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Many-valued modal logics

• Intuitive idea: expansion of MV logics with modal-like
operators/interaction (or of modal-logics with wider algebraic
evaluations/operations)

• Intuitionistic modal logics are particularly ”nice”: they naturally
enjoy a relational semantics with an intuitive meaning.

• what about the rest? a seemingly reasonable approach: valuation of
Kripke models/frames over classes of algebras

• In Fuzzy logics, distinguished algebra (standard) generating the
variety. reasonable to consider the modal logics over that particular
evaluation algebra

• Some modal MV logics have been axiomatised, but most have not.
• Gödel modal logics can be seen as a hingesemilinear extension of IL

one of three main FLs (BL + idempotency of &)
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The non-modal part

Definition
A Gödel algebra is a semilinear Heyting algebra = idempotent
(bounded) residuated lattice. i.e., A is ⟨A,∧,∨,→, 1⟩ such that

• ⟨A,∧,∨, 0, 1⟩ is a bounded distributive lattice,
• For all x, y ∈ A, x ⊙ y ≤ z ⇐⇒ x ≤ y → z (residuation law),
• For all x, y ∈ A, x → y) ∨ (y → x) = 1 (semilinearity).

We denote G the variety of Gödel algebras, and by [0, 1]G the Gödel
algebra with universe [0, 1].

(semantic) Gödel logics
Γ |=C φ iff for any A ∈ C and any h ∈ Hom(Fm,A), if h[Γ] ⊆ {1} then
h(φ) = 1.
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The non-modal part

Gödel Propositional Logic
Gödel Logic G is given by the axiomatic system resulting from IPC +
(φ→ ψ) ∨ (ψ → φ) (or BL + φ→ φ&φ).

Γ ⊢G φ iff there is some proof in G of φ from Γ.

Obs: Γ ⊢G φ iff there is some finite Γ0 ⊆ω Γ s.t Γ0 ⊢G φ.
Strong Standard Completeness
For any Γ, φ ⊆ Fm (pos. infinite) the following are equivalent:

• Γ ⊢G φ,
• Γ |=G φ,
• Γ |=[0,1]G φ.

Strong ”DT”
Γ ⊢G φ iff for any h ∈ Hom(Fm, [0, 1]G) it holds infγ∈Γh(γ) ≤ h(φ).
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Gödel Kripke models

Definition
A (standard) Gödel Kripke model M is a [0, 1]-Kriple frame F = ⟨W,R⟩
(W set, R : W 2 → [0, 1]) with an evaluation e : W × V → [0, 1].

e(v, φ{∧,∨,→}ψ) = e(v, φ){∧,∨,→}e(v, ψ)

e(v,2φ) =
∧

w∈W
{R(v,w) → e(w, φ)}, e(v,3φ) =

∨
w∈W

{R(v,w) ∧ e(w, φ)}

Crisp models: those over classical frames (R ⊆ W 2).
e(v,2φ) =

∧
Rvw

e(w, φ), e(v,3φ) =
∨
Rvw

e(w, φ)

KG, Kc
G denote resp. the classes of Gödel and crisp Gödel Kripke models.

(semantic) Local Gödel modal logics
Γ ⊩C φ (locally) iff for any M ∈ C and any v ∈ W, if e(v, [Γ]) ⊆ {1}
then e(v, φ) = 1.
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Axiomatized Gödel Modal logics

• 2 and 3 fragments over all models are axiomatized (Caicedo,
Rodriguez [2010]). The 2 fragment over crisp models coincides with
that over all models.

• 3 fragment over crisp models is axiomatized (Metcalfe, Olivetti
[2009]).

• Language with both modalities over all models is axiomatized
(Caicedo, Rodriguez [2015]). Coincides with Fischer-Servi Modal
Intuitionistic Logic plus prelinearity.

• Language with both modalities over crisp models was still not
axiomatized (previous proof used heavily the (0,1) values of R).
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Axiomatic system

(crisp) Gödel Modal Logic
(crisp) Gödel Modal Logic Kc

G is given by the axiomatic system
resulting from G and the following axiom schematas and rules:
(K2) 2(φ→ ψ) → (2φ→ 2ψ) (K3) 3(φ ∨ ψ) → (3φ ∨3ψ)

(P) 2(φ→ ψ) → (3φ→ 3ψ) (FS2) (3φ→ 2ψ) → 2(φ→ ψ)

(F3) ¬3⊥ (R2) from φ infer 2φ
(Cr) 2(φ ∨ ψ) → (2φ ∨3ψ)

Some derivable (meta) rules:

• Γ ⊢Kc
G
φ iff ”Γ,Th(Kc

G) ⊢G φ”;
• Γ, ψ ⊢Kc

G
φ iff Γ ⊢Kc

G
ψ → φ;

• Γ ⊢Kc
G
φ implies 2Γ ⊢Kc

G
2φ;

• ⊢Kc
G
φ ∨ (ψ → χ) implies ⊢Kc

G
3φ ∨ (3ψ → 3χ).

6
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Completeness

For each ̸⊢Kc
G
χ we define a canonical crisp Gödel Kripke model.

• W := {h ∈ Hom(Fm2,3, [0, 1]G) : h(Th(Kc
G)) = {1}},

• Rhg iff for all ψ ∈ Sub(χ), h(2ψ) ≤ g(ψ) ≤ h(3ψ),
• e(h, p) = h(p).

The objective is to see that for any ψ ∈ Sub(χ), e(h, ψ)) = h(ψ).
We give here some ideas for ψ = 2φ.

h(2φ) ≤ e(g, φ) for all Rhg follows from definition of the canonical
relation.
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Completeness

To see h(2φ) =
∧

Rhg e(g, φ) we show for h(2φ) = α < 1 that for any
ϵ > 0 there is gϵ ∈ W such that Rhgϵ and gϵ(φ) ∈ [α, α+ ϵ).

There are three important sets of formulas:

• 2=1 := {ψ ∈ Fm : h(2φ) = 1}
• 2>α := {ψ ∈ Sub(χ) : α < h(2φ) < 1}
• 3<1 := {ψ ∈ Sub(χ) : h(3φ) < 1

Proposition
There is u ∈ Hom(Fm2,3, [0, 1]G) such that

u(Th(Kc
G) = {1}, u(2=1) = 1,

u(2>α) > u(φ), u(3<1) < 1
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Completeness proof

Let δ = (
∧
2>α → φ) → φ.

• Either h(3(δ ∧ (φ→
∨
3<1))) = 1

• we can prove ThKc(G),2=1, δ ̸|=[0,1]G (φ →
∨

3<1) →
∨

3<1

• Or h(2(δ → (
∨
3<1 → φ))) = 1

• we can prove Th(Kc
G),2

=1, δ, δ → (
∨

3<1 → φ) ̸|=[0,1]G φ

=⇒
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Completeness proof

Proposition
There is an strictly increasing function σ : [0, 1] → [0, 1] such that
σ(u(ψ)) ∈ [h(2ψ), h(3ψ)] for each 2ψ,3ψ ∈ SFm(φ) and
σ(u(χ)) ∈ [α, (α+ ϵ) ∧ u(3χ)].

The proof of the 3-formulas is similar.

Theorem
Γ ⊢Kc

G
φ if and only if Γ ⊩Kc

G
φ.

This can be extended also to infinite sets of formulas.
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Miscellanea

Lemma
Global deduction over Kc

G is axiomatized by Kc
G plus φ

2φ .

Lemma
(4,M,B)-extensions are complete wrt. the corresponding classes of
models.

Lemma
⊢Kc

G
is decidable (Caicedo, Metacalfe et. al, 2013).

decidability of global deduction/ 4Kc
G?
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Merçi beaucoup!
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