Axiomatizing the crisp Gödel modal logic

Ricardo Rodriguez and Amanda Vidal
University of Buenos Aires, Institute of Computer Science, Czech Academy of Sciences

TACL 2019, Nice 17-21 June

Many-valued modal logics

- Intuitive idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)

Many-valued modal logics

- Intuitive idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.

Many-valued modal logics

- Intuitive idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.
- what about the rest?

Many-valued modal logics

- Intuitive idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.
- what about the rest? a seemingly reasonable approach: valuation of Kripke models/frames over classes of algebras

Many-valued modal logics

- Intuitive idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.
- what about the rest? a seemingly reasonable approach: valuation of Kripke models/frames over classes of algebras
- In Fuzzy logics, distinguished algebra (standard) generating the variety.

Many-valued modal logics

- Intuitive idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.
- what about the rest? a seemingly reasonable approach: valuation of Kripke models/frames over classes of algebras
- In Fuzzy logics, distinguished algebra (standard) generating the variety. reasonable to consider the modal logics over that particular evaluation algebra

Many-valued modal logics

- Intuitive idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.
- what about the rest? a seemingly reasonable approach: valuation of Kripke models/frames over classes of algebras
- In Fuzzy logics, distinguished algebra (standard) generating the variety. reasonable to consider the modal logics over that particular evaluation algebra
- Some modal MV logics have been axiomatised, but most have not.

Many-valued modal logics

- Intuitive idea: expansion of MV logics with modal-like operators/interaction (or of modal-logics with wider algebraic evaluations/operations)
- Intuitionistic modal logics are particularly "nice": they naturally enjoy a relational semantics with an intuitive meaning.
- what about the rest? a seemingly reasonable approach: valuation of Kripke models/frames over classes of algebras
- In Fuzzy logics, distinguished algebra (standard) generating the variety. reasonable to consider the modal logics over that particular evaluation algebra
- Some modal MV logics have been axiomatised, but most have not.
- Gödel modal logics can be seen as a hinge

The non-modal part

Definition

A Gödel algebra is a semilinear Heyting algebra $=$ idempotent (bounded) residuated lattice. i.e., \mathbf{A} is $\langle A, \wedge, \vee, \rightarrow, 1\rangle$ such that

- $\langle A, \wedge, \vee, 0,1\rangle$ is a bounded distributive lattice,
- For all $x, y \in A, x \odot y \leq z \Longleftrightarrow x \leq y \rightarrow z$ (residuation law),
- For all $x, y \in A, x \rightarrow y) \vee(y \rightarrow x)=1$ (semilinearity).

The non-modal part

Definition

A Gödel algebra is a semilinear Heyting algebra $=$ idempotent (bounded) residuated lattice. i.e., \mathbf{A} is $\langle A, \wedge, \vee, \rightarrow, 1\rangle$ such that

- $\langle A, \wedge, \vee, 0,1\rangle$ is a bounded distributive lattice,
- For all $x, y \in A, x \odot y \leq z \Longleftrightarrow x \leq y \rightarrow z$ (residuation law),
- For all $x, y \in A, x \rightarrow y) \vee(y \rightarrow x)=1$ (semilinearity).

We denote \mathbb{G} the variety of Gödel algebras, and by $[\mathbf{0}, \mathbf{1}]_{G}$ the Gödel algebra with universe $[0,1]$.

The non-modal part

Definition

A Gödel algebra is a semilinear Heyting algebra $=$ idempotent (bounded) residuated lattice. ie., \mathbf{A} is $\langle A, \wedge, \vee, \rightarrow, 1\rangle$ such that

- $\langle A, \wedge, \vee, 0,1\rangle$ is a bounded distributive lattice,
- For all $x, y \in A, x \odot y \leq z \Longleftrightarrow x \leq y \rightarrow z$ (residuation law),
- For all $x, y \in A, x \rightarrow y) \vee(y \rightarrow x)=1$ (semilinearity).

We denote \mathbb{G} the variety of Gödel algebras, and by $[\mathbf{0}, \mathbf{1}]_{G}$ the Gödel algebra with universe $[0,1]$.

(semantic) Gödel logics

$\Gamma \models_{\mathcal{C}} \varphi$ iff for any $\mathbf{A} \in \mathcal{C}$ and any $h \in \operatorname{Hom}(\mathbf{F m}, \mathbf{A})$, if $h[\Gamma] \subseteq\{1\}$ then $h(\varphi)=1$.

The non-modal part

Gödel Propositional Logic

Gödel Logic G is given by the axiomatic system resulting from IPC + $(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)$ (or $B L+\varphi \rightarrow \varphi \& \varphi)$.

The non-modal part

Gödel Propositional Logic

Gödel Logic G is given by the axiomatic system resulting from IPC + $(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)$ (or BL $+\varphi \rightarrow \varphi \& \varphi$).
$\Gamma \vdash_{\mathrm{G}} \varphi$ iff there is some proof in G of φ from Γ.

The non-modal part
Gödel Propositional Logic
Gödel Logic G is given by the axiomatic system resulting from IPC + $(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)($ or $B L+\varphi \rightarrow \varphi \& \varphi)$.
$\Gamma \vdash_{\mathrm{G}} \varphi$ iff there is some proof in G of φ from Γ.
Obs: $\Gamma \vdash_{\mathrm{G}} \varphi$ iff there is some finite $\Gamma_{0} \subseteq_{\omega} \Gamma$ s.t $\Gamma_{0} \vdash_{\mathrm{G}} \varphi$.

The non-modal part

Gödel Propositional Logic

Gödel Logic G is given by the axiomatic system resulting from IPC + $(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)($ or $B L+\varphi \rightarrow \varphi \& \varphi)$.
$\Gamma \vdash_{G} \varphi$ iff there is some proof in G of φ from Γ.
Obs: $\Gamma \vdash_{G} \varphi$ iff there is some finite $\Gamma_{0} \subseteq_{\omega} \Gamma$ s.t $\Gamma_{0} \vdash_{G} \varphi$.

Strong Standard Completeness

For any $\Gamma, \varphi \subseteq F m$ (pos. infinite) the following are equivalent:

- 「 $\vdash_{G} \varphi$,
- $\Gamma \models_{G} \varphi$,
- $「 \models{ }_{[0,1]_{G}} \varphi$.

The non-modal part

Gödel Propositional Logic

Gödel Logic G is given by the axiomatic system resulting from IPC + $(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)($ or $B L+\varphi \rightarrow \varphi \& \varphi)$.
$\Gamma \vdash_{\mathrm{G}} \varphi$ iff there is some proof in G of φ from Γ.
Obs: $\Gamma \vdash_{\mathrm{G}} \varphi$ iff there is some finite $\Gamma_{0} \subseteq_{\omega} \Gamma$ s.t $\Gamma_{0} \vdash_{\mathrm{G}} \varphi$.

Strong Standard Completeness

For any $\Gamma, \varphi \subseteq F m$ (pos. infinite) the following are equivalent:

- 「 $\vdash_{G} \varphi$,- $「 \models_{G} \varphi$,
- $\Gamma ~ \models{ }_{[0,1]_{G}} \varphi$.

Strong "DT"

$\Gamma \vdash_{G} \varphi$ iff for any $h \in \operatorname{Hom}\left(\mathbf{F m},[\mathbf{0}, \mathbf{1}]_{G}\right)$ it holds $\inf _{\gamma \in \Gamma} h(\gamma) \leq h(\varphi)$.

Gödel Kripke models

Definition

A (standard) Gödel Kripke model \mathfrak{M} is a $[0,1]$-Kriple frame $\mathfrak{F}=\langle W, R\rangle$ $\left(W\right.$ set, $\left.R: W^{2} \rightarrow[0,1]\right)$ with an evaluation $e: W \times V \rightarrow[0,1]$.

Gödel Kripke models

Definition

A (standard) Gödel Kripke model \mathfrak{M} is a $[0,1]$-Kriple frame $\mathfrak{F}=\langle W, R\rangle$ $\left(W\right.$ set, $\left.R: W^{2} \rightarrow[0,1]\right)$ with an evaluation $e: W \times V \rightarrow[0,1]$.

$$
\begin{gathered}
e(v, \varphi\{\wedge, \vee, \rightarrow\} \psi)=e(v, \varphi)\{\wedge, \vee, \rightarrow\} e(v, \psi) \\
e(v, \square \varphi)=\bigwedge_{w \in W}\{R(v, w) \rightarrow e(w, \varphi)\}, \quad e(v, \diamond \varphi)=\bigvee_{w \in W}\{R(v, w) \wedge e(w, \varphi)\}
\end{gathered}
$$

Gödel Kripke models

Definition

A (standard) Gödel Kripke model \mathfrak{M} is a $[0,1]$-Kriple frame $\mathfrak{F}=\langle W, R\rangle$ $\left(W\right.$ set, $\left.R: W^{2} \rightarrow[0,1]\right)$ with an evaluation $e: W \times V \rightarrow[0,1]$.

$$
\begin{gathered}
e(v, \varphi\{\wedge, \vee, \rightarrow\} \psi)=e(v, \varphi)\{\wedge, \vee, \rightarrow\} e(v, \psi) \\
e(v, \square \varphi)=\bigwedge_{w \in W}\{R(v, w) \rightarrow e(w, \varphi)\}, \quad e(v, \diamond \varphi)=\bigvee_{w \in W}\{R(v, w) \wedge e(w, \varphi)\}
\end{gathered}
$$

Crisp models: those over classical frames $\left(R \subseteq W^{2}\right)$.

Gödel Kripke models

Definition

A (standard) Gödel Kripke model \mathfrak{M} is a $[0,1]$-Kriple frame $\mathfrak{F}=\langle W, R\rangle$ $\left(W\right.$ set, $\left.R: W^{2} \rightarrow[0,1]\right)$ with an evaluation $e: W \times V \rightarrow[0,1]$.

$$
\begin{gathered}
e(v, \varphi\{\wedge, \vee, \rightarrow\} \psi)=e(v, \varphi)\{\wedge, \vee, \rightarrow\} e(v, \psi) \\
e(v, \square \varphi)=\bigwedge_{w \in W}\{R(v, w) \rightarrow e(w, \varphi)\}, \quad e(v, \diamond \varphi)=\bigvee_{w \in W}\{R(v, w) \wedge e(w, \varphi)\}
\end{gathered}
$$

Crisp models: those over classical frames $\left(R \subseteq W^{2}\right)$.

$$
e(v, \square \varphi)=\bigwedge_{R \vee w} e(w, \varphi), \quad e(v, \diamond \varphi)=\bigvee_{R \vee w} e(w, \varphi)
$$

Gödel Kripke models

Definition

A (standard) Gödel Kripke model \mathfrak{M} is a $[0,1]$-Kriple frame $\mathfrak{F}=\langle W, R\rangle$ $\left(W\right.$ set, $\left.R: W^{2} \rightarrow[0,1]\right)$ with an evaluation $e: W \times V \rightarrow[0,1]$.

$$
\begin{gathered}
e(v, \varphi\{\wedge, \vee, \rightarrow\} \psi)=e(v, \varphi)\{\wedge, \vee, \rightarrow\} e(v, \psi) \\
e(v, \square \varphi)=\bigwedge_{w \in W}\{R(v, w) \rightarrow e(w, \varphi)\}, \quad e(v, \diamond \varphi)=\bigvee_{w \in W}\{R(v, w) \wedge e(w, \varphi)\}
\end{gathered}
$$

Crisp models: those over classical frames $\left(R \subseteq W^{2}\right)$.

$$
e(v, \square \varphi)=\bigwedge_{R \vee v} e(w, \varphi), \quad e(v, \diamond \varphi)=\bigvee_{R v v} e(w, \varphi)
$$

$\mathbb{K}_{G}, \mathbb{K}_{G}^{c}$ denote resp. the classes of Gödel and crisp Gödel Kripke models.

Gödel Kripke models

Definition

A (standard) Gödel Kripke model \mathfrak{M} is a $[0,1]$-Kriple frame $\mathfrak{F}=\langle W, R\rangle$ $\left(W\right.$ set, $\left.R: W^{2} \rightarrow[0,1]\right)$ with an evaluation $e: W \times V \rightarrow[0,1]$.

$$
\begin{gathered}
e(v, \varphi\{\wedge, \vee, \rightarrow\} \psi)=e(v, \varphi)\{\wedge, \vee, \rightarrow\} e(v, \psi) \\
e(v, \square \varphi)=\bigwedge_{w \in W}\{R(v, w) \rightarrow e(w, \varphi)\}, \quad e(v, \diamond \varphi)=\bigvee_{w \in W}\{R(v, w) \wedge e(w, \varphi)\}
\end{gathered}
$$

Crisp models: those over classical frames $\left(R \subseteq W^{2}\right)$.

$$
e(v, \square \varphi)=\bigwedge_{R v w} e(w, \varphi), \quad e(v, \diamond \varphi)=\bigvee_{R v w} e(w, \varphi)
$$

$\mathbb{K}_{G}, \mathbb{K}_{G}^{c}$ denote resp. the classes of Gödel and crisp Gödel Kripke models.

(semantic) Local Gödel modal logics

$\Gamma \Vdash_{\mathcal{C}} \varphi$ (locally) iff for any $\mathfrak{M} \in \mathcal{C}$ and any $v \in W$, if $e(v,[\Gamma]) \subseteq\{1\}$ then $e(v, \varphi)=1$.

Axiomatized Gödel Modal logics

- \square and \diamond fragments over all models are axiomatized (Caicedo, Rodriguez [2010]). The \square fragment over crisp models coincides with that over all models.

Axiomatized Gödel Modal logics

- \square and \diamond fragments over all models are axiomatized (Caicedo, Rodriguez [2010]). The \square fragment over crisp models coincides with that over all models.
- \diamond fragment over crisp models is axiomatized (Metcalfe, Olivetti [2009]).

Axiomatized Gödel Modal logics

- \square and \diamond fragments over all models are axiomatized (Caicedo, Rodriguez [2010]). The \square fragment over crisp models coincides with that over all models.
- \diamond fragment over crisp models is axiomatized (Metcalfe, Olivetti [2009]).
- Language with both modalities over all models is axiomatized (Caicedo, Rodriguez [2015]).

Axiomatized Gödel Modal logics

- \square and \diamond fragments over all models are axiomatized (Caicedo, Rodriguez [2010]). The \square fragment over crisp models coincides with that over all models.
- \diamond fragment over crisp models is axiomatized (Metcalfe, Olivetti [2009]).
- Language with both modalities over all models is axiomatized (Caicedo, Rodriguez [2015]). Coincides with Fischer-Servi Modal Intuitionistic Logic plus prelinearity.

Axiomatized Gödel Modal logics

- \square and \diamond fragments over all models are axiomatized (Caicedo, Rodriguez [2010]). The \square fragment over crisp models coincides with that over all models.
- \diamond fragment over crisp models is axiomatized (Metcalfe, Olivetti [2009]).
- Language with both modalities over all models is axiomatized (Caicedo, Rodriguez [2015]). Coincides with Fischer-Servi Modal Intuitionistic Logic plus prelinearity.
- Language with both modalities over crisp models was still not axiomatized (previous proof used heavily the $(0,1)$ values of R).

Axiomatic system

(crisp) Gödel Modal Logic

(crisp) Gödel Modal Logic K_{G}^{c} is given by the axiomatic system resulting from G and the following axiom schematas and rules:
$\left(K_{\square}\right) \quad \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi) \quad\left(K_{\diamond}\right) \quad \diamond(\varphi \vee \psi) \rightarrow(\diamond \varphi \vee \diamond \psi)$
(P) $\square(\varphi \rightarrow \psi) \rightarrow(\diamond \varphi \rightarrow \diamond \psi) \quad(F S 2) \quad(\diamond \varphi \rightarrow \square \psi) \rightarrow \square(\varphi \rightarrow \psi)$
$\left(F_{\diamond}\right) \neg \diamond \perp \quad\left(R_{\square}\right)$ from φ infer $\square \varphi$
(Cr) $\square(\varphi \vee \psi) \rightarrow(\square \varphi \vee \diamond \psi)$

Axiomatic system

(crisp) Gödel Modal Logic

(crisp) Gödel Modal Logic K_{G}^{c} is given by the axiomatic system resulting from G and the following axiom schematas and rules:
$\left(K_{\square}\right) \quad \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi) \quad\left(K_{\diamond}\right) \quad \diamond(\varphi \vee \psi) \rightarrow(\diamond \varphi \vee \diamond \psi)$
(P) $\square(\varphi \rightarrow \psi) \rightarrow(\diamond \varphi \rightarrow \diamond \psi) \quad(F S 2) \quad(\diamond \varphi \rightarrow \square \psi) \rightarrow \square(\varphi \rightarrow \psi)$
$\left(F_{\diamond}\right) ~ \neg \diamond \perp \quad\left(R_{\square}\right)$ from φ infer $\square \varphi$
(Cr) $\square(\varphi \vee \psi) \rightarrow(\square \varphi \vee \diamond \psi)$

Some derivable (meta) rules:

- $\Gamma \vdash_{K_{G}^{c}} \varphi$ iff " $\Gamma, T h\left(K_{G}^{c}\right) \vdash_{G} \varphi^{\prime \prime}$;

Axiomatic system

(crisp) Gödel Modal Logic

(crisp) Gödel Modal Logic K_{G}^{c} is given by the axiomatic system resulting from G and the following axiom schematas and rules:
$\left(K_{\square}\right) \quad \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi) \quad\left(K_{\diamond}\right) \quad \diamond(\varphi \vee \psi) \rightarrow(\diamond \varphi \vee \diamond \psi)$
(P) $\square(\varphi \rightarrow \psi) \rightarrow(\diamond \varphi \rightarrow \diamond \psi) \quad(F S 2) \quad(\diamond \varphi \rightarrow \square \psi) \rightarrow \square(\varphi \rightarrow \psi)$
$\left(F_{\diamond}\right) \neg \diamond \perp \quad\left(R_{\square}\right)$ from φ infer $\square \varphi$
(Cr) $\square(\varphi \vee \psi) \rightarrow(\square \varphi \vee \diamond \psi)$

Some derivable (meta) rules:

- $\Gamma \vdash_{K_{G}^{c}} \varphi$ iff " $\Gamma, T h\left(K_{G}^{c}\right) \vdash_{G} \varphi^{\prime \prime}$;
- 「, $\psi \vdash_{K_{\mathrm{G}}^{\mathrm{c}}} \varphi$ iff $\Gamma \vdash_{\mathrm{K}_{\mathrm{G}}^{c}} \psi \rightarrow \varphi$;

Axiomatic system

(crisp) Gödel Modal Logic

(crisp) Gödel Modal Logic K_{G}^{c} is given by the axiomatic system resulting from G and the following axiom schematas and rules:
$\left(K_{\square}\right) \quad \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi) \quad\left(K_{\diamond}\right) \quad \diamond(\varphi \vee \psi) \rightarrow(\diamond \varphi \vee \diamond \psi)$
(P) $\square(\varphi \rightarrow \psi) \rightarrow(\diamond \varphi \rightarrow \diamond \psi) \quad(F S 2) \quad(\diamond \varphi \rightarrow \square \psi) \rightarrow \square(\varphi \rightarrow \psi)$
$\left(F_{\diamond}\right) \neg \diamond \perp \quad\left(R_{\square}\right)$ from φ infer $\square \varphi$
(Cr) $\square(\varphi \vee \psi) \rightarrow(\square \varphi \vee \diamond \psi)$

Some derivable (meta) rules:

- $\Gamma \vdash_{K_{G}^{c}} \varphi$ iff " $\Gamma, T h\left(K_{G}^{c}\right) \vdash_{G} \varphi$ ";
- 「, $\psi \vdash_{K_{G}^{c}} \varphi$ iff $\Gamma \vdash_{K_{G}^{c}} \psi \rightarrow \varphi$;
- Г $\vdash_{K_{G}^{c}} \varphi$ implies $\square \Gamma \vdash_{K_{G}^{c}} \square \varphi$;

Axiomatic system

(crisp) Gödel Modal Logic

(crisp) Gödel Modal Logic K_{G}^{c} is given by the axiomatic system resulting from G and the following axiom schematas and rules:
$\left(K_{\square}\right) \quad \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi) \quad\left(K_{\diamond}\right) \quad \diamond(\varphi \vee \psi) \rightarrow(\diamond \varphi \vee \diamond \psi)$
(P) $\square(\varphi \rightarrow \psi) \rightarrow(\diamond \varphi \rightarrow \diamond \psi) \quad(F S 2) \quad(\diamond \varphi \rightarrow \square \psi) \rightarrow \square(\varphi \rightarrow \psi)$
$\left(F_{\diamond}\right) \neg \diamond \perp \quad\left(R_{\square}\right)$ from φ infer $\square \varphi$
(Cr) $\square(\varphi \vee \psi) \rightarrow(\square \varphi \vee \diamond \psi)$

Some derivable (meta) rules:

- $\Gamma \vdash_{K_{G}^{c}} \varphi$ iff " $\Gamma, T h\left(K_{G}^{c}\right) \vdash_{G} \varphi$ ";
- 「, $\psi \vdash_{K_{G}^{c}} \varphi$ iff $\Gamma \vdash_{K_{G}^{c}} \psi \rightarrow \varphi$;
- $\Gamma \vdash_{K_{G}^{c}} \varphi$ implies $\square \Gamma \vdash_{K_{G}^{c}} \square \varphi$;
- $\vdash_{K_{G}^{c}} \varphi \vee(\psi \rightarrow \chi)$ implies $\vdash_{K_{G}^{c}} \diamond \varphi \vee(\diamond \psi \rightarrow \diamond \chi)$.

Completeness

For each $\forall_{K_{\mathrm{G}}^{c}} \chi$ we define a canonical crisp Gödel Kripke model.

- $W:=\left\{h \in \operatorname{Hom}\left(F m_{\square, \diamond},[\mathbf{0}, \mathbf{1}]_{G}\right): h\left(\operatorname{Th}\left(\mathrm{~K}_{\mathrm{G}}^{\mathrm{c}}\right)\right)=\{1\}\right\}$,
- Rhg iff for all $\psi \in \operatorname{Sub}(\chi), h(\square \psi) \leq g(\psi) \leq h(\diamond \psi)$,
- $e(h, p)=h(p)$.

Completeness

For each $\forall_{K_{\mathrm{G}}^{c}} \chi$ we define a canonical crisp Gödel Kripke model.

- $W:=\left\{h \in \operatorname{Hom}\left(F m_{\square, \diamond},[\mathbf{0}, \mathbf{1}]_{G}\right): h\left(\operatorname{Th}\left(\mathrm{~K}_{\mathrm{G}}^{\mathrm{c}}\right)\right)=\{1\}\right\}$,
- Rhg iff for all $\psi \in \operatorname{Sub}(\chi), h(\square \psi) \leq g(\psi) \leq h(\diamond \psi)$,
- $e(h, p)=h(p)$.

The objective is to see that for any $\psi \in \operatorname{Sub}(\chi), e(h, \psi))=h(\psi)$. We give here some ideas for $\psi=\square \varphi$.

Completeness

For each $\forall_{K_{G}^{c}} \chi$ we define a canonical crisp Gödel Kripke model.

- $W:=\left\{h \in \operatorname{Hom}\left(F m_{\square, \diamond},[\mathbf{0}, \mathbf{1}]_{G}\right): h\left(\operatorname{Th}\left(\mathrm{~K}_{\mathrm{G}}^{\mathrm{c}}\right)\right)=\{1\}\right\}$,
- Rhg iff for all $\psi \in \operatorname{Sub}(\chi), h(\square \psi) \leq g(\psi) \leq h(\diamond \psi)$,
- $e(h, p)=h(p)$.

The objective is to see that for any $\psi \in \operatorname{Sub}(\chi), e(h, \psi))=h(\psi)$. We give here some ideas for $\psi=\square \varphi$.
$h(\square \varphi) \leq e(g, \varphi)$ for all Rhg follows from definition of the canonical relation.

Completeness

To see $h(\square \varphi)=\bigwedge_{R h g} e(g, \varphi)$ we show for $h(\square \varphi)=\alpha<1$ that for any $\epsilon>0$ there is $g_{\epsilon} \in W$ such that $R h g_{\epsilon}$ and $g_{\epsilon}(\varphi) \in[\alpha, \alpha+\epsilon)$.

Completeness

To see $h(\square \varphi)=\bigwedge_{R h g} e(g, \varphi)$ we show for $h(\square \varphi)=\alpha<1$ that for any $\epsilon>0$ there is $g_{\epsilon} \in W$ such that $R h g_{\epsilon}$ and $g_{\epsilon}(\varphi) \in[\alpha, \alpha+\epsilon)$.
There are three important sets of formulas:

- $\square^{=1}:=\{\psi \in F m: h(\square \varphi)=1\}$
- $\square^{>\alpha}:=\{\psi \in \operatorname{Sub}(\chi): \alpha<h(\square \varphi)<1\}$
- $\diamond^{<1}:=\{\psi \in \operatorname{Sub}(\chi): h(\diamond \varphi)<1$

Completeness

To see $h(\square \varphi)=\bigwedge_{R h g} e(g, \varphi)$ we show for $h(\square \varphi)=\alpha<1$ that for any $\epsilon>0$ there is $g_{\epsilon} \in W$ such that $R h g_{\epsilon}$ and $g_{\epsilon}(\varphi) \in[\alpha, \alpha+\epsilon)$.
There are three important sets of formulas:

- $\square^{=1}:=\{\psi \in F m: h(\square \varphi)=1\}$
- $\square^{>\alpha}:=\{\psi \in \operatorname{Sub}(\chi): \alpha<h(\square \varphi)<1\}$
- $\diamond^{<1}:=\{\psi \in \operatorname{Sub}(\chi): h(\diamond \varphi)<1$

Proposition

There is $u \in \operatorname{Hom}\left(F m_{\square, \diamond},[\mathbf{0}, \mathbf{1}]_{G}\right)$ such that

$$
\begin{aligned}
u\left(T h\left(\mathrm{~K}_{G}^{c}\right)\right. & =\{1\}, & & u\left(\square^{=1}\right)=1, \\
u\left(\square^{>\alpha}\right) & >u(\varphi), & & u\left(\diamond^{<1}\right)<1
\end{aligned}
$$

Completeness proof

$$
\text { Let } \delta=\left(\bigwedge \square^{>\alpha} \rightarrow \varphi\right) \rightarrow \varphi .
$$

Completeness proof

Let $\delta=\left(\bigwedge \square^{>\alpha} \rightarrow \varphi\right) \rightarrow \varphi$.

- Either $h\left(\diamond\left(\delta \wedge\left(\varphi \rightarrow \bigvee \diamond^{<1}\right)\right)\right)=1$

Completeness proof

Let $\delta=\left(\bigwedge \square^{>\alpha} \rightarrow \varphi\right) \rightarrow \varphi$.

- Either $h\left(\diamond\left(\delta \wedge\left(\varphi \rightarrow \bigvee \diamond^{<1}\right)\right)\right)=1$
- we can prove $\operatorname{Th}^{c}(G), \square^{=1}, \delta \not \vDash_{[0,1]_{G}}\left(\varphi \rightarrow \bigvee \diamond^{<1}\right) \rightarrow \bigvee \diamond^{<1}$

Completeness proof

Let $\delta=\left(\bigwedge \square^{>\alpha} \rightarrow \varphi\right) \rightarrow \varphi$.

- Either $h\left(\diamond\left(\delta \wedge\left(\varphi \rightarrow \bigvee \diamond^{<1}\right)\right)\right)=1$
- we can prove $\operatorname{Th}^{c}(G), \square^{=1}, \delta \not \vDash_{[0,1]_{G}}\left(\varphi \rightarrow \bigvee \diamond^{<1}\right) \rightarrow \bigvee \diamond^{<1}$
- $\operatorname{Or} h\left(\square\left(\delta \rightarrow\left(\bigvee \diamond^{<1} \rightarrow \varphi\right)\right)\right)=1$

Completeness proof

Let $\delta=\left(\bigwedge \square^{>\alpha} \rightarrow \varphi\right) \rightarrow \varphi$.

- Either $h(\diamond(\delta \wedge(\varphi \rightarrow \bigvee \diamond<1)))=1$
- we can prove $\operatorname{ThK}^{c}(G), \square^{=1}, \delta \not \forall_{[0,1]_{G}}\left(\varphi \rightarrow \bigvee \diamond^{<1}\right) \rightarrow \bigvee \diamond^{<1}$
- $\operatorname{Or} h\left(\square\left(\delta \rightarrow\left(\bigvee \diamond^{<1} \rightarrow \varphi\right)\right)\right)=1$
- we can prove $\operatorname{Th}\left(K_{G}^{c}\right), \square^{=1}, \delta, \delta \rightarrow\left(\bigvee \diamond^{<1} \rightarrow \varphi\right) \not \vDash_{[0,1]_{G}} \varphi$

Completeness proof

Let $\delta=\left(\bigwedge \square^{>\alpha} \rightarrow \varphi\right) \rightarrow \varphi$.

- Either $h(\diamond(\delta \wedge(\varphi \rightarrow \bigvee \diamond<1)))=1$
- we can prove $\operatorname{ThK}^{c}(G), \square^{=1}, \delta \not \forall_{[0,1]_{G}}\left(\varphi \rightarrow \bigvee \diamond^{<1}\right) \rightarrow \bigvee \diamond^{<1}$
- $\operatorname{Or} h\left(\square\left(\delta \rightarrow\left(\bigvee \diamond^{<1} \rightarrow \varphi\right)\right)\right)=1$
- we can prove $\operatorname{Th}\left(K_{G}^{c}\right), \square^{=1}, \delta, \delta \rightarrow\left(\bigvee \diamond^{<1} \rightarrow \varphi\right) \not \vDash_{[0,1]_{G}} \varphi$

Completeness proof

Let $\delta=\left(\bigwedge \square^{>\alpha} \rightarrow \varphi\right) \rightarrow \varphi$.

- Either $h\left(\diamond\left(\delta \wedge\left(\varphi \rightarrow \bigvee \diamond^{<1}\right)\right)\right)=1$
- we can prove $\operatorname{Th}^{c}(G), \square^{=1}, \delta \not \vDash_{[0,1]_{G}}\left(\varphi \rightarrow \bigvee \diamond^{<1}\right) \rightarrow \bigvee \diamond^{<1}$
- $\operatorname{Or} h\left(\square\left(\delta \rightarrow\left(\bigvee \diamond^{<1} \rightarrow \varphi\right)\right)\right)=1$
- we can prove $\operatorname{Th}\left(K_{G}^{c}\right), \square^{=1}, \delta, \delta \rightarrow\left(\bigvee \diamond^{<1} \rightarrow \varphi\right) \not \vDash_{[0,1]_{G}} \varphi$

Completeness proof

Proposition

There is an strictly increasing function $\sigma:[0,1] \rightarrow[0,1]$ such that $\sigma(u(\psi)) \in[h(\square \psi), h(\diamond \psi)]$ for each $\square \psi, \diamond \psi \in \operatorname{SFm}(\varphi)$ and $\sigma(u(\chi)) \in[\alpha,(\alpha+\epsilon) \wedge u(\diamond \chi)]$.

Completeness proof

Proposition

There is an strictly increasing function $\sigma:[0,1] \rightarrow[0,1]$ such that $\sigma(u(\psi)) \in[h(\square \psi), h(\diamond \psi)]$ for each $\square \psi, \diamond \psi \in \operatorname{SFm}(\varphi)$ and $\sigma(u(\chi)) \in[\alpha,(\alpha+\epsilon) \wedge u(\diamond \chi)]$.
$((\square \varphi \rightarrow \diamond \psi) \rightarrow \diamond \psi) \rightarrow \square((\varphi \rightarrow \psi) \rightarrow \psi) \vee \diamond \psi$

Completeness proof

Proposition

There is an strictly increasing function $\sigma:[0,1] \rightarrow[0,1]$ such that $\sigma(u(\psi)) \in[h(\square \psi), h(\diamond \psi)]$ for each $\square \psi, \diamond \psi \in \operatorname{SFm}(\varphi)$ and $\sigma(u(\chi)) \in[\alpha,(\alpha+\epsilon) \wedge u(\diamond \chi)]$.
$((\diamond \psi \rightarrow \diamond \varphi) \rightarrow \diamond \varphi) \rightarrow \diamond((\psi \rightarrow \varphi) \rightarrow \varphi)$

Completeness proof

Proposition

There is an strictly increasing function $\sigma:[0,1] \rightarrow[0,1]$ such that $\sigma(u(\psi)) \in[h(\square \psi), h(\diamond \psi)]$ for each $\square \psi, \diamond \psi \in \operatorname{SFm}(\varphi)$ and $\sigma(u(\chi)) \in[\alpha,(\alpha+\epsilon) \wedge u(\diamond \chi)]$.

The proof of the \diamond-formulas is similar.

Completeness proof

Proposition

There is an strictly increasing function $\sigma:[0,1] \rightarrow[0,1]$ such that $\sigma(u(\psi)) \in[h(\square \psi), h(\diamond \psi)]$ for each $\square \psi, \diamond \psi \in \operatorname{SFm}(\varphi)$ and $\sigma(u(\chi)) \in[\alpha,(\alpha+\epsilon) \wedge u(\diamond \chi)]$.

The proof of the \diamond-formulas is similar.

Theorem

$\Gamma \vdash_{K_{G}^{c}} \varphi$ if and only if $\Gamma \Vdash_{\mathbb{K}_{G}^{c}} \varphi$.

Completeness proof

Proposition

There is an strictly increasing function $\sigma:[0,1] \rightarrow[0,1]$ such that $\sigma(u(\psi)) \in[h(\square \psi), h(\diamond \psi)]$ for each $\square \psi, \diamond \psi \in \operatorname{SFm}(\varphi)$ and $\sigma(u(\chi)) \in[\alpha,(\alpha+\epsilon) \wedge u(\diamond \chi)]$.

The proof of the \diamond-formulas is similar.

Theorem

$\Gamma \vdash{ }_{K_{G}^{c}} \varphi$ if and only if $\Gamma \Vdash_{\mathbb{K}_{G}^{c}} \varphi$.
This can be extended also to infinite sets of formulas.

Miscellanea

Lemma

Global deduction over \mathbb{K}_{G}^{c} is axiomatized by K_{G}^{c} plus $\frac{\varphi}{\square \varphi}$.

Miscellanea

Lemma

Global deduction over \mathbb{K}_{G}^{c} is axiomatized by K_{G}^{c} plus $\frac{\varphi}{\square \varphi}$.

Lemma

$(4, M, B)$-extensions are complete wrt. the corresponding classes of models.

Miscellanea

Lemma

Global deduction over \mathbb{K}_{G}^{c} is axiomatized by K_{G}^{c} plus $\frac{\varphi}{\square \varphi}$.

Lemma

$(4, M, B)$-extensions are complete wrt. the corresponding classes of models.

Lemma

$\vdash_{K_{G}^{c}}$ is decidable (Caicedo, Metacalfe et. al, 2013).

Miscellanea

Lemma

Global deduction over \mathbb{K}_{G}^{c} is axiomatized by K_{G}^{c} plus $\frac{\varphi}{\square \varphi}$.

Lemma

$(4, M, B)$-extensions are complete wrt. the corresponding classes of models.

Lemma

$\vdash_{K_{G}^{c}}$ is decidable (Caicedo, Metacalfe et. al, 2013).
decidability of global deduction/ $4 \mathrm{~K}_{G}^{c}$?

Merçi beaucoup!

