneqq \{\psi \in \mathsf{Sub}(\chi) \colon \alpha < h(\Box \varphi) < 1\}$$

•
$$\diamondsuit^{<1} \coloneqq \{\psi \in \mathsf{Sub}(\chi) \colon h(\diamondsuit \varphi) < 1$$

Proposition

There is $u \in Hom(Fm_{\Box,\diamond}, [\mathbf{0}, \mathbf{1}]_G)$ such that

$$\begin{split} &u(\mathsf{Th}(\mathsf{K}^\mathsf{c}_\mathsf{G}) = \{1\}, \qquad \qquad u(\square^{>\alpha}) = 1, \\ &u(\square^{>\alpha}) > u(\varphi), \qquad \qquad u(\diamondsuit^{<1}) < 1 \end{split}$$

Let
$$\delta = (\bigwedge \Box^{>\alpha} \to \varphi) \to \varphi$$
.

Let
$$\delta = (\bigwedge \Box^{>\alpha} \to \varphi) \to \varphi$$
.

• Either
$$h(\diamondsuit(\delta \land (\varphi \to \bigvee \diamondsuit^{<1}))) = 1$$

- Either $h(\diamondsuit(\delta \land (\varphi \to \bigvee \diamondsuit^{<1}))) = 1$
 - we can prove $ThK^{c}(G), \Box^{=1}, \delta \not\models_{[0,1]_{G}} (\varphi \to \bigvee \Diamond^{<1}) \to \bigvee \Diamond^{<1}$

- Either $h(\diamondsuit(\delta \land (\varphi \to \bigvee \diamondsuit^{<1}))) = 1$
 - we can prove $ThK^{c}(G), \Box^{=1}, \delta \not\models_{[0,1]_{G}} (\varphi \to \bigvee \Diamond^{<1}) \to \bigvee \Diamond^{<1}$
- Or $h(\Box(\delta \to (\bigvee \diamondsuit^{<1} \to \varphi))) = 1$

- Either $h(\diamondsuit(\delta \land (\varphi \to \bigvee \diamondsuit^{<1}))) = 1$
 - we can prove $ThK^{c}(G), \Box^{=1}, \delta \not\models_{[0,1]_{G}} (\varphi \to \bigvee \Diamond^{<1}) \to \bigvee \Diamond^{<1}$
- Or $h(\Box(\delta \to (\bigvee \diamondsuit^{<1} \to \varphi))) = 1$
 - we can prove $Th(K_G^c), \square^{=1}, \delta, \delta \to (\bigvee \diamondsuit^{<1} \to \varphi) \not\models_{[0,1]_G} \varphi$

- Either $h(\diamondsuit(\delta \land (\varphi \to \bigvee \diamondsuit^{<1}))) = 1$
 - we can prove $ThK^{c}(G), \Box^{=1}, \delta \not\models_{[0,1]_{G}} (\varphi \to \bigvee \Diamond^{<1}) \to \bigvee \Diamond^{<1}$
- Or $h(\Box(\delta \to (\bigvee \diamondsuit^{<1} \to \varphi))) = 1$
 - we can prove $Th(K_G^c), \square^{=1}, \delta, \delta \to (\bigvee \diamondsuit^{<1} \to \varphi) \not\models_{[0,1]_G} \varphi$

- Either $h(\diamondsuit(\delta \land (\varphi \to \bigvee \diamondsuit^{<1}))) = 1$
 - we can prove $ThK^{c}(G), \Box^{=1}, \delta \not\models_{[0,1]_{G}} (\varphi \to \bigvee \Diamond^{<1}) \to \bigvee \Diamond^{<1}$
- Or $h(\Box(\delta \to (\bigvee \diamondsuit^{<1} \to \varphi))) = 1$
 - we can prove $Th(K_G^c), \square^{=1}, \delta, \delta \to (\bigvee \diamondsuit^{<1} \to \varphi) \not\models_{[0,1]_G} \varphi$

There is an strictly increasing function $\sigma : [0, 1] \to [0, 1]$ such that $\sigma(u(\psi)) \in [h(\Box\psi), h(\Diamond\psi)]$ for each $\Box\psi, \Diamond\psi \in SFm(\varphi)$ and $\sigma(u(\chi)) \in [\alpha, (\alpha + \epsilon) \land u(\Diamond\chi)].$

There is an strictly increasing function $\sigma : [0,1] \to [0,1]$ such that $\sigma(u(\psi)) \in [h(\Box\psi), h(\Diamond\psi)]$ for each $\Box\psi, \Diamond\psi \in SFm(\varphi)$ and $\sigma(u(\chi)) \in [\alpha, (\alpha + \epsilon) \land u(\Diamond\chi)].$

 $((\Box \varphi \to \Diamond \psi) \to \Diamond \psi) \to \Box ((\varphi \to \psi) \to \psi) \lor \Diamond \psi$

There is an strictly increasing function $\sigma : [0,1] \to [0,1]$ such that $\sigma(u(\psi)) \in [h(\Box\psi), h(\Diamond\psi)]$ for each $\Box\psi, \Diamond\psi \in SFm(\varphi)$ and $\sigma(u(\chi)) \in [\alpha, (\alpha + \epsilon) \land u(\Diamond\chi)].$

 $((\Diamond\psi\to\Diamond\varphi)\to\Diamond\varphi)\to\Diamond((\psi\to\varphi)\to\varphi)$

There is an strictly increasing function $\sigma : [0,1] \to [0,1]$ such that $\sigma(u(\psi)) \in [h(\Box\psi), h(\Diamond\psi)]$ for each $\Box\psi, \Diamond\psi \in SFm(\varphi)$ and $\sigma(u(\chi)) \in [\alpha, (\alpha + \epsilon) \land u(\Diamond\chi)].$

The proof of the \diamond -formulas is similar.

There is an strictly increasing function $\sigma : [0,1] \to [0,1]$ such that $\sigma(u(\psi)) \in [h(\Box\psi), h(\Diamond\psi)]$ for each $\Box\psi, \Diamond\psi \in SFm(\varphi)$ and $\sigma(u(\chi)) \in [\alpha, (\alpha + \epsilon) \land u(\Diamond\chi)].$

The proof of the \diamond -formulas is similar.

Theorem

 $\Gamma \vdash_{\mathcal{K}_{G}^{c}} \varphi$ if and only if $\Gamma \Vdash_{\mathbb{K}_{G}^{c}} \varphi$.

There is an strictly increasing function $\sigma : [0,1] \to [0,1]$ such that $\sigma(u(\psi)) \in [h(\Box\psi), h(\Diamond\psi)]$ for each $\Box\psi, \Diamond\psi \in SFm(\varphi)$ and $\sigma(u(\chi)) \in [\alpha, (\alpha + \epsilon) \land u(\Diamond\chi)].$

The proof of the \diamond -formulas is similar.

Theorem

 $\Gamma \vdash_{\mathcal{K}_{G}^{c}} \varphi$ if and only if $\Gamma \Vdash_{\mathbb{K}_{G}^{c}} \varphi$.

This can be extended also to infinite sets of formulas.

Global deduction over \mathbb{K}_{G}^{c} is axiomatized by K_{G}^{c} plus $\frac{\varphi}{\Box \varphi}$.

Global deduction over \mathbb{K}_{G}^{c} is axiomatized by K_{G}^{c} plus $\frac{\varphi}{\Box \varphi}$.

Lemma

(4, M, B)-extensions are complete wrt. the corresponding classes of models.

Global deduction over \mathbb{K}_{G}^{c} is axiomatized by \mathbb{K}_{G}^{c} plus $\frac{\varphi}{\Box \varphi}$.

Lemma

(4, M, B)-extensions are complete wrt. the corresponding classes of models.

Lemma

```
\vdash_{\mathcal{K}_{G}^{c}} is decidable (Caicedo, Metacalfe et. al, 2013).
```

Global deduction over \mathbb{K}_{G}^{c} is axiomatized by \mathbb{K}_{G}^{c} plus $\frac{\varphi}{\Box \varphi}$.

Lemma

(4, M, B)-extensions are complete wrt. the corresponding classes of models.

Lemma

 $\vdash_{\mathcal{K}_{\mathcal{C}}^{c}}$ is decidable (Caicedo, Metacalfe et. al, 2013).

decidability of global deduction/ $4K_G^c$?

Merçi beaucoup!