A POLYLOGARITHMIC MEASURE ASSOCIATED WITH A PATH ON \(\mathbb{P}^1 \setminus \{0, 1, \infty\} \) AND A \(p \)-ADIC HURWITZ ZETA FUNCTION

ZDZISLAW WOJTKOWIAK

Contents

0. Introduction 1
1. An example of a measure on \(\mathbb{Z}_p \) 3
2. Action of the complex conjugation on measures 6
3. Measures associated with roots of unity 7
References 11

Abstract. With every path on \(\mathbb{P}^1 \setminus \{0, 1, \infty\} \) there is associated a measure on \(\mathbb{Z}_p \). The group \(\mathbb{Z}_p^\times \) acts on measures. We consider two measures. One measure is associated to a path from \(0 \) to a root of unity \(\xi \) of order prime to \(p \). Another measure is associated to a path from \(0 \) to \(\xi^{-1} \) and next it is acted by \(-1 \in \mathbb{Z}_p^\times \). We show that the sum of these measures can be defined in a very elementary way. Integrating against this sum of measures we get \(p \)-adic Hurwitz zeta functions constructed previously by Shiratani.

0. Introduction

Let \(K \) be a number field, let \(z \in \mathbb{P}^1(K) \setminus \{0, 1, \infty\} \) and let \(\gamma \) be a path on \(\mathbb{P}^1_K \setminus \{0, 1, \infty\} \) from \(0 \) to \(z \), i.e. an isomorphism of the corresponding fiber functors. Let \(p \) be a fixed prime number. The Galois group \(G_K \) acts on \(\pi_1(\mathbb{P}^1_K \setminus \{0, 1, \infty\}, \overrightarrow{01}) \) – the pro-\(p \) étale fundamental group. Let \(\mathbb{Q}_p\{\{X, Y\}\} \) be the \(\mathbb{Q}_p \)-algebra of non-commutative formal power series in two non-commuting variables \(X \) and \(Y \). Let \(E : \pi_1(\mathbb{P}^1_K \setminus \{0, 1, \infty\}, \overrightarrow{01}) \rightarrow \mathbb{Q}_p\{\{X, Y\}\} \) be the continuous multiplicative embedding given by \(E(x) = \exp X \) and \(E(y) = \exp Y \), where \(x \) and \(y \) are standard generators of \(\pi_1(\mathbb{P}^1_K \setminus \{0, 1, \infty\}, \overrightarrow{01}) \). For any \(\sigma \in G_K \) we define

\[
\tilde{f}_\gamma(\sigma) := \gamma^{-1} \cdot \sigma(\gamma) \in \pi_1(\mathbb{P}^1_K \setminus \{0, 1, \infty\}, \overrightarrow{01})
\]

and

\[
\Lambda_\gamma(\sigma) := E(\tilde{f}_\gamma(\sigma)) \in \mathbb{Q}_p\{\{X, Y\}\}.
\]

Date: February 3, 2015.
In the special case of the path π from 01 to 10, the element $f_\pi(\sigma)$ was studied by Ihara and his students (see [4] and more other papers), Deligne (see [1]), Grothendieck. The coefficients of the power series $\Lambda\pi(\sigma)$ are analogues of the multizeta numbers studied already by Euler. For an arbitrary path γ the coefficients of the power series $\Lambda\gamma(\sigma)$ are analogues of values of iterated integrals evaluated at z.

Observe that
\[
\Lambda\gamma(\sigma) \equiv 1 + l_\gamma(z)(\sigma)X \mod I^2 + (Y)
\]
for a certain $l_\gamma(z)(\sigma) \in \mathbb{Z}_p$, where I is the augmentation ideal of $\mathbb{Q}_p\{\{X,Y\}\}$ and (Y) is the principal ideal generated by Y. Let us set
\[
\Delta\gamma(\sigma) := \exp(-l_\gamma(z)(\sigma)X) \cdot \Lambda\gamma(\sigma).
\]

One possible way to calculate (some) coefficients of the power series $\Lambda\pi(\sigma)$ and some other power series $\Lambda\gamma(\sigma)$ is to use symmetries of $\mathbb{P}_Q^1 \setminus \{0,1,\infty\}$, i.e. the so-called Drinfeld-Ihara relations (see [3] and [5]). For example in [11], we have calculated even polylogarithmic coefficients of the power series $\Lambda\pi(\sigma)$ using the symmetries of $\mathbb{P}_Q^1 \setminus \{0,1,\infty\}$.

In [8] the authors have constructed a measure on \mathbb{Z}_p for any path γ and expressed the k-th polylogarithmic coefficient of the power series $\log\Delta\gamma(\sigma)$ as integrals of the polynomial x^{k-1} against this measure recovering the old result of O. Gabber (see [2]). Let us denote this measure by $K(z)_\gamma$.

Now we shall describe the main result of this note. Let m be a positive integer not divisible by p. Let us set
\[
\xi_m = \exp\left(\frac{2\pi \sqrt{-1}}{m}\right).
\]

Let $0 < i < m$. Further we chose paths β_i (resp. β_{m-i}) on $\mathbb{P}_Q^1 \setminus \{0,1,\infty\}$ from 01 to ξ_m (resp. ξ_m^{-i}) such that $l_{\beta_i}(\xi_m^i) = 0$ and $l_{\beta_{m-i}}(\xi_m^{m-i}) = 0$.

In [12] using the symmetry $\bar{z} \mapsto 1/\bar{z}$ of $\mathbb{P}_Q^1 \setminus \{0,1,\infty\}$ we have shown that the polylogarithmic coefficient in degree k of the formal power series
\[
\log\Lambda_{\beta_{m-i}}(\sigma) + (-1)^i \log\Lambda_{\beta_i}(\sigma)
\]
is equal $\frac{B_k(\chi^i)(1 - \chi^k(\sigma))}{k!}$, where $B_k(X)$ is the k-th Bernoulli polynomial and $\chi : G_{\mathbb{Q}(\mu_m)} \to \mathbb{Z}_p^\times$ is the cyclotomic character (see [12, Theorem 10.2]). In this paper we shall calculate the same polylogarithmic coefficients using the measure
\[
K(\xi_m^{m-i})_{\beta_{m-i}} + i(K(\xi_m^i)_{\beta_i}),
\]
where i is the complex conjugation acting on measures. To calculate these measures we use the symmetry $\bar{z} \mapsto 1/\bar{z}$ of the tower of coverings
\[
\mathbb{P}_Q^1 \setminus \{0,\infty\} \cup \mu_p \cdot \mathbb{P}_Q^1 \setminus \{0,1,\infty\}, \ \bar{z} \mapsto \bar{z}^p,
\]
of $\mathbb{P}_Q^1 \setminus \{0,1,\infty\}$. However in contrast with the calculations in [12] we need to work only with terms in degree 1. We show that the measure $K(\xi_m^{m-i})_{\beta_{m-i}} + i(K(\xi_m^i)_{\beta_i})$ is the sum of the Bernoulli measure $E_{1,\chi}$ (see [6, the formula E.1 on page 38]) and the measure we denote by $\mu_{\chi}(\xi_m^i/m)$. The definition of the measure $\mu_{\chi}(\xi_m^i/m)$ is very elementary and perhaps it is well known. From this it follows immediately the formula for the k-th polylogarithmic coefficient of the power series (1). The measure we got, allows to get the p-adic Hurwitz zeta functions as Mellin transform in the
same way as the p-adic L-functions are the Mellin transforms of the measure $\psi E_{1,c}$, where ψ is a character on \mathbb{Z}_p^\times (see [6, Chapter 4]).

1. An example of a measure on \mathbb{Z}_p

This section can be seen as an attempt to construct a measure on \mathbb{Z}_p which to a subset $a + p^n\mathbb{Z}_p$ associates $1/p^n$. We found the measure in question studying Galois actions on torsors of paths (see section 3). The measure is elementary and we think that it should be known.

If $a \in \mathbb{Z}_p$ and $a = \sum_{i=0}^{\infty} \alpha_i p^i$ with $0 \leq \alpha_i \leq p - 1$ then we set

$$v_n(a) := \sum_{i=0}^{n} \alpha_i p^i \quad \text{and} \quad t_{n+1}(a) := \frac{a - v_n(a)}{p^{n+1}}.$$

Let us fix a positive integer $m > 1$. For $k \in \mathbb{Q}^\times$, $k = \frac{a}{b}$ with $a, b \in \mathbb{Z}$ and $(b, m) = 1$ we define

$$[k]_m \in \mathbb{N}$$

by the following two conditions

$$0 \leq [k]_m < m \quad \text{and} \quad b[k]_m \equiv a \mod m.$$

Let us assume that p does not divide m. Let i be such that $0 < i < m$. Observe that

$$[p^{-r}[ip^{-n}]]_m = [ip^{-(n+r)}]_m.$$

We define a sequence of integers

$$(k_r(i))_{r \in \mathbb{N}}$$

by the equalities

$$p[ip^{-r}]_m = [ip^{-(r-1)}]_m + k_{r-1}(i)m.$$

Observe that

$$0 < \frac{[ip^{-(r-1)}]_m}{m} < 1 \quad \text{and} \quad 0 < \frac{p[ip^{-r}]}{m} < p.$$

Hence it follows that

$$0 \leq k_r(i) \leq p - 1$$

for all $r \geq 0$. Applying successively the formula (3) we get

$$p^n[ip^{-n}]_m = i + \left(\sum_{\alpha=0}^{n-1} k_{\alpha}(i)p^\alpha\right)m.$$

It follows from (4) that

$$\frac{-i}{m} = \sum_{\alpha=0}^{\infty} k_{\alpha}(i)p^\alpha$$

and

$$\frac{i}{m} = 1 + \sum_{\alpha=0}^{\infty} (p - 1 - k_{\alpha}(i))p^\alpha.$$

Another consequence of (4) is the equality

$$t_{\alpha}\left(\frac{-i}{m}\right) = \frac{-[ip^{-n}]_m}{m}.$$
For any positive integer \(a\) such that \(0 \leq a < p^n\) we set
\[
\delta_n(a) := \begin{cases}
-1 & \text{if } a \geq 1 + \sum_{\alpha=0}^{n-1}(p-1-k_\alpha(i))p^\alpha, \\
0 & \text{if } a < 1 + \sum_{\alpha=0}^{n-1}(p-1-k_\alpha(i))p^\alpha.
\end{cases}
\]

Definition-Proposition 1.1. The function from the open-closed subsets of \(\mathbb{Z}_p\) to \(\mathbb{Z}_p\) defined by the formula
\[
\mu\left(\frac{i}{m}\right)(a + p^n\mathbb{Z}_p) := \left[\frac{ip-n}{m}\right] + \delta_n(a)
\]
for \(0 \leq a < p^n\) is a measure.

Proof. Let \(0 \leq a < p^n\). We have
\[
\sum_{b=0}^{p-1} \mu\left(\frac{i}{m}\right)(a + bp^n + p^n+1\mathbb{Z}_p) = \sum_{b=0}^{p-1} \left(\frac{[ip-(n+1)]}{m} + \delta_{n+1}(a + bp^n)\right) =
\]
\[
\left[\frac{ip-n}{m}\right] + \sum_{b=0}^{p-1} \delta_{n+1}(a + bp^n) = \left[\frac{ip-n}{m}\right] + \sum_{b=0}^{p-1} \delta_{n+1}(a + bp^n)
\]
by the equality(3). Observe that
\[
\sum_{b=0}^{p-1} \delta_{n+1}(a + bp^n) := \begin{cases}
-k_n(i) - 1 & \text{if } a \geq 1 + \sum_{\alpha=0}^{n-1}(p-1-k_\alpha(i))p^\alpha, \\
-k_n(i) & \text{if } a < 1 + \sum_{\alpha=0}^{n-1}(p-1-k_\alpha(i))p^\alpha.
\end{cases}
\]
Hence finally we get \(\sum_{b=0}^{p-1} \mu\left(\frac{i}{m}\right)(a + bp + p^n+1\mathbb{Z}_p) = \left[\frac{ip-n}{m}\right] + \delta_n(a) = \mu\left(\frac{i}{m}\right)(a + p^n\mathbb{Z}_p).\)

Proposition 1.2. For \(k \geq 1\) we have
i)
\[
\int_{\mathbb{Z}_p} x^{k-1} d\mu\left(\frac{i}{m}\right)(x) = \frac{1}{k} \left(B_k\left(\frac{i}{m}\right) - B_k \right),
\]

ii)
\[
\int_{\mathbb{Z}_p} x^{k-1} d\mu\left(\frac{i}{m}\right)(x) = \frac{1}{k} \left(B_k\left(\frac{i}{m}\right) - B_k \right) - \frac{p^{k-1}}{k} \left(B_k\left(\left[\frac{ip-n}{m}\right]\right) - B_k \right).
\]

Proof. First we shall prove the formula i). Let us calculate the Riemann sum
\[
\sum_{\alpha=0}^{p^n-1} \alpha^{k-1} \mu\left(\frac{i}{m}\right)(\alpha + p^n\mathbb{Z}_p) = \sum_{\alpha=0}^{p^n-1} \alpha^{k-1} \left(\frac{[ip-n]}{m}\right) + \delta_n(\alpha) =
\]
\[
\left[\frac{ip-n}{m}\right] \sum_{\alpha=0}^{p^n-1} \alpha^{k-1} - \sum_{\alpha=0}^{p^n-1} \alpha^{k-1} + \sum_{\alpha=0}^{v_{n-1}(\frac{i}{m})-1} \alpha^{k-1}.
\]
Observe that
\[
\sum_{\alpha=0}^{v_{n-1}(\frac{i}{m})-1} \alpha^{k-1} = \frac{1}{k} \left(B_k(v_{n-1}(\frac{i}{m})) - B_k \right)
\]
and it tends to \(\frac{1}{k} \left(B_k\left(\frac{i}{m}\right) - B_k \right)\) if \(n\) tends to \(\infty\). Hence the formula i) of the proposition follows because \(\sum_{\alpha=0}^{p^n-1} \alpha^{k-1}\) tends to \(0\) if \(n\) tends to \(\infty\).
Observe that
\[
\int_{\mathbb{Z}_p} x^{k-1} d\mu \left(\frac{i}{m} \right)(x) = \int_{\mathbb{Z}_p} x^{k-1} d\mu \left(\frac{i}{m} \right)(x) - \int_{\mathbb{Z}_p} x^{k-1} d\mu \left(\frac{i}{m} \right)(x).
\]
We shall calculate Riemann sums for the integral \(\int_{\mathbb{Z}_p} x^{k-1} d\mu \left(\frac{i}{m} \right)(x) \). We have
\[
\sum_{\alpha=0}^{p^\alpha - 1} \frac{p^\alpha - 1}{\mu} \mu (p\alpha + p^n \mathbb{Z}_p) = \sum_{\alpha=0}^{p^\alpha - 1} p^k \alpha^{k-1} \frac{[ip^{n-1}]m}{m} + \sum_{\alpha=0}^{p^\alpha - 1} p^k \alpha^{k-1} \delta_{n+1}(p\alpha).
\]
The first sum tend to 0 if \(n \) tends to \(\infty \). Observe that
\[
\sum_{\alpha=0}^{p^\alpha - 1} p^k \alpha^{k-1} \delta_{n+1}(p\alpha) = \sum_{0<\alpha<p\alpha, \alpha \geq v_n \left(\frac{1}{m} \right)} p^k \alpha^{k-1} (-1) = \sum_{\alpha=0}^{p^\alpha - 1} p^k \alpha^{k-1} + \sum_{0<\alpha<p\alpha, \alpha < v_n \left(\frac{1}{m} \right)} p^k \alpha^{k-1}.
\]
Let \(0 \leq \beta_0 < p \) be such that \(v_n \left(\frac{1}{m} \right) \equiv \beta_0 \) modulo \(p \). Then
\[
v_n - 1 \left(\frac{[ip^{n-1}]m}{m} \right) = \begin{cases} 1 + \frac{1}{p} (v_n \left(\frac{1}{m} \right) - \beta_0) & \text{if } \beta_0 \neq 0, \\ \frac{1}{p} v_n \left(\frac{1}{m} \right) & \text{if } \beta_0 = 0. \end{cases}
\]
Hence it follows that
\[
\sum_{0<\alpha<p\alpha, \alpha \geq v_n \left(\frac{1}{m} \right)} p^k \alpha^{k-1} = p^k - \sum_{\alpha=0}^{p^\alpha - 1} v_n - 1 \left(\frac{[ip^{n-1}]m}{m} \right).
\]
If \(n \) tends to \(\infty \) the last sum tends to \(p^k \frac{1}{k} (B_k \left(\frac{[ip^{n-1}]m}{m} \right) - B_k) \). Hence the proof of the formula ii) is finished.

If \(c \in \mathbb{Z}_p \setminus \mu_{p-1} \) we define

(6) \[
\mu_c \left(\frac{i}{m} \right) := \mu \left(\frac{i}{m} \right) - c \mu \left(\frac{i}{m} \right) \circ c^{-1}.
\]
Then we have

(7) \[
\frac{1}{1 - c^k} \int_{\mathbb{Z}_p} x^{k-1} d\mu_c \left(\frac{i}{m} \right)(x) = \frac{1}{k} (B_k \left(\frac{i}{m} \right) - B_k).
\]

Corollary 1.3. Let \(P : \mathbb{Z}_p[[\mathbb{Z}_p]] \to \mathbb{Z}_p[[T]] \) be the Iwasawa isomorphism given by \(P(1) = 1 + T \). Then

\[
P(\mu \left(\frac{i}{m} \right))(T) = \frac{(1 + T)^{\frac{1}{m}} - 1}{T}
\]
and
\[
P(\mu_c \left(\frac{i}{m} \right)) = \frac{(1 + T)^{\frac{1}{m}} - 1}{T} - c \left((1 + T)^{\frac{1}{m}} - 1 \right) \frac{1}{(1 + T)^c - 1}.
\]

Proof. The power series \(P(\mu \left(\frac{i}{m} \right))(\exp X - 1) \) is equal \(\sum_{k=0}^{\infty} \left(\int_{\mathbb{Z}_p} x^{k} d\mu \left(\frac{i}{m} \right)(x) \right) X^k \).
Hence by the point i) of Proposition 1.2 it is equal

\[
\sum_{k=0}^{\infty} \frac{1}{(k+1)!} (B_{k+1} \left(\frac{i}{m} \right) - B_{k+1}) X^k.
\]
It follows from the definition of the Bernoulli numbers and the Bernoulli polynomials that this power series is equal \(\exp \frac{X}{1 - X} \). Replacing \(X \) by \(1 + T \) we get the power series \(P(\mu(\frac{1}{m}))(T) \).

We denote by
\[\omega : \mathbb{Z}_p^\times \to \mu_{p-1} \subset \mathbb{Z}_p^\times \]
the Teichmüller character. For \(x \in \mathbb{Z}_p^\times \) we set
\[[x] := x\omega(x)^{-1}. \]

Let us define
\[\hat{H}_p(1 - s, \omega^b, \frac{i}{m}) := \int_{\mathbb{Z}_p^\times} [x]^s x^{-1} \omega(x)^b d\mu(\frac{i}{m})(x). \]

Proposition 1.4. Let \(k \equiv b \mod p - 1 \). Then
\[\hat{H}_p(1 - k, \omega^b, \frac{i}{m}) = \frac{1}{k} (B_k(\frac{i}{m}) - B_k) - \frac{p^{k-1}}{k} (B_k(\frac{[ip]^{-1}}{m}) - B_k). \]

Proof. We have
\[\hat{H}_p(1 - k, \omega^b, \frac{i}{m}) = \int_{\mathbb{Z}_p^\times} [x]^k x^{-1} \omega(x)^b d\mu(\frac{i}{m})(x) = \int_{\mathbb{Z}_p^\times} x^{k-1} d\mu(\frac{i}{m})(x). \]

Hence the proposition follows from the formula ii) of Proposition 1.2. \(\square \)

Remark 1.5. A function closely related to our function \(\hat{H}_p(1 - s, \omega^b, \frac{i}{m}) \) appears in a paper of Shiratani (see [10, Theorem 1, case \(p \nmid f \)]).

2. Action of the complex conjugation on measures

We define an action of \(\mathbb{Z}_p^\times \) on the group ring \(\mathbb{Z}_p[\mathbb{Z}_p] \) by the formula
\[\alpha(\sum_{i=1}^n a_i(x_i)) = \alpha \sum_{i=1}^n a_i(\alpha^{-1} x_i) \]
and we extend by continuity to the action of \(\mathbb{Z}_p^\times \) on \(\mathbb{Z}_p[[\mathbb{Z}_p]] \). The action of \(-1 \in \mathbb{Z}_p^\times \) we denote by \(\iota \). Then
\[\mathbb{Z}_p[[\mathbb{Z}_p]] = \mathbb{Z}_p[[\mathbb{Z}_p]]^+ \oplus \mathbb{Z}_p[[\mathbb{Z}_p]]^- , \]
where \(\iota \) acts on \(\mathbb{Z}_p[[\mathbb{Z}_p]]^+ \) (resp. on \(\mathbb{Z}_p[[\mathbb{Z}_p]]^- \)) as the identity (resp. as the multiplication by \(-1 \)). For any \(\mu \in \mathbb{Z}_p[[\mathbb{Z}_p]] \) we have the decomposition
\[\mu = \mu^+ + \mu^- , \]
where \(\mu^+ = \frac{1}{2}(\mu + \iota(\mu)) \in \mathbb{Z}_p[[\mathbb{Z}_p]]^+ \) and \(\mu^- = \frac{1}{2}(\mu - \iota(\mu)) \in \mathbb{Z}_p[[\mathbb{Z}_p]]^- \). Observe that
\[\int_{\mathbb{Z}_p} x^{k-1} d\mu = (-1)^k \int_{\mathbb{Z}_p} x^{k-1} d\mu . \]

Hence it follows
\[\int_{\mathbb{Z}_p} x^{k-1} d\mu^+ := \begin{cases} 0 & \text{for } k \text{ odd}, \\ \int_{\mathbb{Z}_p} x^{k-1} d\mu & \text{for } k \text{ even} \end{cases} \]
and

\[(10) \quad \int_{\mathbb{Z}_p} x^{k-1} d\mu^- := \begin{cases} \int_{\mathbb{Z}_p} x^{k-1} d\mu & \text{for } k \text{ odd}, \\ 0 & \text{for } k \text{ even}. \end{cases} \]

In [12, Proposition 10.5] we have shown that

\[(11) \quad \int_{\mathbb{Z}_p} x^{k-1} d(K(\xi_m^{-i}) + K(\xi_m^i)) = \frac{1}{k} B_k(\frac{i}{m})(1 - \chi^k) \text{ for } k \text{ even} \]

and

\[(12) \quad \int_{\mathbb{Z}_p} x^{k-1} d(K(\xi_m^{-i}) - K(\xi_m^i)) = \frac{1}{k} B_k(\frac{i}{m})(1 - \chi^k) \text{ for } k \text{ odd}. \]

Hence it follows from (9) and (10) that

\[(13) \quad \int_{\mathbb{Z}_p} x^{k-1} d((K(\xi_m^{-i}) + K(\xi_m^i))^+ + (K(\xi_m^{-i}) - K(\xi_m^i))^-) = \frac{1}{k} B_k(\frac{i}{m})(1 - \chi^k) \text{ for } k \geq 1. \]

Observe that

\[(K(\xi_m^{-i}) + K(\xi_m^i))^+ + (K(\xi_m^{-i}) - K(\xi_m^i))^-) = K(\xi_m^{-i}) + \iota(K(\xi_m^i)). \]

Hence we get

\[(14) \quad \int_{\mathbb{Z}_p} x^{k-1} d(K(\xi_m^{-i}) + \iota(K(\xi_m^i))) = \frac{1}{k} B_k(\frac{i}{m})(1 - \chi^k) \text{ for } k \geq 1. \]

The proof of the formulas (11) and (12) given in [12] is based on the symmetry $z \mapsto 1/z$ of $\mathbb{P}_1^1 \setminus \{0,1,\infty\}$ and the study of the polylogarithmic coefficients (at $Y^{X^{k-1}}$) of the power series $\Lambda_{\beta_i}(\sigma)$ and $\Lambda_{\beta_m-i}(\sigma)$. Recently, H. Nakamura (see [7]) got these formulas using directly the inversion formula from [9, section 6.3].

In this paper we calculate explicitly the measure $K(\xi_m^{-i}) + \iota(K(\xi_m^i))$. We use also the symmetry $z \mapsto 1/z$ of the tower of coverings

\[\mathbb{P}_1^1 \setminus \{0,1,\infty\} \cup \mu_{p^n} \rightarrow \mathbb{P}_1^1 \setminus \{0,1,\infty\}, \quad z \mapsto z^{p^n}\]

but only in degree 1.

The third possible method to calculate the measure $K(\xi_m^{-i}) + \iota(K(\xi_m^i))$ is to use the explicit formula for measures $K(z)$ (see [8, Proposition 3]). Compare the three different proofs of Proposition 5.13 in [9]. Two proofs are given in [9] and the third one in [12] (the second proof of Lemma 4.1.)

3. Measures associated with roots of unity

We set

\[\xi_r := \exp(\frac{2\pi \sqrt{-1}}{r})\]

for a natural number r. Let us set

\[V_n := \mathbb{P}_1^1 \setminus \{0,\infty\} \cup \mu_{p^n}\].

We recall that $\pi_1(V_n,0)$ - pro-p étale fundamental group - is free on generators x_n - loop around 0 - and $y_{n,i}$ - loops around $\xi_{p^n}^i$ for $0 \leq i < p^n$.
For each $0 < i < m$, let α_i be a path on $V_0 = \mathbb{P}^1_{\mathbb{Q}} \setminus \{0, 1, \infty\}$ from 0 to ξ^i_m which is the composition of an arc from 0 to $0\xi^i_m$ in an infinitesimal neighbourhood of 0 followed by the canonical path (straight line) from $0\xi^i_m$ to ξ^i_m.

Let us set

$$\beta_i := \alpha_i \cdot x^{-\frac{i}{m}}.$$

Observe that $l(\xi^i_{m})\beta_i = 0$. If we regard the path α_i as the path on V then we denote it by

$$n\alpha_i.$$

Then

$$\beta_i := n\alpha_i \cdot x^{-\frac{i}{m}}$$

is also a path on V_n. Let

$$\tilde{\beta}_i^n$$

(resp. $\tilde{\alpha}_i^n$) be the lifting of β_i (resp. α_i) to V_n starting from $0\tilde{\beta}_i^n$. Let $0 \leq j < p^n$. We denote by s^n_i a lifting of x^n_j to V_n starting from $0\tilde{\beta}_i^n$. Observe that s^n_i is a path on V_n from $0\tilde{\beta}_i^n$ to $0\tilde{\beta}_i^n P^n$. Let $0 < \xi$.

Lemma 3.1. We have

$$\tilde{\beta}_i^n = n\tilde{\beta}_i^{[ip^n]_m} = n\alpha_i^{[ip^n]_m} \cdot x_n^{-\frac{[ip^n]_m}{m}}.$$

Proof. Observe that the lifting of $x^{-\frac{i}{m}}$ to V_n is equal $s^n_{v^n_{n-1}(-\frac{i}{m})_m} x^n_{v^n_{n-1}(-\frac{i}{m})}$.

The lifting of α_i to V_n is a path (an arc) from 0 to $\xi := 0\xi^i_{m} P^n$ in the positive sense composed with the canonical path from ξ to $\xi^i_{m} P^n$. Hence the lifting of β_i is the composition of $s^n_{v^n_{n-1}(-\frac{i}{m})_m} x^n_{v^n_{n-1}(-\frac{i}{m})}$ with the lifting of α_i multiplied by $\xi^{v^n_{n-1}(-\frac{i}{m})}$. We have

$$\xi^{v^n_{n-1}(-\frac{i}{m})_m} \xi^{v^n_{n-1}(-\frac{i}{m}) + i} = \xi^{v^n_{n-1}(-\frac{i}{m}) + i}.$$

Observe that $0 \leq v^n_{n-1}(-\frac{i}{m})_m + i < p^n m$ and that p^n divides $v^n_{n-1}(-\frac{i}{m})_m + i$. Moreover we have $\frac{v^n_{n-1}(-\frac{i}{m})_m + i}{p^n} \cdot p^n \equiv i \pmod{m}$. Hence it follows that

$$\frac{v^n_{n-1}(-\frac{i}{m})_m + i}{p^n} = [ip^n]_m.$$

Therefore we get

$$-\frac{[ip^n]_m}{m} = -\frac{i}{m} + \frac{m}{m} = t_n(-\frac{i}{m}).$$

Hence it follows that the lifting of β_i is $n\alpha_i^{[ip^n]_m} \cdot x_n^{-\frac{[ip^n]_m}{m}}$. \hfill \square

To simplify the notation we set

$$r_n = [ip^n]_m \quad \text{and} \quad v^n_{n-1} = v^n_{n-1}(-\frac{i}{m}).$$

Then we have

$$\tilde{\beta}_i^n = n\alpha_r \cdot x_n^\frac{i}{m} \quad \text{and} \quad \tilde{\beta}_m = n\alpha_m - r_n \cdot x_n^\frac{i}{m} - 1.$$
Let $h : V_n \to V_n$ be given $1 \to 1/3$. Let p_n be the canonical path from $1 \to V_n$, t_n a path from 10 to $1 \times (\text{half circle in the positive sense in an infinitesimal neighbourhood of } 1)$ and $q_n = h(p_n)$. We set

$$\Gamma_n := q_n \cdot t_n \cdot p_n.$$

Lemma 3.2. We have

$$\rho_{m-i} = h(\rho_{m}) \cdot \Gamma_n \cdot z_{m} \cdot x_{n} \cdot y_{n-1} \cdot \ldots \cdot y_{n-v_{n-1}} \cdot x_{n}^{\kappa} - 1$$

in $\pi_1(V_n, 01)$.

Proof. One checks that $n \alpha_{m - r_n} = h(n \alpha_{r_n}) \cdot \Gamma_n \cdot x_{n} \cdot y_{n-1} \cdot \ldots \cdot y_{n-v_{n-1}}$. The formula of the lemma follows from Lemma 3.1. \hfill \square

Lemma 3.3. Let $\sigma \in G_{Q(\mu_n)}$. Then writing additively we have

$$\Gamma_n(\sigma) = \sum_{k=0}^{p^n-1} E_{0, \chi(\sigma)}^{(n)}(k)y_{n,k} \bmod (\pi_1(V_n, 01), \pi_1(V_n, 01)).$$

Proof. See the proof of Lemma 4.1 in [12] or the second proof of Proposition 5.13 in [9]. \hfill \square

It follows from Lemma 3.2 that

$$\Gamma_{m-i}^{(n)}(\sigma) = \Gamma_n \cdot h(\Gamma_{m-i}^{(n)}(\sigma)) \cdot \Gamma_n \cdot \Gamma_{m-i}^{(n)}(\sigma),$$

modulo $\pi_1(V_n, 01), \pi_1(V_n, 01))$. Hence writing the result additively we get

$$\sum_{k=0}^{p^n-1} K^{(n)}(\xi^{m-i}(\sigma)) (k) y_{n,k} = \sum_{k=0}^{p^n-1} K^{(n)}(\xi^{m-i}(\sigma)) (k) y_{n,k} + \sum_{k=0}^{p^n-1} E_{1, \chi(\sigma)}^{(n)}(k) y_{n,k} +$$

$$\sum_{k=0}^{p^n-1} (1 - \chi(\sigma)) \frac{[i p^n - n]}{m} y_{n,k} - \sum_{j=1}^{v_{n-1}(-\frac{i}{m})} y_{n,-j} + \chi(\sigma) \sum_{j=1}^{v_{n-1}(-\frac{i}{m})} y_{n,-[j \chi(\sigma)]p^n}$$

modulo $\pi_1(V_n, 01), \pi_1(V_n, 01))$. Observe that $v_{n-1}(\frac{i}{m}) = p^n - v_{n-1}(-\frac{i}{m})$. Hence the last two sums we can rewrite in the form

$$\sum_{j=v_{n-1}(-\frac{i}{m})}^{p^n-1} y_{n,j} + \chi(\sigma) \sum_{j=v_{n-1}(\frac{i}{m})}^{p^n-1} y_{n,[j \chi(\sigma)]p^n}.$$

Comparing coefficients at $y_{n,k}$ we get for $0 \leq k < p^n$

$$K^{(n)}(\xi^{m-i}(\sigma)) (k) - K^{(n)}(\xi^{m-i}(\sigma)) (-k) =$$

$$E_{0, \chi(\sigma)}^{(n)}(k) + \frac{[i p^n - n]}{m} \delta_n(k) - \chi(\sigma) \frac{[i p^n - n]}{m} + \chi(\sigma) \delta_n([\chi(\sigma) - 1]k_{p^n}) =$$

$$E_{1, \chi(\sigma)}^{(n)}(k) + \mu_{\chi(\sigma)}(\frac{i}{m})(k)$$

by the definition of the measure $\mu_{\chi(\sigma)}(\frac{i}{m})$.

\hfill \square
Theorem 3.5. Let \(m \) be a positive integer not divisible by \(p \) and let \(0 < i < m \). Then we have
\[
K(\xi_m^{-i})(\sigma) + \iota(K(\xi_m^i)(\sigma)) = E_{1,\chi(\sigma)} + \mu_{\chi(\sigma)}(\frac{i}{m}).
\]

Proof. The theorem follows from the formula (15).
\(\square \)

Corollary 3.6. Let \(\sigma \in G_{Q(\mu_m)} \) be such that \(\chi(\sigma)^{p-1} \neq 1 \). Then we have

i) \[
\frac{1}{1 - \chi(\sigma)^k} \int_{\mathbb{Z}_p} x^{k-1} d(K(\xi_m^{-i})(\sigma) + \iota(K(\xi_m^i)(\sigma))) = \frac{B_k(\frac{i}{m})}{k},
\]

ii) \[
P(K(\xi_m^{-i})(\sigma) + \iota(K(\xi_m^i)(\sigma)))(T) = \frac{(1 + T)^{\frac{1}{m}}}{(1 + T)^{\chi(\sigma)^{\frac{1}{m}}}} - \frac{\chi(\sigma)(1 + T)^{\chi(\sigma)^{\frac{1}{m}}}}{(1 + T)^{\chi(\sigma) - 1}}.
\]

Proof. The point i) of the corollary follows from Theorem 3.5 and the formula (7). The point ii) follows immediately from Corollary 1.8 and the equality \(P(E_{1,\chi(\sigma)})(T) = \frac{1}{T} - \frac{\chi(\sigma)^i}{(1 + T)^{\chi(\sigma) - 1}} \).
\(\square \)

Now we define
\[
L^B(1 - s, (\xi_m^{-i}) + \iota(\xi_m^i); \sigma) := \frac{1}{1 - \omega(\chi(\sigma))^2[\chi(\sigma)]^k} \int_{\mathbb{Z}_p^*} [x]^y x^{-1} \omega(x)^\beta d((K(\xi_m^{-i}) + \iota(K(\xi_m^i)))(\sigma)).
\]

Theorem 3.7. Let \(\sigma \in G_{Q(\mu_m)} \) be such that \(\chi(\sigma)^{p-1} \neq 1 \).

i) Let \(k \equiv \beta \) modulo \(p - 1 \). Then
\[
L^B(1 - k, (\xi_m^{-i}) + \iota(\xi_m^i); \sigma) = \frac{1}{k} B_k(\frac{i}{m}) - p^{-1} \frac{1}{k} B_k([ip^{-1}]m).
\]

ii) Let \(\sigma, \sigma_1 \in G_{Q(\mu_m)} \) be such that \(\chi(\sigma)^{p-1} \neq 1 \) and \(\chi(\sigma_1)^{p-1} \neq 1 \). Then
\[
L^B(1 - s, (\xi_m^{-i}) + \iota(\xi_m^i); \sigma) = L^B(1 - s, (\xi_m^{-i}) + \iota(\xi_m^i); \sigma_1),
\]
i.e. the function \(L^B(1 - s, (\xi_m^{-i}) + \iota(\xi_m^i); \sigma) \) does not depend on \(\sigma \).

Proof. For \(k \equiv \beta \) modulo \(p - 1 \) we have
\[
L^B(1 - k, (\xi_m^{-i}) + \iota(\xi_m^i); \sigma) = \frac{1}{1 - \chi(\sigma)^k} \int_{\mathbb{Z}_p^*} x^{k-1} d(\mu_{\chi(\sigma)}(\frac{i}{m}) + E_{1,\chi(\sigma)})
\]
by Theorem 3.5. It follows from [6, Theorem 2.3] that \(\frac{1}{\chi(\sigma)^{k-1}} \int_{\mathbb{Z}_p^*} x^{k-1} dE_{1,\chi(\sigma)} = -\frac{1}{k} B_k \). The “periodicity” property \(E_{1,\chi(\sigma)}^{(n)}(i) = E_{1,\chi(\sigma)}^{(n+1)}(pi) \) of the measure \(E_{1,\chi(\sigma)} \) implies that
\[
\frac{1}{1 - \chi(\sigma)^k} \int_{\mathbb{Z}_p^*} x^{k-1} dE_{1,\chi(\sigma)} = (1 - p^{-1}) \frac{1}{k} B_k.
\]

Integrating the function \(x^{k-1} \) against the measure \(\mu_{\chi(\sigma)}(\frac{i}{m}) \) we get
\[
\frac{1}{\chi(\sigma)^k - 1} \int_{\mathbb{Z}_p^*} x^{k-1} d\mu_{\chi(\sigma)}(\frac{i}{m})(x) =
\]
A POLYLOGARITHMIC MEASURE ASSOCIATED WITH A PATH

\[
\frac{1}{\chi(\sigma)^k - 1} \left(\int_{\mathbb{Z}_p^+} x^{k-1} d\mu(\frac{i}{m})(x) - \int_{\mathbb{Z}_p^+} x^{k-1} d(\chi(\sigma)\mu(\frac{i}{m}) \circ \chi(\sigma)^{-1})(x) \right).
\]

Observe that \(\int_{\mathbb{Z}_p^+} x^{k-1} d(\chi(\sigma)\mu(\frac{i}{m}) \circ \chi(\sigma)^{-1})(x) = \chi(\sigma)^k \int_{\mathbb{Z}_p^+} y^{k-1} d\mu(\frac{y}{m})(y)\) if we set \(\chi(\sigma)y = x\). It follows from Proposition 1.9 that

\[
\frac{1}{\chi(\sigma)^k - 1} \int_{\mathbb{Z}_p^+} x^{k-1} d\mu(\frac{i}{m})(x) = \frac{1}{k} \left(B_k(\frac{i}{m}) - B_k \right) - p^{k-1} \frac{1}{k} \left(B_k(\frac{[ip-1]m}{m}) - B_k \right).
\]

After the addition of (16) and (17) we get the point i) of the theorem.

Concerning the point ii) observe that the functions \(L^\beta (1-s, (\xi_m^{-i}) + i(\xi_m^i); \sigma)\) and \(L^\beta (1-s, (\xi_m^{-i}) + i(\xi_m^i); \sigma_1)\) coincide for \(k \equiv \beta\) modulo \((p-1)\). Hence these functions are equal because they are equal on a dense subset of \(\mathbb{Z}_p^n\). \(\square\)

References

Université de Nice-Sophia Antipolis
Département de Mathématiques
Laboratoire Jean Alexandre Dieudonné
U.R.A. au C.N.R.S., No 168
Parc Valrose – B.P. No 71
06108 Nice Cedex 2, France
E-mail address wojtkow@math.unice.fr
Fax number 04 93 51 79 74