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(Glivenko, 1929) CL ` ϕ iff IL ` ¬¬ϕ
(Matsumoto, 1955) S5 ` ϕ iff S4 ` ¬�¬�ϕ

In Kripke semantics:

IL is the logic of partial orders,
CL is the logic of singletons, which are partial orders of height 1.

S4 is the logic of preorders,
S5 is the logic of equivalence relations, which are preorders of height 1.

Let L[h] be the extension of a logic L with the axiom of height h.

IL[1] ` ϕ iff IL ` ¬¬ϕ, S4[1] ` ϕ iff S4 ` ♦�ϕ.

This talk:

Generalization for arbitrary finite height

and for non-transitive and polymodal logics.

Interplay with local finiteness.



Formulas and logics of finite height

intermediate: bi0 = ⊥, bii+1 = pi+1 ∨ (pi+1 → bii )
modal: b0 = ⊥, bi+1 = pi+1 → �(♦pi+1 ∨ bi )

L[h] extends L with the formula of height h. In particular,

IL[1] = CL, S4[1] = S5

IL[1] ` ϕ iff IL ` ¬¬ϕ S4[1] ` ϕ iff S4 ` ♦�ϕ

IL[2] ` ϕ iff IL ` ? S4[2] ` ϕ iff S4 ` ?
. . . . . .

First result

Such translations exist for all h in the finite-variable case:

A k-formula is a formula in variables p0, . . . pk−1.
For all h, k < ω there exists a translation (a formula with a parameter)
tr(·), and its intermediate analogue tri(·), such that for all k-formulas ϕ

IL[h] ` ϕ iff IL ` tri(ϕ) S4[h] ` ϕ iff S4 ` tr(ϕ)
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The k-canonical frame of a logic L (the representation of the k-generated
free algebra of L) is built from maximal L-consistent sets of k-formulas.

Theorem (Shehtman, 1978)

Let k < ω. There exist formulas Bh,k (and their intuitionistic analogs
Bi

h,k) such that for every x in the k-canonical frame Fk of S4 (of Int)

Bh,k ∈ x ⇔ the depth of x in Fk is less than or equal to h.

Moreover, if x is of infinite depth, then ♦Bh,k ∈ x for all h < ω; that is
to say, F is top-heavy.

The term ‘top-heavy’ is due to Fine (1985).

Theorem (First result)

Let k < ω. For all k-formulas ϕ we have:

IL[h + 1] ` ϕ ⇔ IL `
∧

i≤h((ϕ→ Bi
i,k)→ Bi

i,k);

S4[h + 1] ` ϕ ⇔ S4 `
∧

i≤h(�(�ϕ→ Bi,k)→ Bi,k).

In particular, for h = 0 the formulas B0,k and Bi
0,k are ⊥ for all k < ω:

IL[1] ` ϕ iff IL ` ¬¬ϕ, S4[1] ` ϕ iff S4 ` ♦�ϕ.



The first result is based on top-heaviness of canonical frames.

In turn, top-heaviness can be obtained for the case when finite-height
extensions are locally tabular (poly)modal logics.

A logic is said to be k-tabular if, up to the equivalence in it, there exist
only finitely many k-formulas. A logic is locally tabular (or locally finite)
if it is k-tabular for every finite k .

Segerberg, 1971; Maksimova, 1975: A transitive logic is locally tabular iff
it is of finite height. In particular, all S4[h] are locally tabular.

Kuznetsov, 1971; Komori, 1975: All IL[h] are locally tabular.

Shetman, Sh, 2016: Every 1-tabular (a fortiori, locally tabular) modal
logic is a pretransitive logic of finite height.

L is pretransitive if there is a formula ♦∗(p) (‘master modality’) s.t.
♦∗(ϕ) expresses the satisfiability of ϕ in cones on models of L.

Second result

Let L be a pretransitive logic, h, k < ω. If L[h] is k-tabular, then exists a
translation tr(·) s.t. for all k-formulas ϕ

L[h + 1] ` ϕ iff L ` tr(ϕ)
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All 1-tabular (a fortiori, locally tabular) logics are pretransitive.

L is pretransitive if there is a formula ♦∗(p) (‘master modality’) s.t.
♦∗(ϕ) expresses the satisfiability of ϕ in cones on models of L.
Synonyms: EDPC-logics (Blok and Pigozzi), logics with expressible master

modality (Kracht), conically expressive logics (Shehtman).

Kowalski and Kracht, 2006: L is pretransitive iff L is m-transitive for
some m ≥ 0, i.e., contains ♦m+1p → p ∨ ♦p ∨ . . . ∨ ♦mp.

m-transitivity says “if y is accessible from x in m + 1 steps, then y is
accessible from x in ≤ m steps”

♦∗(ϕ) is ϕ ∨ ♦ϕ ∨ . . . ∨ ♦mϕ

In the polymodal case, ♦p is
∨
♦ip

Examples of pretransitive logics

K4, wK4 = [♦♦p → ♦p ∨ p] 1-transitive
K5 = [♦p → �♦p] 2-transitive
[♦np → ♦mp], n > m (n − 1)-transitive
The (expanding) product of two transitive logics 2-transitive



The height of a polymodal frame (W , (Ri )i<n) is the height of the
preorder (W , (

⋃
i<n Ri )

∗).
In the pretransitive case, the formulas of finite height can be defined:
B0 = ⊥, Bh = ph → �∗(♦∗ph ∨ Bh−1).

Theorem (Second result)

Let L be a pretransitive logic, h, k < ω. If L[h] is k-tabular, then:

(a) For every i ≤ h, there exists a formula Bi,k such that Bi,k ∈ x iff the
depth of x in the k-canonical frame of L is less than or equal to i .

(b) For all k-formulas ϕ,

L[h + 1] ` ϕ ⇔ L `
∧
i≤h

(�∗(�∗ϕ→ Bi,k)→ Bi,k).

In particular, the inconsistent logic L[0] is locally tabular, hence for every
pretransitive L

L[1] ` ϕ iff L ` ♦∗�∗ϕ (1)

Kudinov, Sh, 2011: A more direct (syntactic) proof of (1).

There is a simple semantic explanation of (1) based on “maximality
property” of pretransitive canonical frames...
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IL[1] ` ϕ iff IL ` ¬¬ϕ, S4[1] ` ϕ iff S4 ` ♦�ϕ.

Proof. Immediate form the finite model property:
Every point in a finite poset sees a model of CL, a maximal point.

Likewise for S4 and S5.

For all pretransitive L, L[1] ` ϕ iff L ` ♦∗�∗ϕ. (1)

In general, no FMP... Instead, we have:

Lemma (Esakia-Fine lemma for pretransitive canonical frames)

If ϕ ∈ x ∈W , then R∗(x) ∩ ‖ϕ‖ has a maximal element.

Proof of (1). Immediate form the above maximality property: put ϕ = >.
Every point in the ω-canonical frame sees a model of L[1], a maximal
R∗-cluster.

L[h + 1] ` ϕ iff L ` tr(ϕ)

We can construct tr(·) for k-formulas whenever every point in the
k-canonical frame sees a model of L[h + 1]. This is true whenever L[h] is
k-tabular...
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Let F = (W , (Ri )i<n) be the k-canonical frame of a pretransitive logic L.

Let R =
⋃

i<n Ri , and let W [≤h] be the set of points of depth ≤ h.

F is h-heavy if every its point of depth > h is R∗-related to a point of
depth h.

Theorem

If L[h] is k-tabular, then:

1 Each element of W [≤h] is definable in F.

2 For i ≤ h, the set W [≤i ] is definable in F.

3 F is (h + 1)-heavy.

Let Bi,k define W [≤i ]. Then it is (almost) straightforward that

L[h + 1] ` ϕ ⇔ L `
∧
i≤h

(�∗(�∗ϕ→ Bi,k)→ Bi,k).
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local tabularity of finite-height extensions ⇒
top-heaviness of finitely generated canonical frames ⇒

translations for arbitrary finite height

k-tabularity of L[h] ⇒
(h+ 1)-heaviness of the k-generated canonical frame ⇒

translation for k-fragment of L[h + 1]
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Segerberg, 1971; Maksimova, 1975:
A transitive logic is locally tabular iff it is of finite height iff it is 1-tabular.

Shehtman, Sh, 2016:
Every 1-tabular logic is a pretransitive logic of finite height.

In general, the converse is not true!
Makinson, 1981:
There exists a pretransitive L s.t. none of the logics L[h], h > 0, are
1-tabular:
put L = [♦3p → ♦2p].

In general, k-tabularity of L[h] depends on h and k .

Example

Let L = [p → ♦p, ♦3p → ♦2p, �2♦2p → ♦2�2p].
Then L[1] ` p ↔ �p. Thus L[1] is locally tabular (and we have
translations from L[2] to L for all k < ω). But L[2] is not 1-tabular.
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k-tabularity ⇒ local tabularity?

Maksimova, 1975:
A unimodal transitive logic is locally tabular iff it is 1-tabular.

Shehtman, Sh, 2016:
This equivalence holds for many others families of modal logics.

But it does not hold in general...

Theorem

There exists a unimodal 1-tabular logic which is not locally tabular.

Proof.

Let F = (ω + 1,R), where xRy iff x ≤ y or x = ω.
1-tabularity of the logic of F is a straightforward exercise.

Lemma (Shehtman, Sh, 2016) If the logic of a frame is locally tabular,
then the logic of any its subframe is locally tabular.

The restriction of the cluster (ω + 1,R) onto ω is the frame (ω,≤),
which is of infinite height. Thus Log (ω + 1,R) is not locally tabular.
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1-tabularity does not imply local tabularity.

Question

It is unknown whether 2-tabularity of a modal logic implies its local
tabularity.
At least, does k-tabularity imply local tabularity, for some fixed k for all
modal logics?

The same questions are open in the intuitionistic case.

Thank you!



1-tabularity does not imply local tabularity.

Question

It is unknown whether 2-tabularity of a modal logic implies its local
tabularity.
At least, does k-tabularity imply local tabularity, for some fixed k for all
modal logics?

The same questions are open in the intuitionistic case.

Thank you!



1-tabularity does not imply local tabularity.

Question

It is unknown whether 2-tabularity of a modal logic implies its local
tabularity.
At least, does k-tabularity imply local tabularity, for some fixed k for all
modal logics?

The same questions are open in the intuitionistic case.

Thank you!



Glivenko’s theorem in superintuitionistic, modal, and intuitionistic modal
logics:

V. Glivenko, Sur quelques points de la logique de M. Brouwer, 1929

K. Matsumoto, Reduction theorem in Lewis’s sentential calculi, 1955

V. Rybakov, A modal analog for Glivenko’s theorem and its applications,
1992

G. Bezhanishvili, Glivenko type theorems for intuitionistic modal logics,
2001

A. Kudinov and Sh, Finite model property of pretransitive analogs of S5,
2011

T. Litak, M. Polzer, and U. Rabenstein, Negative Translations and Normal
Modality , 2017

...

This talk:
Sh, Glivenko’s theorem, finite height, and local finiteness
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