Classification of variations of mixed Hodge structures I

Zdzisław Wojtkowiak

The plan of the paper.

0. Introduction.
1. Hodge representations.
2. Chain complexes.
3. Universal variation of mixed Hodge structures.
4. Canonical cocycle associated to a variation of mixed Hodge structures.
5. Classification of variations of mixed Hodge structures.
6. Classification of algebraic differential equations with regular singular points.
A. Cosimplicial spaces.
0. Introduction.

0.1. The purpose of this note is to study a classification of variation of mixed Hodge structures over a given complex variety \(X \). The starting point is the following well known result.

Let \(\tilde{X} \rightarrow X \) be a universal covering space over \(X \). The fundamental group \(\pi_1(X, x) \) acts on \(\tilde{X} \). Let \(V \) be a finite dimensional vector space over \(k \) and let \(\rho : \pi_1(X, x) \rightarrow \text{Aut}(X) \) be a representation. Then \(\tilde{X} \times_\rho V \rightarrow X \) is a local system of \(k \)-vector spaces over \(X \).

Theorem 0.1.1. The category of local systems of finite dimensional \(k \)-vector spaces over \(X \) and the category of representations of \(\pi_1(X, x) \) in finite dimensional \(k \)-vector spaces are equivalent.

Let \(G \) be a complex affine algebraic group. Let \(\pi : P \rightarrow X \) be a principal \(G \)-bundle equipped with an integrable connection \(\omega \). We assume that the image of the monodromy homomorphism \(\Theta : \pi_1(X, x) \rightarrow G \) is Zariski dense in \(G \). Let \(\mathcal{O}[G] \) be the ring of regular functions on \(G \). The group \(G \) acts on \(\mathcal{O}[G] \) on the left by \((g \cdot f)(t) := f(g^{-1}t)\). The associated vector bundle is the bundle \(\pi_*\mathcal{O}_P \rightarrow X \). We equip it with a connection \(\nabla_\omega \) induced by the connection \(\omega \). Let us denote the vector bundle \(\pi_*\mathcal{O}_P \rightarrow X \) by \(\mathcal{P} \). We assume that \(\mathcal{P} \) carries a variation of Hodge structures of weight 0 (the connection is \(\nabla_\omega \)) and that \(\mathcal{O}[G] \) carries a Hodge structure of weight 0. We assume that these Hodge structures are compatible with the multiplicative structures on \(\mathcal{P} \) and on \(\mathcal{O}[G] \), with the Hopf algebra structure on \(\mathcal{O}[G] \) and with the (co-) action of \(\mathcal{O}[G] \) on \(\mathcal{P} \).

Definition 0.1.2. Let \(V \) be a finite direct sum of Hodge structures \(V_i \) of weight \(n_i \). We say that

\[
\rho : V \rightarrow \mathcal{O}[G] \otimes V
\]

is a Hodge representation if \(\rho \) is a morphism of Hodge structures and

\[
(id_{\mathcal{O}[G]} \otimes \rho) \circ \rho = (\mu \otimes id_{V}) \circ \rho,
\]

where \(\mu \) is induced by a multiplication \(G \times G \rightarrow G \).

The group \(G \) acts on \(V \) \((G \ni g \rightarrow \rho(g) \in \text{End}(V))\). We form an associated vector bundle \(\mathcal{V}_\rho := (P \times_G V \rightarrow X) \). We shall see that \(\mathcal{V}_\rho \) carries a variation of Hodge structures.
Consider the diagonal action of G on $\mathcal{P} \otimes V^*$. Then $(\mathcal{P} \otimes V^*)^G$ is the bundle \mathcal{V}_ρ^*. The bundles $\mathcal{P} \otimes V^*$ and $\mathcal{P} \otimes V^* \otimes \mathcal{O}[G]$ carry variations of Hodge structures. The action of G on \mathcal{P} and V^* are given by Hodge representations (morphisms of variations of Hodge structures) $\mathcal{P} \to \mathcal{O}[G] \otimes \mathcal{P}$ and $V^* \to \mathcal{O}[G] \otimes V^*$. Hence the diagonal action of G on $\mathcal{P} \otimes V^*$ is given by a Hodge representation $\mathcal{P} \otimes V^* \to \mathcal{O}[G] \otimes \mathcal{P} \otimes V^*$. Observe that $(\mathcal{P} \otimes V^*)^G = \{ x \in \mathcal{P} \otimes V^* \mid \tau(x) = 1 \otimes x \}$. This implies that the vector bundle $\mathcal{V}_\rho^* = (\mathcal{P} \otimes V^*)^G$ carries a variation of Hodge structures. Hence also \mathcal{V}_ρ carries a variation of Hodge structures.

We denote by $HRep(\mathcal{O}[G])$ the category of Hodge representations of $\mathcal{O}[G]$. We denote by $V_{\mathcal{HRep}(\mathcal{O}[G])}^\mathcal{P}$ the category of variations of Hodge structures of the form $\mathcal{V}_\rho (\rho \in HRep(\mathcal{O}[G]))$.

Theorem 0.1.3. Assume that the Hodge structures $\mathcal{O}[G]$, V and the variation of Hodge structures \mathcal{P} carry polarizations and the structure morphisms are compatible with polarizations. Then the categories $HRep(\mathcal{O}[G])$ and $V_{\mathcal{HRep}(\mathcal{O}[G])}^\mathcal{P}$ are equivalent.

0.2. We denote by $VMHS_\mathcal{P}$ the category of variations of mixed Hodge structures \mathcal{V} over X such that $Gr^W_i \mathcal{V} \in V_{\mathcal{HRep}(\mathcal{O}[G])}^\mathcal{P}$ for each i. Our aim is to classify such variations. First we construct a universal variation of mixed Hodge structures.

The inclusion of simplicial sets $\partial \Delta[1] \hookrightarrow \Delta[1]$ induces a morphism of cosimplicial spaces $p^* : X^{\Delta[1]} \to X^{\partial \Delta[1]}$. Let $y \in X$. Let us set $(X, y)^{\Delta[1], 1} := p^* -1(\{ y \times X \}^\bullet)$, where $(y \times X)^\bullet$ is a constant cosimplicial space equal $y \times X$ in each degree. The sheaf \mathcal{P} is a sheaf of \mathcal{O}_X-algebras and the connection $\nabla : \mathcal{P} \to \Omega^1_X \otimes \mathcal{O}_X \mathcal{P}$ is multiplicative. Hence the relative twisted De Rham complexes form a complex of sheaves $\Omega^* := \Omega_{(X, y)^{\Delta[1], 1}} / (y \times X)^\bullet(\mathcal{P}^{\otimes (\bullet + 1)})$ on $(X, y)^{\Delta[1], 1}$. Applying a functor $R\pi^*$ we get a bicomplex of \mathcal{O}_X-modules on $y \times X$. Let t be a functor which to a bicomplex associates its total complex.

Theorem 0.2.1. We have

- **i)** The cohomology sheaves $H^i(tR\pi^* \Omega^*)$ carry a variation of mixed Hodge structures.
- **ii)** $H^0(tR\pi^* \Omega^*)$ is a sheaf of \mathcal{O}_X-algebras and the mixed Hodge structure is compatible with multiplication;
iii) Let \mathcal{H} be a fiber of $H^0(tRp_*\Omega^*)$ over (y,y). Then \mathcal{H} is a Hopf algebra, \mathcal{H} (co-)acts on $H^0(tRp_*\Omega^*)$ and the structure morphisms are morphisms of mixed Hodge structures.

0.3. Let $V \in VMHS_p$ and let V be a fiber of V over $y \in X$. Our aim is to construct a mixed Hodge representation

$$\tau_V : V \to \mathcal{H} \otimes V.$$

The following observation is crucial in the construction of τ_V. Let $L(z)$ and $C(z)$ be in $\Omega^1(X) \otimes \text{End}(V)$. Assume that $\varphi(z)$ satisfies an equation

$$d\varphi(z) + L(z)\varphi(z) = 0, \quad \varphi(y) = Id_V.$$

Then the sum of iterated integrals

$$F(z) := \varphi(z)(Id + \int \varphi(z)^{-1} \circ (-C(z)) \circ \varphi(z) + \int \varphi(z)^{-1} \circ (-C(z)) \circ \varphi(z), \varphi(z)^{-1} \circ (-C(z)) \circ \varphi(z) + \ldots)$$

satisfies an equation

$$dF(z) + (L(z) + C(z))F(z) = 0.$$

We assume for simplicity that the bundle V and the sub-bundles W_iV are trivial. The bundle $Gr_W V$ is obtained from a Hodge representation $\tau_\varphi \in \mathcal{O}[G] \otimes \text{End}(V)$. It is equipped with a connection form $L(z) \in \Omega^1(X) \otimes \text{End}(V)$. The bundle V is equipped with a connection form $L(z) + C(z)$ and $C(z)$ vanishes when passing to the associated graded bundle.

Let us set

0.3.1.

$$\tau_V := \tau_\varphi(g_0)^{-1} + \tau_\varphi(g_1)^{-1} \circ (-C(z_1)) \circ \tau_\varphi(g_1) \circ \tau_\varphi(g_0)^{-1} +$$

$$\tau_\varphi(g_2)^{-1} \circ (-C(z_2)) \circ \tau_\varphi(g_2) \circ \tau_\varphi(g_1)^{-1} \circ (-C(z_1)) \circ \tau_\varphi(g_1) \circ \tau_\varphi(g_0)^{-1} + \ldots$$

$$\in \oplus_{n=0}^{\infty} \Omega^n(y \times X^n \times y) \otimes \mathcal{O}[G]^{\otimes (n+1)} \otimes \text{End}(V).$$

Theorem 0.3.2. We have

i) τ_V is a cocycle (the corresponding cohomology class in $\mathcal{H} \otimes \text{End}(V)$ we denote also by τ_V).

ii) $\tau_V : V \to \mathcal{H} \otimes V$ is a mixed Hodge representation.
iii) If \mathcal{V} and \mathcal{V}' are isomorphic variations of mixed Hodge structures then $\tau_{\mathcal{V}} = \tau_{\mathcal{V}'} \in \mathcal{H} \otimes \text{End}(V)$.

We denote by $\text{MHRep}(\mathcal{H})$ the category of mixed Hodge representations of \mathcal{H}. We define a functor $F: VMHS_P \to \text{MHRep}(\mathcal{H})$ by $F(\mathcal{V}) := \tau_{\mathcal{V}}$. The functor F on morphisms is a restriction to fibers over y.

Theorem 0.3.3. Let X be a smooth complex projective variety. Then the functor

$$F : VMHS_P \to \text{MHRep}(\mathcal{H})$$

is an equivalence of categories.

Let X be a complement of a divisor with normal crossings in a smooth complex projective variety. Let $DE(X, \mathcal{P})_{alg}$ be the category of algebraic vector bundles \mathcal{V} over X equipped with a filtration $\{W_i \mathcal{V}\}$ and a regular integrable connection compatible with the filtration such that the associated graded vector bundle equipped with the induced connection is isomorphic to $P \times_\varphi V$ for some representation $\varphi : G \to \text{Aut}(V)$.

Theorem 0.3.4. The functor $F : DE(X, \mathcal{P})_{alg} \to \text{Rep}(\mathcal{H})$ is an equivalence of categories.
§1. Hodge representations.

1.0. Let G be a reductive algebraic group over a field of complex numbers C and let $\mathcal{O}[G]$ be a Hopf algebra of regular functions on G with structure morphisms $\mu : \mathcal{O}[G] \to \mathcal{O}[G] \otimes \mathcal{O}[G]$, $\iota : \mathcal{O}[G] \to \mathcal{O}[G]$ and $\varepsilon : \mathcal{O}[G] \to C$. We assume that $\mathcal{O}[G]$ carries a Hodge structure of weight 0 and that the structure morphisms and the multiplication $m : \mathcal{O}[G] \otimes \mathcal{O}[G] \to \mathcal{O}[G]$ are morphisms of Hodge structures.

Let V be vector space over C. We say that $\mathcal{O}[G]$ acts on V if there is a linear map $\tau_V : V \to \mathcal{O}[G] \otimes V$ such that

$$(\mu \otimes \text{id}_V) \circ \tau_V = (\text{id}_{\mathcal{O}[G]} \otimes \tau_V) \circ \tau_V \quad \text{and} \quad (\varepsilon \otimes \text{id}_V) \circ \tau_V = \text{id}_V.$$

We denote also by $\tau_V : G \to \text{Aut} V$ an action of G on V induced by an action τ_V of $\mathcal{O}[G]$ on V. Let $g \in G$. Then the automorphism $\tau_V(g)$ is the composition $e_{g^{-1}} \circ \tau_V$, where $e_{g^{-1}} : \mathcal{O}[G] \to C$ is the evaluation map at g^{-1}.

Assume that V carries a Hodge structures of weight n. We say that $\tau : V \to \mathcal{O}[G] \otimes V$ is an irreducible Hodge representation if τ is a morphism of Hodge structures and if the representation $\tau : G \to \text{Aut} V$ is irreducible. A direct sum of irreducible Hodge representations is called a Hodge representation of $\mathcal{O}[G]$. We denote by $\text{HRep}(\mathcal{O}[G])$ the category of Hodge representations of $\mathcal{O}[G]$.

Observe that any Hodge representation $\tau : V \to \mathcal{O}[G] \otimes V$ determines an element of Hodge type $(0, 0)$ in $\mathcal{O}[G] \otimes V^* \otimes V = \mathcal{O}[G] \otimes \text{End}(V)$. This element we shall also denote by τ.

1.1. Let X be a Zariski open in a smooth complex compact analytic variety. Let $\pi : P \to X$ be a principal G-bundle equipped with the integrable connection. Let $\Theta : \pi_1(X, x) \to G$ be the monodromy representation at $x \in X$. Assume that the image of Θ is Zariski dense in G. Assume that $\mathcal{P} := \pi_* \mathcal{O}_P \to X$ equipped with the connection deduced from the connection on $\pi : P \to X$ carries a variation of Hodge structures of weight 0 compatible with the action of $\mathcal{O}[G]$ equipped with a Hodge structure by 1.0. The choice of a point $x' \in \pi^{-1}(x)$ identifies \mathcal{P}_x, the fiber of \mathcal{P} over x, with $\mathcal{O}[G]$.

We identify a vector bundle with its sheaf of sections.
Lemma 1.1.1. Let G acts on $\mathcal{O}[G]$ on the left by $(gf)(t) := f(g^{-1}t)$. Then the associated vector bundle $P \times_G \mathcal{O}[G] \to X$ is $\pi_*\mathcal{O}_P \to X$.

Proof. One cheks that the transition functions are the same for both bundles.

Let $\tau : V \to \mathcal{O}[G] \otimes V$ be a Hodge representation. Hence the group G acts on V by $\tau : G \to \text{Aut} V$ and we can form an associated vector bundle $\mathcal{V}_\tau := (P \times_G V \to X)$. We shall see that \mathcal{V}_τ carries a variation of Hodge structures.

The group G acts on P on the right hence it acts on \mathcal{P} on the left. G acts also on V^* on the left by $(gf)(v) := f(g^{-1}v)$. Hence G acts diagonally on $\mathcal{P} \otimes V^*$.

Lemma 1.1.2. The vector bundle \mathcal{V}_τ is equal to the dual of the vector bundle $(\mathcal{P} \otimes V^*)^G$.

Proof. We can suppose that the Hodge representation τ is irreducible. Let $G \times G$ acts on $\mathcal{O}[G]$ by $((h,g)f)(t) := f(h^{-1}tg)$ and on $V^* \otimes V$ by $(h,g)(f(-) \otimes v) := f(h^{-1}-) \otimes g(v)$.

Then $V^* \otimes V$ is included in $\mathcal{O}[G]$ by a $G \times G$-equivariant map. Observe that for the diagonal action of G on $V^* \otimes V \otimes V^*$ given by $g(f_1 \otimes v \otimes f_2) := f_1 \otimes g(v) \otimes f_2 \circ g^{-1}$ we have $((V^* \otimes V) \otimes V^*)^G = V^* \otimes (V \otimes V^*)^G = V^* \otimes C = V^*$. Hence we get $(\mathcal{O}[G] \otimes V^*)^G = V^*$ and V^* is equipped with the action of G deduced from the action of G on $\mathcal{O}[G]$ given by $h(f)(t) = f(h^{-1}t)$. Therefore the transition functions of the bundles \mathcal{V}_τ^* and $(\mathcal{P} \otimes V^*)^G$ are the same.

Lemma 1.1.3. If τ_V and τ_W are Hodge representations then $\tau_{V \otimes W}$ and τ_{V^*} are Hodge representations.

Proof. Observe that $\tau_V \otimes \tau_W : V \otimes W \to (\mathcal{O}[G] \otimes V) \otimes (\mathcal{O}[G] \otimes W)$, $s : (\mathcal{O}[G] \otimes V) \otimes (\mathcal{O}[G] \otimes W) \to \mathcal{O}[G] \otimes \mathcal{O}[G] \otimes V \otimes W$ given by $s((f \otimes v) \otimes (g \otimes w)) = f \otimes g \otimes v \otimes w$ and $m \otimes id_{V \otimes W}$ are morphisms of Hodge structures. Hence their composition $\tau_{V \otimes W} := (m \otimes id_{V \otimes W}) \circ s \circ (\tau_V \otimes \tau_W)$ is also a morphism of mixed Hodge structures.

We shall show that τ_{V^*} is a Hodge representation. Let $\tau_V : V \to \mathcal{O}[G] \otimes V$. Then there is a finite dimensional Hodge structure $\mathcal{O}' \subset \mathcal{O}[G]$ such that τ_V factors through $V \to \mathcal{O}' \otimes V$.

Passing to dual vector spaces we get morphisms of Hodge structures $(\mathcal{O}')^* \otimes V^* \to V^*$. Hence $\tau_{V^*} : V^* \to (\mathcal{O}')^{**} \otimes V^* = \mathcal{O}' \otimes V^* \subset \mathcal{O}[G] \otimes V^*$ is also a morphism of Hodge structures.
Lemma 1.1.4. The vector bundle V carries a variation of Hodge structures.

Proof. The actions of G on P and on V^* are given by a morphism of variations of Hodge structures $P \rightarrow \mathcal{O}[G] \otimes P$ and a Hodge representation $\tau_{V^*} : V^* \rightarrow \mathcal{O}[G] \otimes V^*$. Hence a diagonal action of G on $P \otimes V^*$ is given by a morphism of variations of Hodge structures $P \rightarrow \mathcal{O}[G] \otimes P \otimes V^*$. Let $\iota : P \otimes V^* \rightarrow \mathcal{O}[G] \otimes P \otimes V^*$ be given by $\iota(x) = 1 \otimes x$, where $x \in P \otimes V^*$. Then ι is a morphism of variations of Hodge structures. Observe that $(P \otimes V^*)^G = \ker(\rho - \iota)$. This implies that the bundle $(P \otimes V^*)^G$ and hence also the bundle V carry a variation of Hodge structures.

1.1.5. Let $x \in X$. Then the choice of a point $x' \in \pi^{-1}(x)$ defines a bijection of G onto $P_x := \pi^{-1}(x)$. Let us denote by P_x the fiber of P over x. Then $P_x = \mathcal{O}[P_x]$. We assume that there is $x \in X$ and $x' \in \pi^{-1}(x)$ such that the induced morphism $P_x \rightarrow \mathcal{O}[G]$ is an isomorphism of Hodge structures.

Let $\tau : V \rightarrow \mathcal{O}[G] \otimes V$ be a Hodge representation. Then the fiber of the variation of Hodge structures \mathcal{V}_τ over x is V.

1.2. Polarization (see [Sch] p.217 and 220).

We assume that the Hodge structures $\mathcal{O}[G]$ and V and the variation of Hodge structures P carry polarizations and the structure morphisms, multiplication, actions of $\mathcal{O}[G]$ are compatible with polarizations. Then $(P \otimes V^*)^G$ also carries a polarization because it is a kernel of a morphism between polarized variations of Hodge structures. Hence \mathcal{V}_τ is a polarized variation of Hodge structures.

Further in this section a Hodge structure and a variation of Hodge structures are always polarized.

1.3. Let $\Theta : \pi_1(X, x) \rightarrow G$ be a homomorphism from 1.1. We denote by VHS_{Θ} the category of variations of Hodge structures \mathcal{V} over X such that the monodromy homomorphism at x

$$\pi_1(X, x) \rightarrow \text{Aut}V_x$$

is a composition

$$\tau_{\mathcal{V}} \circ \Theta : \pi_1(X, x) \rightarrow G \rightarrow \text{Aut}V_x,$$

where $\tau_{\mathcal{V}} : V_x \rightarrow \mathcal{O}[G] \otimes V_x$ is a Hodge representation.
Theorem 1.3.1. The categories $HRep(\mathcal{O}[G])$ and VHS_Θ are equivalent.

Proof. The functor $\mathcal{V} : HRep(\mathcal{O}[G]) \to VHS_\Theta$ associates to a Hodge representation τ a variation of Hodge structures \mathcal{V}_τ. Let $\mathcal{V} \in VHS_\Theta$ and let $\tau : V_x \to \mathcal{O}[G] \otimes V_x$ be a Hodge representation, which appears in the factorization of the monodromy homomorphism of \mathcal{V} at the point x. The variation of Hodge structures \mathcal{V}_τ has the monodromy homomorphism at x given by $\tau \circ \Theta : \pi_1(X,v) \to G \to \text{Aut}(V_x)$. Hence the monodromy homomorphisms of \mathcal{V} and \mathcal{V}_τ are equal. It follows from [Sch] Theorem 7.24 that the variations of Hodge structures \mathcal{V} and \mathcal{V}_τ are isomorphic.

It rests to show that the functor \mathcal{V} on morphisms

$$\text{Hom}_{HRep(\mathcal{O}[G])}(\tau, \tau') \to \text{Hom}_{VHS_\Theta}(\mathcal{V}_\tau, \mathcal{V}_{\tau'})$$

is bijective. It is clear that it is injective. Let $f : \mathcal{V}_\tau \to \mathcal{V}_{\tau'}$ be a morphism of variation of Hodge structures. Restricting f to the fiber over x we get $f_x : \text{Rep}_{\pi_1(X,x)}(V,V')$. The monodromy representations of $\pi_1(X,x)$ on V and V' factor through $\Theta : \pi_1(X,x) \to G$ because \mathcal{V}_τ and $\mathcal{V}_{\tau'}$ are associated vector bundles equipped with connections induced from the principal G-bundle $P \to X$. The image of Θ is Zariski dense in G. This implies that the diagram

$$
\begin{array}{ccc}
V & \xrightarrow{\tau} & \mathcal{O}[G] \otimes V \\
\downarrow f_x & & \downarrow \text{id}_{\mathcal{O}[G]} \otimes f_x \\
V' & \xrightarrow{\tau'} & \mathcal{O}[G] \otimes V'
\end{array}
$$

commutes. Let $\mathcal{V}(f_x) : \mathcal{V}_\tau \to \mathcal{V}_{\tau'}$ be a map induced by f_x. $\mathcal{V}(f_x)$ is a flat section of the variation of Hodge structures $\text{Hom}(\mathcal{V}_\tau, \mathcal{V}_{\tau'})$ and it is of Hodge type $(0,0)$ at x. It follows from [Sch] Corollary 7.23 that $\mathcal{V}(f_x)$ is a morphism of variations of Hodge structures. $\mathcal{V}(f_x)$ and f coincide at x, hence $\mathcal{V}(f_x) = f$ because two flat sections equal at one point are equal everywhere.
§2. Chain complexes.

2.0. Let X be a topological space. The inclusion of simplicial sets $\partial \Delta[1] \to \Delta[1]$ induces a morphism of cosimplicial spaces $p^\bullet : X^\Delta[1] \to X^\partial \Delta[1]$. Let $(x_2, x_1) \in X \times X$. We consider (x_2, x_1) as a constant cosimplicial space equal (x_2, x_1) in each degree. Then $p^{\bullet-1}(x_1, x_2)$ is a cosimplicial space equal $x_2 \times X^n \times x_1$ in degree n.

If Y is a smooth complex variety, we denote by $\Omega^*(Y)$ the De Rham complex of smooth complex valued differential forms on the smooth complex variety Y.

Let X be a smooth complex variety. Then $\bigoplus_{n=0}^\infty \Omega^*(x_2 \times X^n \times x_1)$ is a bicomplex with two commuting differentials. Let $T_1 := Tot(\bigoplus_{n=0}^\infty \Omega^*(x_2 \times X^n \times x_1))$ be the total complex of the bicomplex $\bigoplus_{n=0}^\infty \Omega^*(x_2 \times X^n \times x_1)$ (see [W1]).

2.1. Let $\partial : \Omega^*(X)^{\otimes n} \to \Omega(X)^{\otimes n}$ be the exterior differentiation. Let us define

$$\delta_i : \Omega^*(X)^{\otimes n} \to \Omega^*(X)^{\otimes (n-1)}$$

in the following way:

$$\delta_i(\omega_n \otimes \ldots \otimes \omega_1) := \omega_n \otimes \ldots \otimes \omega_{i+1} \wedge \omega_i \otimes \ldots \otimes \omega_1 \text{ for } i \neq 0, 1;$$

$$\delta_0(\omega_n \otimes \ldots \otimes \omega_1) := \omega_n \otimes \ldots \otimes \omega_2 \varepsilon_1(\omega_1);$$

$$\delta_n(\omega_n \otimes \ldots \otimes \omega_1) := \varepsilon_2(\omega_n)\omega_{n-1} \otimes \ldots \otimes \omega_1$$

where $\varepsilon_i(\omega) = e(x_i)$ if $\omega \in \Omega^0(X)$ and $\varepsilon_i(\omega) = 0$ if $\deg \omega > 0$. Let us set

$$\delta := \sum_{i=0}^n (-1)^i \delta_i : \Omega^*(X)^{\otimes n} \to \Omega(X)^{\otimes (n-1)}.$$

Then we have $\partial^2 = \delta^2 = \partial \delta - \delta \partial = 0$. Hence $\bigoplus_{n=0}^\infty \Omega^*(X)^{\otimes n}$ is a double complex. We define a total complex T_2 such that in degree k

$$(T_2)_k = Tot(\bigoplus_{n=0}^\infty \Omega^*(X)^{\otimes n})_k := \bigoplus_{k_1 + \ldots + k_i - i = k} \Omega^{k_1}(X) \otimes \ldots \otimes \Omega^{k_i}(X).$$

If $\omega \in \Omega^{k_1}(X) \otimes \ldots \otimes \Omega^{k_i}(X)$ then $d(\omega) := \partial \omega + (-1)^{k_1 + \ldots + k_i} \delta \omega$, where $k_i = \deg \omega_i$.

The obvious map $T_2 \to T_1$ is a quasi-isomorphism.
2.2. We shall compare the complex \((\text{Tot}(\bigoplus_{n=0}^{\infty} \Omega^*(X)^{\otimes n}, d))\) with the bar construction on \(\Omega^*(X)\), because certain constructions are more familiar in terms of the bar construction. We set
\[
B^{-n} = B^{-n}_{x_2, x_1} = B^{-n}_{x_2, x_1}(\Omega^*(X)) := \Omega^*(X)^{\otimes n}.
\]
The differential \(\partial' : B^{-n} \rightarrow B^{-n}\) is defined by
\[
\partial'(\omega_1 \otimes \ldots \otimes \omega_n) := \sum_{i=1}^{n} (-1)^{k_1 + \cdots + k_{i-1} + i} \omega_1 \otimes \cdots \partial \omega_i \otimes \cdots \otimes \omega_n.
\]
The differential \(\delta' : B^{-n} \rightarrow B^{-n+1}\) is defined by
\[
\delta'(\omega_1 \otimes \ldots \otimes \omega_n) := \varepsilon_2(\omega_1) \omega_2 \otimes \cdots \otimes \omega_n + \sum_{i=1}^{n-1} (-1)^{k_1 + \cdots + k_i + i} \omega_1 \otimes \cdots \otimes \omega_i \wedge \omega_{i+1} \otimes \cdots \otimes \omega_n + (-1)^{k_1 + \cdots + k_{n-1} + k_n} \omega_1 \otimes \cdots \otimes \omega_{n-1} \varepsilon_1(\omega_n).
\]
The bar construction on \(\Omega^*(X)\), \(B^\bullet_{x_2, x_1} = (B^\bullet_{x_2, x_1}(\Omega^*(X)), d')\) is the total complex of the bicomplex \(\bigoplus_{n=0}^{\infty} B^{-n}\) equipped with the differential \(d' := \partial' + \delta'\).

2.3. Let \(x_1, x_2, x_3 \in X\). We recall that there are chain maps
\[
M_{x_1 x_2 x_1} : B^\bullet_{x_3 x_1} \rightarrow B^\bullet_{x_3 x_2} \otimes B^\bullet_{x_2 x_1}
\]
given by
\[
M(\omega_1 \otimes \ldots \otimes \omega_n) = \sum_{i=0}^{n} (\omega_1 \otimes \ldots \otimes \omega_i) \otimes (\omega_{i+1} \otimes \ldots \otimes \omega_n)
\]
and
\[
\iota_{x_2 x_1} : B^\bullet_{x_2 x_1} \rightarrow B^\bullet_{x_1 x_2}
\]
given by
\[
\iota_{x_2 x_1}(\omega_1 \otimes \ldots \otimes \omega_n) := (-1)^{c(n) + 1 + \left(\frac{1}{2} + \frac{(-1)^n}{2}\right)(k_1 + \cdots + k_n)} + \sum_{i<j} k_i k_j \omega_n \otimes \ldots \otimes \omega_1
\]
where \(c(n) = 0\) if \(n \equiv 1, 2 \mod 4\) and \(c(n) = 1\) if \(n \equiv 3, 4 \mod 4\). Observe that \(c(n) + 1 + \left(\frac{1}{2} + \frac{(-1)^n}{2}\right)(k_1 + \cdots + k_n) + \sum_{i<j} k_i k_j = \frac{n(n+1)}{2} + (n+1)(k_1 + \cdots + k_n) + \sum_{i<j} k_i k_j\).

A \((p, q)\)-shuffle is a permutation \(\sigma\) of \((1, 2, \ldots, p + q)\) such that \(\sigma^{-1}(1) < \sigma^{-1}(2) < \ldots < \sigma^{-1}(p)\) and \(\sigma^{-1}(p + 1) < \sigma^{-1}(p + 2) < \ldots < \sigma^{-1}(p + q)\).
We define the shuffle product $*$ as

$$(\omega_1 \otimes \ldots \otimes \omega_p) * (\omega_{p+1} \otimes \ldots \otimes \omega_{p+q}) = \sum_{(p,q) \text{ shuffles } \sigma} (-1)^{A_{\sigma}} (\omega_{\sigma(1)} \otimes \omega_{\sigma(2)} \otimes \ldots \otimes \omega_{\sigma(p+q)})$$

where $A_{\sigma} = A_{\sigma}(\omega_1, \ldots, \omega_{p+q}) = \sum_{i<j \text{ and } \sigma(i) > \sigma(j)} (k_{\sigma(i)} - 1)(k_{\sigma(j)} - 1)$.

The shuffle product

$$* : B_{xy}^* \otimes B_{xy}^* \to B_{xy}^*$$

is a chain map. It is associative and $a * b = (-1)^{deg_a deg_b} b * a$.

Let $x = x_1 = x_2$. The inclusion $x \hookrightarrow X$ induces a chain map $e_x : B_{xx}(\Omega^*(X)) \to B_{xx}(\Omega^*(x))$.

Let C be a complex equal C in degree 0 and 0 in degree $n \neq 0$. The inclusion of C in $\Omega^0(X)$ induces

$$p_{x_2 x_1} : B_{x_2 x_1}^* (C) \to B_{x_2 x_1}^* (\Omega^*(X)).$$

Proposition 2.3.1. (see also [W1]). $B_{x_2 x_1}^* (\Omega^*(X))$ equipped with the shuffle product $*$ is a differential C-algebra. The maps M, t, e and p are homomorphisms of differential C-algebras. We have

$$(M_{x_4 x_3 x_2} \otimes id_{B_{x_2 x_1}^*}) \circ M_{x_4 x_2 x_1} = (id_{B_{x_4 x_3}^*} \otimes M_{x_3 x_2 x_1}) \circ M_{x_4 x_3 x_1},$$

$$* \circ (p_{x_2 x_1} \circ e_{x_2}) \otimes id_{B_{x_2 x_1}^*} \circ M_{x_2 x_2 x_1} = id_{B_{x_2 x_1}^*},$$

$$* \circ id_{B_{x_2 x_1}^*} \otimes (p_{x_1 x_1} \circ e_{x_1}) \circ M_{x_2 x_1 x_1} = id_{B_{x_2 x_1}^*},$$

$$* \circ (t_{xx} \otimes id_{B_{x}^*}) \circ M_{xx} = p_{xx} \circ e_{x},$$

$$* \circ (id_{B_{xx}^*} \otimes t_{xx}) \circ M_{xx} = p_{xx} \circ e_{x}.$$
Corollary 2.3.2. (see also [W1]). Spec $H^0(B^\bullet_{xx})$ is an affine pro-algebraic pro-unipotent group scheme over C. Spec $H^0(B^\bullet_{yx})$ is a (right) Spec $H^0(B^\bullet_{xx})$-torsor and a (left) Spec $H^0(B^\bullet_{yy})$-torsor.

Proof. It follows immediately from Proposition 2.3.1 that Spec $H^0(B^\bullet_{xx})$ is an affine group scheme over C and that Spec $H^0(B^\bullet_{yx})$ is a (right) Spec $H^0(B^\bullet_{xx})$ - torsor and a (left) Spec $H^0(B^\bullet_{yy})$ - torsor.

2.4. We define a map

$$\varepsilon : T_2 = \text{Tot}(\oplus_{n=0}^{\infty} \Omega^*(X)^{\otimes n}) \to B^\bullet(\Omega^*(X))$$

in such a way that ε on $\Omega^{k_1}(X) \otimes \ldots \otimes \Omega^{k_n}(X)$ is a multiplication by $(-1)^{c(n)+k_1+k_3+k_5+\ldots}$. The map ε is an isomorphism of chain complexes. We define the shuffle multiplication \ast, the coproduct \mathcal{M} and the inverse ι on T_2 (and on T_1) setting :

$$\mathcal{M} \text{ on } T_2 : (\varepsilon \otimes \varepsilon)^{-1} \circ (\mathcal{M} \text{ on } B^\bullet) \circ \varepsilon$$

and similarly for ι and \ast. The maps e_x and p_{yx} can be defined in the same way.

One can also proceed in the following way. The projection on the constant cosimplicial space $p^\bullet : p^\bullet^{-1}(y,x) \to (y,x)$ induces

$$p_{yx} : \text{Tot}(\oplus_{n=0}^{\infty} \Omega^*(y,x)) \to \text{Tot}(\oplus_{n=0}^{\infty} \Omega^*(y \times X^n \times x)).$$

Let (x) be a constant cosimplicial space equal one point x in each degree. The inclusion

$$(x) \hookrightarrow p^\bullet^{-1}(x,x), \ x \to (x,x,\ldots,x) \in x \times X^n \times x$$

induces

$$\text{Tot}(\oplus_{n=0}^{\infty} \Omega^*(x \times X^n \times x)) \to \text{Tot}(\oplus_{n=0}^{\infty} \Omega^*(x)).$$

2.5. Let G be a Lie group and let g be a Lie algebra of G. Let $\pi : P \to X$ be a principal G-bundle equipped with the integrable connection given by a one form ω on P with values in g. Let us set

$$\mathcal{P} := \pi_* \mathcal{O}_P.$$
Then \(\mathcal{P} \) is a vector bundle on \(X \) (an inductive limit of finite dimensional vector bundles) equipped with an integrable connection \(\nabla_\mathcal{P} \) induced by the connection on \(P \).

Let \(\Omega^\ast \) be the De Rham complex of sheaves of smooth complex valued differential forms on \(X \), let \(\Omega^\ast(\mathcal{P}) \) be the twisted De Rham complex and let \(\Omega^\ast(\mathcal{P})(X) \) be the twisted de Rham complex of global sections.

For each point \(x \in X \) we define an augmentation

\[
\eta_x : \Omega^0(\mathcal{P})(X) \to \mathcal{O}[P_x],
\]

where \(\eta_x(f) \) is a restriction of \(f \in \Omega^0(\mathcal{P})(X) \) to a fiber of \(\mathcal{P} \) over \(x \).

Let \(y \in X \). Let us choose \(y' \in \pi^{-1}(y) \). We define an augmentation

\[
\varepsilon_{y'} : \Omega^0(\mathcal{P})(X) \to C
\]
setting \(\varepsilon_{y'}(f) := f(y') \).

Let \((y, x) \in X \times X \). Let

\[
\partial : C \otimes (\Omega^\ast(\mathcal{P})(X))^\otimes n \otimes \mathcal{O}[P_x] \to C \otimes (\Omega^\ast(\mathcal{P})(X))^\otimes n \otimes \mathcal{O}[P_x]
\]
be a differential of a tensor product of twisted De Rham complexes.

We define

\[
\delta_i : C \otimes (\Omega^\ast(\mathcal{P})(X))^\otimes n \otimes \mathcal{O}[P_x] \to C \otimes (\Omega^\ast(\mathcal{P})(X))^\otimes (n-1) \otimes \mathcal{O}[P_x]
\]
in the following way:

\[
\delta_i(f_{n+1} \otimes \omega_n \otimes \ldots \otimes \omega_1 \otimes f_0) = f_{n+1} \otimes \omega_n \otimes \ldots \otimes \omega_{i+1} \wedge \omega_i \otimes \ldots \otimes \omega_1 \otimes f_0
\]
for \(i \neq 0, n \);

\[
\delta_0(f_{n+1} \otimes \omega_n \otimes \ldots \otimes \omega_1 \otimes f_0) = f_{n+1} \otimes \omega_n \otimes \ldots \otimes \omega_2 \otimes \eta_x(\omega_1)f_0;
\]

\[
\delta_n(f_{n+1} \otimes \omega_n \otimes \ldots \otimes \omega_1 \otimes f_0) = f_{n+1}\varepsilon_{y'}(\omega_n) \otimes \omega_{n-1} \ldots \otimes \omega_1 \otimes f_0.
\]
(\wedge is induced by the exterior product and the multiplication in \mathcal{P}.)

Let us set

$$
\delta := \sum_{i=0}^{n} (-1)^i \delta_i : C \otimes (\Omega^*(\mathcal{P})(X))^{\otimes n} \otimes \mathcal{O}[P_x] \rightarrow C \otimes (\Omega^*(\mathcal{P})(X))^{\otimes (n-1)} \otimes \mathcal{O}[P_x].
$$

We have \(\partial^2 = \delta^2 = \partial \delta - \delta \partial = 0 \). Therefore \(\otimes_{n=0}^{\infty} C \otimes (\Omega^*(\mathcal{P})(X))^{\otimes n} \otimes \mathcal{O}[P_x] \) is a double complex and let \(T_{y,x} \) be its total complex.

2.6. We define a bar construction

$$
B^\bullet_{y,x}(C; \Omega^*(\mathcal{P})(X) ; \mathcal{O}[G])
$$

being the same bigraded module as \(T_{y,x} \) with the differential \(d' \) defined as in 2.2. We shall denote \(B^\bullet_{y,x}(C; \Omega^*(\mathcal{P})(X) ; \mathcal{O}[G]) \) shortly by \(B^\bullet_{y,x} \).

The map \(\varepsilon : T_{y,x} \rightarrow B^\bullet_{y,x}(C; \Omega^*(\mathcal{P})(X) ; \mathcal{O}[G]) \) given by a multiplication by \((-1)^{c(n)+k_1+k_3+k_5+\ldots} \) on \((\Omega^{k_1}(X) \otimes \mathcal{O}[G]) \otimes \ldots \otimes (\Omega^{k_n}(X) \otimes \mathcal{O}[G]) \otimes \mathcal{O}[G] \) is an isomorphism of chain complexes.

The choice of \(x' \in \pi^{-1}(x) \) identifies \(P_x \) - the fiber of \(P \) over \(x \) - with \(G \), hence the fiber of \(\mathcal{P} \) over \(x \) is identified with \(\mathcal{O}[G] \).

We assume that the principal \(G \) - bundle \(\pi : P \rightarrow X \) is trivial. Then \(\Omega^*(\mathcal{P})(X) = \Omega^*(X) \otimes \mathcal{O}[G] \).

The action of \(G \) on \(P \) induces \(\mathcal{P} \rightarrow \mathcal{P} \otimes \mathcal{O}[G] \), \(f(p) \rightarrow f(pg) \). Let \(x \in X \) be such that the fiber of \(\mathcal{P} \) over \(x \) is \(\mathcal{O}[G] \).

We define

$$
\mathcal{M}_{y,x} : B^\bullet_{y,x} \rightarrow B^\bullet_{y,x} \otimes B_{x,x}
$$

by the formula

$$
\mathcal{M}_{y,x}(f_0 \otimes \omega_1(p_1) \otimes \ldots \otimes \omega_1(p_1) \otimes f_{n+1}(g_{n+1})) =
\sum_{i=0}^{n} (f_0 \otimes \omega_1(p_1) \otimes \ldots \otimes \omega_i(p_i) \otimes 1) \otimes \\
(1 \otimes \omega_{i+1}(p'_{i+1}g_{i+1}) \otimes \ldots \otimes \omega_n(p'_n g_{i+1}) \otimes f_{n+1}(g'_{n+1} g_{i+1})) .
$$

We define

$$
\iota : B^\bullet_{x,x} \rightarrow B^\bullet_{x,x}
$$

15
by the formula
\[
\iota(f_0 \otimes \omega_1(p_1) \otimes \ldots \otimes \omega_1(p_1) \otimes f_{n+1}(g_{n+1})) =
\]
\[
(-1)^{\frac{n(n+1)}{2}+(n+1)(k_1+\ldots+k_n)+\sum_{i<j} k_i k_j} f_0 \otimes \omega_n(p_n g_{n+1}^{-1}) \otimes \ldots \otimes \omega_1(p_1 g_{n+1}^{-1}) \otimes f_{n+1}(g_{n+1}^{-1}).
\]

We define the shuffle product
\[
: B_{yx}^ \otimes B_{yx}^* \to B_{yx}^*
\]
by the formula
\[
(f_0 \otimes \omega_1 \otimes \ldots \otimes \omega_p \otimes f_{p+1}) \ast (g_p \otimes \omega_{p+1} \otimes \ldots \otimes \omega_{p+q} \otimes g_{p+q+1}) =
\]
\[
\sum_{(p,q)\text{-shuffles } \sigma} (-1)^{A_{\sigma}} f_0 g_p \otimes \omega_\sigma(1) \otimes \ldots \otimes \omega_\sigma(p+q) \otimes f_{p+1} g_{p+q+1}.
\]

The sign \((-1)^{A_{\sigma}}\) is defined as in 2.3.

The inclusion \(x \hookrightarrow X\) induces
\[
e_x : B_{x,x}^* (C; \Omega^*(\mathcal{P})(X); \mathcal{O}[G]) \to B_{x,x}^* (C; \mathcal{O}[G]; \mathcal{O}[G]).
\]

\(B_{y,x}^\bullet\) equipped with the shuffle product is a \(C\)-algebra, hence we have a morphism of \(C\)-algebras
\[
p_{yx} : C \to B_{y,x}^*.
\]

Proposition 2.6.1. \(B_{y,x}^\bullet (C; \Omega^*(\mathcal{P})(X); \mathcal{O}[G])\) equipped with the shuffle product \(*\) is a differential \(C\)-algebra. The maps \(M, \iota, e\) and \(p\) are homomorphims of differential \(C\)-algebras. We have

\[
(M_{yxx} \otimes id_{B_{yx}^*}) \circ M_{yxx} = (id_{B_{yx}^*} \otimes M_{xxy}) \circ M_{yxx},
\]

\[
* \circ (p_{xx} \circ e_x) \otimes id_{B_{yx}^*} \circ M_{xxy} = id_{B_{yx}^*},
\]

\[
* \circ id_{B_{yx}^*} \otimes (p_{xx} \circ e_x) \circ M_{xxy} = id_{B_{yx}^*},
\]

16
* \circ (t_{xx} \otimes \text{id}_{B^*_x}) \circ \mathcal{M}_{xx} = p_{xx} \circ e_x, \\
* \circ (\text{id}_{B^*_x} \otimes t_{xx}) \circ \mathcal{M}_{xx} = p_{xx} \circ e_x.

Proof. One checks the formulas by calculations.

Passing to cohomology the maps \mathcal{M}, ι and e induce

$$
\mathcal{M}_{yx} : H^0(T_{yx}) \rightarrow H^0(T_{yx}) \otimes H^0(T_{xx}),
$$

$$
\iota_{yx} : H^0(T_{yx}) \rightarrow H^0(T_{xy}) \text{ and } e_x : H^0(T_{xx}) \rightarrow C.
$$

$H^0(T_{yx})$ equipped with the shuffle product is a C-algebra. Hence we have a homomorphism of C-algebras

$$
p_{yx} : C \rightarrow H^0(T_{yx}).
$$

Proposition 2.5.2. $H^0(T_{yx})$ equipped with the shuffle product is a C-algebra. The maps \mathcal{M}_{yx}, ι_{yx} and e_x are homomorphisms of differential C-algebras. We have

$$
(\mathcal{M}_{yx} \otimes \text{id}_{H^0(T_{xx})}) \circ \mathcal{M}_{yx} = (\text{id}_{H^0(T_{yx})} \otimes \mathcal{M}_{xx}) \circ \mathcal{M}_{yx},
$$

$$
* \circ (p_{xx} \circ e_x) \otimes \text{id}_{H^0(T_{xx})} \circ \mathcal{M}_{xx} = \text{id}_{H^0(T_{xx})},
$$

$$
* \circ \text{id}_{H^0(T_{yx})} \otimes (p_{xx} \circ e_x) \circ \mathcal{M}_{yx} = \text{id}_{H^0(T_{xx})},
$$

$$
* \circ (t_{xx} \otimes \text{id}_{H^0(T_{xx})}) \circ \mathcal{M}_{xx} = p_{xx} \circ e_x, \\
* \circ (\text{id}_{H^0(T_{xx})} \otimes t_{xx}) \circ \mathcal{M}_{xx} = p_{xx} \circ e_x.
$$

2.6. We define a bar construction

$$
B_{y,x}^*(\mathcal{O}[P_y] \otimes \Omega^*(X) \otimes \mathcal{O}[G]; \mathcal{O}[G]) \text{ being the same bigraded module as } T_{y,x} \text{ with the differential } d' \text{ defined as in 2.2. The map } \varepsilon : T_{y,x} \rightarrow B_{y,x}^*(\Omega^*(X) \otimes \mathcal{O}[G]; \mathcal{O}[G]) \text{ given by a}
$$
multiplication by \((-1)^{c(n)+k_1+k_3+k_5+\ldots} \) on \(\Omega^k(X) \otimes \mathcal{O}[G] \otimes \ldots \otimes (\Omega^n(X) \otimes \mathcal{O}[G]) \otimes \mathcal{O}[G]\)
is an isomorphism of chain complexes.

The comultiplication \(\mathcal{M}\), the inverse \(\iota\) and the product \(*\) are given on \(B^*(\Omega^*(X) \otimes \mathcal{O}[G]; \mathcal{O}[G])\) with the sign convention as in 2.2.

2.7. We have the following analogues of 2.3.1 and 2.3.2.

Proposition 2.7.1. \(T_{x_1,x_2}(\Omega^*(X))\) equipped with the shuffle product \(*\) is a differential \(C\)-algebra. The maps \(\mathcal{M}\), \(\iota\), \(e\) and \(p\) are homomorphisms of differential \(C\)-algebras. We have

\[
(M_{x_1,x_2,x_3} \otimes id_{T_{x_1,x_2}}) \circ M_{x_1,x_2,x_3} = (id_{T_{x_1,x_2}} \otimes M_{x_1,x_2,x_3}) \circ M_{x_1,x_2,x_3},
\]

\[
* \circ (p_{x_1,x_2} \circ e_{x_2}) \otimes id_{T_{x_1,x_2}} \circ M_{x_1,x_2,x_3} = id_{T_{x_1,x_2}},
\]

\[
* \circ id_{T_{x_1,x_2}} \otimes (p_{x_1,x_2} \circ e_{x_1}) \circ M_{x_1,x_2,x_3} = id_{T_{x_1,x_2}},
\]

\[
* \circ (\iota_{x_1,x_2} \otimes id_{T_{x_1,x_2}}) \circ M_{x_1,x_2} = p_{x_1,x_2} \circ e_{x_1},
\]

\[
* \circ (id_{T_{x_1,x_2}} \otimes \iota_{x_1,x_2}) \circ M_{x_1,x_2} = p_{x_1,x_2} \circ e_{x_1}.
\]

Corollary 2.5.3. We have

i). \(\text{Spec} \, H^0(T_{x_1,x_2})\) is an affine pro-algebraic group scheme over \(C\).

ii). \(\text{Spec} \, H^0(T_{y_1,y_2})\) is a (right) \(\text{Spec} \, H^0(T_{x_1,x_2})\)-torsor.

iii). The group scheme \(\text{Spec} \, H^0(T_{x,x})\) is an extension of \(\text{Spec} \, \mathcal{O}[G]\) by an affine pro-unipotent group over \(C\).

Proof. It follows from Proposition 2.5.2 that \(\text{Spec} \, H^0(T_{x_1,x_2})\) is a group scheme over \(C\) and that \(\text{Spec} \, H^0(T_{y_1,y_2})\) is a \(\text{Spec} \, H^0(T_{x_1,x_2})\)-torsor.
First we show that there is a surjective morphism of group schemes

$$\text{Spec } H^0(T_{xx}) \to \text{Spec } \mathcal{O}[G].$$

Observe that $T_{xx}^{00} = \mathcal{O}[G] \otimes \mathcal{O}[G]$, $T_{xx}^{10} = \mathcal{O}[G] \otimes \mathcal{O}[G]$ and $T_{xx}^{01} = \mathcal{O}[G] \otimes \mathcal{O}_X(\mathcal{P})(X) \otimes \mathcal{O}[G]$. The differential

$$\delta : T_{xx}^{01} \to T_{xx}^{00}$$

is given by $\delta(f \otimes g \otimes h) = (f \eta_x(g) \otimes h - f \otimes \eta_x(g)h)$, where $f, h \in \mathcal{O}[G]$ and $g \in \mathcal{O}_X(\mathcal{P})$. Therefore $\mathcal{O}[G]$ is a Hopf subalgebra of $H^0(T_{xx})$ and we have an exact sequence

$$1 \to U \to \text{Spec } H^0(T_{xx}) \xrightarrow{\varphi_n} \text{Spec } \mathcal{O}[G] \to 1,$$

where $U := \ker \varphi$.

Let us set

$$G^{(n)} := \text{Spec } F_n H^0(T_{xx}).$$

The inclusion

$$F_{n-1} H^0(T_{xx}) \to F_n H^0(T_{xx})$$

induces a surjective morphism of group scheme

$$\varphi_n : G^{(n)} \to G^{(n-1)}.$$

Observe that $G^{(0)} = G$ and $\text{Spec } H^0(T_{xx}) = \lim_{n \to \infty} G(n)$. Let us set

$$U^{(n)} := \ker(G^{(n)} \to G^{(0)}).$$
We have $U = \varprojlim U^n$. We shall show that for any n, the group $A_n := \ker(\varphi_n : U^n \to U^{n-1})$ is abelian. This implies that U is pro-unipotent.

Observe that $A_1 = U^{(1)}$. We have an exact sequence of groups

$$1 \to U^{(1)} \to G^{(1)} \to G^{(0)} \to 1$$

and the corresponding sequence of coordinate rings

$$\mathcal{O}[G] \hookrightarrow F_1 H^0(T_{xx}) \to F_1 H^0(T_{xx})/I(U^{(1)}).$$

The kernel of the augmentation homomorphism $\varepsilon : \mathcal{O}[G] \to C \ (f \to f(e))$ is contained in $I(U^{(1)})$. We have $\mathcal{M}(1 \otimes w \otimes 1) = (1 \otimes w \otimes 1) \otimes (1 \otimes 1) + \sum_i (1 \otimes f_i) \otimes (1 \otimes w^i \otimes 1)$, where $m : \Omega^1_X(P)(X) \to \mathcal{O}[G] \otimes \Omega^1_X(P)(X)$ is induced by the action of G on P and $m(w) = \sum f_i \otimes w_i$. Observe that $1 \otimes f_i \equiv 1 \otimes f_i(e) \mod I(U^{(1)})$. Hence $\mathcal{M}(1 \otimes w \otimes 1) = (1 \otimes w \otimes 1) \otimes (1 \otimes 1) + (1 \otimes 1) \otimes (1 \otimes w \otimes 1) \mod I(U^{(1)})$. This implies that $U^{(1)}$ is abelian.

To show that A_n is abelian one observes that $A_n := \ker(G^{(n)} \to G^{(n-1)})$ and one repeats the proof given above for A_1.

20
§3. Universal variation of mixed Hodge structures.

3.0. Let X be a topological space. The inclusion of simplicial sets

$$\partial \Delta[1] \hookrightarrow \Delta[1]$$

induces a morphism of cosimplicial spaces

$$p^\bullet : X^{\Delta[1]} \to X^{\partial \Delta[1]}.$$

Observe that $X^{\partial \Delta[1]}$ is a constant cosimplicial space equal $X \times X$ in each degree. Let x and y be two points of X. Then constant cosimplicial spaces $(X \times x)^\bullet$, $(y \times X)^\bullet$ and $(y \times x)^\bullet$ are cosimplicial subspaces of $X^{\partial \Delta[1]}$. Let us set

$$(X; y)^{(\Delta[1], 1)} := p^{\bullet-1}((y \times X)^\bullet), \quad (X; x)^{(\Delta[1]; 0)} := p^{\bullet-1}((X \times x)^\bullet),$$

$$(X; x, y)^{(\Delta[1]; 0, 1)} := p^{\bullet-1}((y \times x)^\bullet) \quad \text{and} \quad (X; x)^{(S^1; 1)} := p^{\bullet-1}((x \times x)^\bullet).$$

We shall use also the notation $(y \times X)^\bullet = (X; y)^{(\partial \Delta[1], 1)}$. We recall that the cosimplicial space $X^{\Delta[1]}$ is given by

$$X \times X^0 \xrightarrow{\delta^1} X \times X^0 \times X \xrightarrow{\delta^2} X \times X^2 \times X \ldots,$$

where

$$\delta^i : X \times X^n \times X \to X \times X^{n+1} \times X, \quad \delta^i(x_{n+1}, x_n, \ldots, x_1, x_0) = (x_{n+1}, x_n, \ldots, x_i, x_i, \ldots, x_1, x_0).$$

3.1. We shall consider parallelly two cases:

i) X is a smooth holomorphic variety and Ω_X^* is a holomorphic De Rham complex. G is an affine complex reductive algebraic group and $\pi : P \to X$ is a holomorphic principal G-bundle equipped with a holomorphic integrable connection.

ii) X is a smooth quasi-projective scheme of finite type over a field k of characteristic zero, G is an affine reductive algebraic group over $\text{Spec} k$ and $\pi : P \to X$ is a principal G-bundle locally trivial in Zariski topology (resp. etale topology, resp. flat topology) of X. Ω_X^* is
the algebraic De Rham complex on X_{Zar} (resp. X_{et}, resp. X_{flat}) - X equipped with the corresponding topology.

Let $\mathcal{P} \coloneqq \pi_* \mathcal{O}_P$. This is an inductive limit of finite dimensional vector bundles on X in a corresponding topology. The sheaf \mathcal{P} is a sheaf of \mathcal{O}_X-algebras. The connection on the principal G-bundle $\pi : P \rightarrow X$ induces a multiplicative integrable connection ∇ on \mathcal{P} i.e.

$$\nabla(a \cdot b) = \nabla(a) \cdot b + a \cdot \nabla(b),$$

where a and b are sections of \mathcal{P}. Hence the tensor products of sheaves $\mathcal{P}^{\otimes (n+2)}$ on $X \times X^n \times X$ define a sheaf $\mathcal{P}^{\otimes (n+2)}$ on a cosimplicial space $X^{\Delta[1]}$. The twisted De Rham complexes $\Omega^n_{X_{\text{Zar}}}((\mathcal{P}^{\otimes (n+2)}))$ define a twisted De Rham complex $\Omega^n_{X_{\Delta[1]}}((\mathcal{P}^{\otimes (n+2)}))$ on $X^{\Delta[1]}$. The relative twisted De Rham complexes $\Omega^n_{(X \times X^{\Delta[1]})/X}(\mathcal{P}^{\otimes (n+2)})$ define a relative twisted De Rham complex

$$\Omega^* := \Omega^n_{X^{\Delta[1]}/(X \times X)}((\mathcal{P}^{\otimes (n+2)}))$$

on a cosimplicial space $X^{\Delta[1]}$.

We shall study the cohomology sheaves $H^i(tR(p^*)_* \Omega^*)$ of $\mathcal{O}_{X \times X}$-modules, where $p^* : X^{\Delta[1]} \rightarrow X^{\partial \Delta[1]}$.

The fiber of $H^i(tR(p^*)_* \Omega^*)$ over $(y, x) \in X \times X$ can be describe in the following way.

The restriction of $\Omega^n_{X_{\text{Zar}}}((\mathcal{P}^{\otimes (n+2)}))$ to $y \times X^n \times x$ is $\mathcal{O}[P_y] \otimes \Omega_{y \times X^n \times x}(\mathcal{P}^{\otimes n}) \otimes \mathcal{O}[P_x]$. Hence the fiber of $H^i(tR(p^*)_* \Omega^*)$ over (y, x) is $H^i(tR\Gamma_{(X,y,x)}^{(\Delta[1];y,x)}(\mathcal{O}[P_y] \otimes \mathcal{P}^{\otimes *} \otimes \mathcal{O}[P_x]))$.

3.2. We assume that $\mathcal{O}[G]$ carries a Hodge structure of weight 0 and that the structure morphisms and the multiplication are morphisms of Hopf structures. We assume that \mathcal{P} equipped with the connection deduced from the connection on $\pi : P \rightarrow X$ carries a variation of Hodge structures of weight 0 compatible with multiplication in \mathcal{P} and with the action of $\mathcal{O}[G]$ on \mathcal{P}.

3.2.1. Our aim is to show that the cohomology sheaves $H^i(tR(p^*)_* \Omega^*)$ carry a variation of mixed Hodge structures over X. Next we shall show that $H^0(tR(p^*)_* \Omega^*)$ is the sheaf of $\mathcal{O}_{X \times X}$-algebras and that the variation of mixed Hodge structures is compatible with multiplication. Let \mathcal{H} be a fiber of $H^0(tR(p^*)_* \Omega^*)$ over (x, x). We shall show that \mathcal{H} is
a Hopf algebra and that the Hopf algebra structure and the action are compatible with mixed Hodge structures.

3.3. We assume that X is a smooth projective variety over C.

Let V be a variation of Hodge structures of weight k over X and let $\{ F^p V \}_p$ be a Hodge filtration of V. Let us equip the complex $\Omega^*_X(V)$ with a filtration $\{ F^p \}_p$ in the following way:

$$ F^p(\Omega^*_X(V)) := \Omega^*_X(F^{p-r}(V)). $$

Let \mathcal{V}_0 be a rational lattice in \mathcal{V}. It is a local system of vector spaces over Q. We have

$$ \ker(\nabla : V \to \Omega^1_X(V)) \approx \mathcal{V}_0 \otimes C. $$

Hence there is a quasi-isomorphism $\alpha : \mathcal{V}_0 \otimes C \to \Omega^*_X(V)$. It follows from [Z] Theorem 2.9 that

$$(\mathcal{V}_0, (\Omega^*_X(V), F), \alpha : \mathcal{V}_0 \otimes C \to \Omega^*_X(V))$$

is a cohomological Hodge complex of weight k over X.

3.3.1. For each n, $P^{\otimes n}$ is a variation of Hodge structures of weight zero on $y \times X^n \times x$.

Hence

$$ (\mathcal{O}[P_y]_0 \otimes P^{\otimes n}_0 \otimes \mathcal{O}[P_x]_0, (\Omega^*_y \times X^n \times x (\mathcal{O}[P_y] \otimes P^{\otimes n} \otimes \mathcal{O}[P_x]), F), $$

$$ \alpha_n : \mathcal{O}[P_y]_0 \otimes P^{\otimes n}_0 \otimes \mathcal{O}[P_x]_0 \otimes C \to \Omega^*_y \times X^n \times x (\mathcal{O}[P_y] \otimes P^{\otimes n} \otimes \mathcal{O}[P_x])) $$

is a cohomological Hodge complex of weight zero on $y \times X^n \times x$.

3.3.2. The complexes $\Omega^*_y \times X^n \times x (\mathcal{O}[P_y] \otimes P^{\otimes n} \otimes \mathcal{O}[P_x])$ equipped with the filtration F form a complex $\Omega^*_z (X; x, y)^{(\Delta[1]; 0, 1)} (\mathcal{O}[P_y] \otimes P^{\bullet} \otimes \mathcal{O}[P_x])$ equipped with the filtration F on the cosimplicial space $(X; x, y)^{(\Delta[1]; 0, 1)}$. The sheaves $\mathcal{O}[P_y]_0 \otimes P^{\otimes n}_0 \otimes \mathcal{O}[P_x]_0$ form a sheaf $\mathcal{O}[P_y]_0 \otimes P^{\otimes^0 \bullet} \otimes \mathcal{O}[P_x]_0$ on $(X; x, y)^{(\Delta[1]; 0, 1)}$. The morphisms α_n induce a quasi-isomorphism

$$ \alpha : \mathcal{O}[P_y]_0 \otimes P^{\otimes^0 \bullet} \otimes \mathcal{O}[P_x]_0 \otimes C^{\otimes^0_1} \Omega^*_z (X; x, y)^{(\Delta[1]; 0, 1)} (\mathcal{O}[P_y]_0 \otimes P^{\otimes^0 \bullet} \otimes \mathcal{O}[P_x]_0). $$

Hence the triple

$$(\mathcal{O}[P_y]_0 \otimes P^{\otimes^0 \bullet} \otimes \mathcal{O}[P_x]_0, (\Omega^*_z (X; x, y)^{(\Delta[1]; 0, 1)} (\mathcal{O}[P_y] \otimes P^{\otimes^0 \bullet} \otimes \mathcal{O}[P_x]), F),$$

23
\[\alpha : \mathcal{O}[P_y]_0 \otimes \mathcal{P}^\bullet_0 \otimes \mathcal{O}[P_x]_0 \otimes C \rightarrow \Omega^*_{(X;x,y)(\Delta[1];0,1)}(\mathcal{O}[P_y] \otimes \mathcal{P}^\bullet \otimes \mathcal{O}[P_x]) \]

is a cohomological Hodge complex on a cosimplicial space \((X;x,y)(\Delta[1];0,1)\).

3.3.3. Let \(K = (K^{i,j})\) be a simplicial complex \((j\) is a simplicial degree). We define a filtration \(\partial(W,R)\) on the total complex \(tK\) in the following way:

\[\partial(W,R)_n(tK) := \oplus_{j<n+1} K^{i,j}. \]

Applying the functor \(R\Gamma^*\) (\(R\Gamma\) functorially in each degree) we get the following result.

Theorem 3.3.4. The triple

\[((tR\Gamma^*(\mathcal{O}[P_y]_0 \otimes \mathcal{P}^\bullet_0 \otimes \mathcal{O}[P_x]_0); \partial(W,R)), (tR\Gamma^*\Omega^*_{(X;x,y)(\Delta[1];0,1)}(\mathcal{O}[P_y] \otimes \mathcal{P}^\bullet \otimes \mathcal{O}[P_x]), \partial(W,R), F), \]

\[tR\Gamma^*\alpha := (tR\Gamma^*(\mathcal{O}[P_y]_0 \otimes \mathcal{P}^\bullet_0 \otimes \mathcal{O}[P_x]_0) \otimes C, \partial(W,R)) \rightarrow \]

\[tR\Gamma^*\Omega^*_{(X;x,y)(\Delta[1];0,1)}(\mathcal{O}[P_y] \otimes \mathcal{P}^\bullet \otimes \mathcal{O}[P_x]), \partial(W,R)) \]

is a mixed Hodge complex.

Corollary 3.3.5. The cohomology groups \(H^i(tR\Gamma^*\Omega^*_{(X;x,y)(\Delta[1];0,1)}(\mathcal{O}[P_y] \otimes \mathcal{P}^\bullet \otimes \mathcal{O}[P_x]))\) are equipped with mixed Hodge structures.

3.4. We give a relative version of the construction from 3.3.

The Hodge filtration on \(\mathcal{P}\) induces the Hodge filtration \(\{F^p\}\) on \(\Omega^*\). Observe also that the complex \(\Omega^*\) is a resolution of \((p^{*-1})\mathcal{O}_{X \times X} \otimes Q \mathcal{P}_0^{\otimes s+2}\).

Proposition 3.4.1. The triple

\[(\mathcal{P}_0^{\otimes s+2}; (\Omega^*, F); \alpha^* : (p^{*-1})\mathcal{O}_{X \times X} \otimes Q \mathcal{P}_0^{\otimes s+2} \rightarrow \Omega^*) \]

is a relative w.r.t. \(p^* : X^{\Delta[1]} \rightarrow X^{0\Delta[1]}\) cohomological Hodge complex on \(X^{\Delta[1]}\).

Proposition 3.4.2. The triple

\[((tRp^*\mathcal{P}_0^{\otimes s+2}, \partial(W,R)), (tRp^*\Omega^*, \partial(W,R), F), \alpha := tRp^*\alpha^* : tRp^*\mathcal{P}_0^{\otimes s+2} \otimes Q\mathcal{O}_{X \times X} \rightarrow tRp^*\Omega^*) \]

is a mixed Hodge complex on \(X \times X\).

We denote by \(W\) the filtration induced by \(\partial(W,R)\) on cohomology groups.
Theorem 3.4.3. The triple

\[((H^i(tR_p^*\mathcal{P}_0^\otimes (\bullet+2)); W), (H^i(tR_p^*\Omega^*), W, F), \]
\[\alpha : H^i(tR_p^*\mathcal{P}_0^\otimes (\bullet+2)) \otimes_Q \mathcal{O}_{X \times X}, W) \rightarrow (H^i(tR_p^*\Omega^*), W)) \]

is a variation of mixed Hodge structures over \(X \times X \).

Proof. One need only to construct an integrable connection
\[\nabla : H^i(tR_p^*\Omega^*) \rightarrow \Omega^1_{X \times X} \otimes_{\mathcal{O}_{X \times X}} H^i(tR_p^*\Omega^*) \]
which has the required properties. This is done in the next sections.

3.6. The Gauss-Manin connection.

Let us set:

\[G_{n}^i(\Omega^*_{X+n+2}(\mathcal{P}^\otimes (n+2))) := \]
\[\text{image}(\Omega^*_{X+n+2}(\mathcal{P}^\otimes (n+2)) \otimes_{\mathcal{O}_{X \times X}} (p^n)^*\Omega^i_{X \times X} \rightarrow \Omega^*_{X+n+2}(\mathcal{P}^\otimes (n+2))). \]

The filtrations \{G_{n}^i\} of \(\Omega^*_{X+n+2}(\mathcal{P}^\otimes (n+2)) \) define a filtration \{G_{1}^i\} of \(\Omega^*_{X+\Delta[1]}(\mathcal{P}^\otimes (\bullet+2)) \). We have
\[gr_{i}^i(\Omega^*_{X+\Delta[1]}(\mathcal{P}^\otimes (\bullet+2))) = \Omega^{* -i} \otimes_{\mathcal{O}_{X \times \Delta[1]}} (p^n)^*\Omega^i_{(X \times X)\bullet}. \]

Consider the functor \(t \circ R(p^*) \) from the category of complexes of abelian sheaves on \(X^{\Delta[1]} \) to the category of complexes of abelian sheaves on \(X \times X \). We apply the spectral sequence of a filtered object to \(\Omega^*_{X+\Delta[1]}(\mathcal{P}^\otimes (\bullet+2)) \) and we get a spectral sequence converging to \(H^i(tR(p^*)_*\Omega^*_{X+\Delta[1]}(\mathcal{P}^\otimes (\bullet+2))) \) such that \(E^{p,q}_1 = \Omega^{p}_{X \times X} \otimes_{\mathcal{O}_{X \times X}} H^q(tR(p^*)_*\Omega^*) \). Let \(d^{p,q}_1 : E^{p,q}_1 \rightarrow E^{p+1,q}_1 \) be the differential on \(E_1 \) -terms.

Theorem 3.6.1. Let \(X \) be a smooth scheme of finite type over a field \(k \) of characteristic zero. We have:

i). The differential
\[d^{0,q}_1 : H^q(tR_p^*\Omega^*) \rightarrow \Omega^1_{X \times X} \otimes_{\mathcal{O}_{X \times X}} H^q(tR_p^*\Omega^*) \]
is an integrable connection on \(H^q(tR_p^*\Omega^*) \). If \(f \) and \(g \) are sections of \(H^q(tR_p^*\Omega^*) \) and \(H^q(tR_p^*\Omega^*) \) respectively then
\[d^{0,q+q'}_1 (f \cdot g) = d^{0,q}_1 (f) \cdot g + (-1)^q f \cdot d^{0,q'}_1 (g) \]

25
ii). Let F^i be the Hodge filtration of $H^q(tRp^\bullet \Omega^*)$. Then we have

$$d_1^{0,q}(F^i H^q(tRp^\bullet \Omega^*)) \subset \Omega^1_{X \times X} \otimes_{\mathcal{O}_{X \times X}} F^{i-1} H^q(tRp^\bullet \Omega^*).$$

iii). Assume that X is also projective. Then we have

$$d_1^{0,q}(W_n H^q(tRp^\bullet \Omega^*)) \subset \Omega^1_{X \times X} \otimes_{\mathcal{O}_{X \times X}} W_n H^q(tRp^\bullet \Omega^*).$$

iv). The multiplication and the action of \mathcal{H} on $H^0(tRp^\bullet \Omega^*) \rightarrow \mathcal{H} \otimes H^0(tRp^\bullet \Omega^*)$ are flat.

v). The sheaves $H^q(tRp^\bullet \Omega^*)$ are direct limits of vector bundles on $X \times X$.

vi). Let $K : k$ be an extension of fields. Then the cohomology sheaves and the connection $d_1^{0,q}$ for $X_K = X \times_{\text{Spec } k} \text{Spec } K$ are obtained from the ones for X by applying the functor $- \otimes_k K$.

vii). Let X be a smooth holomorphic variety and let $\Pi^{\otimes (\bullet + 2)} := \ker(\nabla : \mathcal{P}^{\otimes (\bullet + 2)} \rightarrow \Omega^*_{X \Delta[1]}(\mathcal{P}^{\otimes (\bullet + 2)}).$ Then $H^q(tRp^\bullet \Pi^{\otimes (\bullet + 2)}(X \Delta[1]))$ is the sheaf of flat sections of the connection $d_1^{0,q}$ on $H^q(tRp^\bullet \Omega^*)$.

Proof. The complex $tRp^\bullet \Omega^*_{X \Delta[1]}(\mathcal{P}^{\otimes (\bullet + 2)})$ is equipped with shuffle product. The filtration $\{G^i\}$ is compatible with the multiplicative structure. Hence the spectral sequence is multiplicative and

$$d_1^{0,q+q'}(f \cdot g) = d_1^{0,q}(f) \cdot g + (-1)^q f \cdot d_1^{0,q'}(g)$$

if $f \in H^q(tRp^\bullet \Omega^*)$ and $g \in H^{q'}(tRp^\bullet \Omega^*)$.

The differential d_1 has a bidegree $(1, 0)$ therefore for every q we get a complex

$$\ldots \rightarrow \mathcal{O}_{x \times x} \otimes_{\mathcal{O}_{x \times x}} H^q(tRp^\bullet \Omega^*) \rightarrow \Omega^1_{x \times x} \otimes_{\mathcal{O}_{x \times x}} H^q(tRp^\bullet \Omega^*) \rightarrow \Omega^2_{x \times x} \otimes_{\mathcal{O}_{x \times x}} H^q(tRp^\bullet \Omega^*) \rightarrow \ldots.$$

Consider the diagram of cosimplicial spaces

$$\begin{array}{ccc}
X^{\Delta[1]} & \rightarrow & X^{\partial \Delta[1]} = (X \times X)^\bullet \\
\downarrow p^\bullet & & \downarrow \text{id} \\
X^{\partial \Delta[1]} & \rightarrow & X^{\partial \Delta[1]}
\end{array}$$
The horizontal map p^\bullet induces a map of complexes of sheaves

$$\Omega_{X^{\partial[1]}}^\bullet \to (p^\bullet)_* \Omega_{X^{\partial[1]}}^\bullet \left(\mathcal{P}^{\otimes (\bullet+2)} \right)$$

given by

$$\Omega_{X \times X}(\mathcal{U}) \ni \omega \to (p^n)^* \omega \otimes 1 \in \Omega_{X^{n+2}}^\bullet \left(\mathcal{P}^{\otimes (n+2)} \right).$$

We repeat the construction of the spectral sequence for the vertical morphism id. The pair of horizontal morphisms (p^\bullet, id) induces a map of corresponding spectral sequences. On $E^{1,0}_1$-terms we get a morphism of $E^{1,0}_1(id) = \Omega_{X \times X}$ into the complex $E^{1,0}_1(p^\bullet) = (*_0)$. Let $f \in \mathcal{O}_{X \times X}$ and $s \in H^q(tR_{p^\bullet}^\bullet \mathcal{O}^\bullet)$. It follows from the above observations and multiplicative properties of the spectral sequence that $d^{0,q}_1(f \cdot s) = df \cdot s + f \cdot d^{0,q}_1(s)$. Hence $d^{0,q}_1$ is a connection. Moreover $d^{0,q}_1(\omega \cdot s) = d\omega \cdot s + (-1)^p \omega \cdot d^{0,q}_1(s)$ if $\omega \in \Omega_{X \times X}$. Hence $d^{0,q}_1$ is deduced formally, as a differential of a twisted De Rham complex from the connection $d^{0,q}_1$. Hence the fact $d^{0,q}_1 \circ d^{0,q}_1 = 0$ implies that the connection is integrable.

The connection $d^{0,q}_1$ is the connecting homomorphism of the exact sequence

$$0 \to \Omega^{n-1} \otimes \mathcal{O}_{X^{\partial[1]}}^\bullet (p^\bullet)^* \Omega_{X^{\partial[1]}}^1 \to G^0/G^2 \to$$

$$\Omega^* \otimes \mathcal{O}_{X^{\partial[1]}}^\bullet (p^\bullet)^* \mathcal{O}_{X^{\partial[1]}}^\bullet \to 0.$$

Observe that an exact sequence

$$0 \to F^{n-1} \Omega^{n-1} \otimes \mathcal{O}_{X^{\partial[1]}}^\bullet (p^\bullet)^* \Omega_{X^{\partial[1]}}^1 \to F^n(G^0/G^2) \to$$

$$F^n \Omega^* \otimes \mathcal{O}_{X^{\partial[1]}}^\bullet (p^\bullet)^* \mathcal{O}_{X^{\partial[1]}}^\bullet \to 0.$$
if X is a smooth projective algebraic variety over $\text{Spec} \, k$.

Assume that X is a smooth holomorphic variety. Let $\Omega^{\otimes (n+2)} := \ker(\nabla : \mathcal{P}^{\otimes (n+2)} \to | \Omega^1_{X,\Delta[1]}(\mathcal{P}^{\otimes (n+2)})$). The seaf $\Omega^{\otimes (n+2)}$ is a locally constant sheaf on $X^{\Delta[1]}$ i.e. each $\Omega^{\otimes (n+2)}$ is locally constant on X^{n+2}. The complex $\Omega^{\otimes \Delta[1]}(\mathcal{P}^{\otimes (n+2)})$ is a resolution of $\Omega^{\otimes (n+2)}$. Hence the spectral sequence of $tR(p^\bullet)_*$ associated with the filtration $\{G^i\}$ converges to $H^*(tR(p^\bullet)_* \Omega^{\otimes (n+2)})$. The complex $(*q)$ is exact but at a zero term. Hence $\ker^{0,q} = H^q(tR(p^\bullet)_* \Omega^{\otimes (n+2)})$.

3.7. Let \tilde{X} be a smooth proper scheme of finite type over $\text{Spec} \, k$ and let D be a divisor with normal crossings in \tilde{X}. Let $X = \tilde{X} \setminus D$. Let $(\tilde{\mathcal{P}} \to \tilde{X}, \tilde{\nabla} : \tilde{\mathcal{P}} \to \Omega^1_{X}(\mathcal{D}) \otimes \mathcal{O}_{\tilde{X}} \tilde{\mathcal{P}})$ be the canonical extension of $(\mathcal{P} \to X, \nabla : \mathcal{P} \to \Omega^1_{X} \otimes \mathcal{O}_{X} \mathcal{P})$.

Consider the following morphisms between cosimplicial schemes

$$
\begin{align*}
X^{\Delta[1]} \xrightarrow{p^\bullet} (\tilde{X}^{\Delta[1]} =: \tilde{\mathcal{X}}) \\
\downarrow p^\bullet \quad \downarrow \tilde{p}^\bullet \\
(X \times X)^\bullet \xrightarrow{\tilde{p}^\bullet} (\tilde{X} \times \tilde{X})^\bullet
\end{align*}
$$

where the horizontal morphisms are induced by inclusion $X \hookrightarrow \tilde{X}$.

Let $D(n) := X \times \tilde{X}^n \times X \setminus X \times X^n \times X$ and $Y(n) := X \times \tilde{X}^n \times \tilde{X} \setminus X \times \tilde{X}^n \times X$. Let us set $\mathcal{X} := X^{\Delta[1]}$. The twisted logarithmic De Rham complex on \mathcal{X},

$$
\Omega^\ast_{\mathcal{X}}(D(\bullet) + Y(\bullet))(\tilde{\mathcal{P}}^{\otimes (n+2)}) \quad \text{(at degree n we have $\Omega^\ast_{\mathcal{X}^{n+2}}(D(n) + Y(n))(\tilde{\mathcal{P}}^{\otimes (n+1)})$)}
$$

and the twisted logarithmic relative De Rham complex on \mathcal{X},

$$
\Omega^\ast_{\tilde{X}}(D(\bullet) + Y(\bullet)) := \Omega^\ast_{\tilde{X}/X}(D(\bullet) + Y(\bullet))(\tilde{\mathcal{P}}^{\otimes (n+2)})
$$

(at degree n we have $\Omega^\ast_{\tilde{X} \times \tilde{X}^n \times \tilde{X}/y \times \tilde{X}}(D(n) + Y(n)) \otimes \mathcal{O}_{\tilde{X} \times \tilde{X}^n \times \tilde{X}}(\tilde{\mathcal{P}}^{\otimes (n+2)})$) are complexes of sheaves on \mathcal{X}. Let us set

$$
\mathcal{G}^i_n(\Omega^\ast_{\mathcal{X}^{n+2}}(D(n) + Y(n))(\tilde{\mathcal{P}}^{\otimes (n+2)})) := \text{image}(\Omega_{\mathcal{X}^{n+2}}^{\ast-1}(D(n) + Y(n))(\tilde{\mathcal{P}}^{\otimes (n+2)}) \otimes (p^n)^\ast \Omega^i_{\tilde{X} \times \tilde{X}}(\mathcal{D}) \to \Omega^\ast_{\mathcal{X}^{n+2}}(D(n) + Y(n))(\tilde{\mathcal{P}}^{\otimes (n+2)})).
$$

As before we construct a spectral sequence of the functor $tR(p^\bullet)_* \Omega^\ast$ associated with the filtration $\{\mathcal{G}^i\}$, and we get $d^p_{1,q} : \mathcal{E}^p_{1,q-1} \to \mathcal{E}^p_{1,q+1}$ and $\mathcal{E}^p_{1,q} = \Omega^p_{\tilde{X} \times \tilde{X}}(\mathcal{D}) \otimes \mathcal{O}_{\tilde{X} \times \tilde{X}} H^q(tR(p^\bullet)_* \Omega^\ast(D(\bullet) + Y(\bullet)))$. The differential $d^1_{0,q} \to \mathcal{E}^1_{0,q}$ is an integrable connection on $H^q(tR(p^\bullet)_* \Omega^\ast(D(\bullet) + Y(\bullet)))$.

28
Theorem 3.7.1. We have

i) The sheaf \(H^q(tR\mathcal{p}_*\Omega^* \langle D(\bullet) + Y(\bullet) \rangle) \) is an extension of the sheaf \(H^q(tR\mathcal{p}_*\Omega^*) \).

ii) The connection
\[\tilde{d}^1_{1,q} : H^q(tR\mathcal{p}_*\Omega^*(D(\bullet) + Y(\bullet))) \to \Omega^1_{\bar{X} \times X} \otimes \mathcal{O}_{\bar{X} \times X} H^q(tR\mathcal{p}_*\Omega^*(D(\bullet) + Y(\bullet))) \]

is an extension of the connection
\[d_1^{0,q} : H^q(tR\mathcal{p}_*\Omega^*) \to \Omega^1_{X \times X} \otimes \mathcal{O}_{X \times X} H^q(tR\mathcal{p}_*\Omega^*). \]

Proof. These two statements are obvious because on \(X \), \(\Omega^*_X(D) = \Omega^*_X \) for an open subset \(\mathcal{U} \) of \(X \).

§4. Canonical cocycle associated to a variation of mixed Hodge structures.

4.0. Let \(X \) be a smooth complex variety and let \(\gamma \) be a smooth path on \(X \) from \(x_0 \) to \(z \).

Let \(M_1(x), M_2(x) \in \Omega^1(X) \otimes M_n(C) \). Then \(\int_{\gamma} M_1(x), M_2(x) \) is an iterated integral such that \(d(\int_{\gamma} M_1(x), M_2(x)) = M_1(x) \circ \int_{\gamma} M_2(x). \)

Let us choose \(L(x) \) and \(C(x) \) in \(\Omega^1(X) \otimes M_n(C) \). Assume that the matrix function \(\varphi_\gamma(z) \) satisfies a differential equation
\[d\varphi_\gamma(z) + L(z)\varphi_\gamma(z) = 0, \ \varphi_\gamma(x_0) = Id. \]

Then the sum of iterated integrals
\[F_\gamma(z) := \varphi_\gamma(z)(Id + \int_{\gamma} \varphi_\gamma(x)^{-1} \circ (-C(x)) \circ \varphi_\gamma(x) + \int_{\gamma} \varphi_\gamma(x)^{-1} \circ (-C(x)) \circ \varphi_\gamma(x) \varphi_\gamma(x)^{-1} \circ (-C(x)) \circ \varphi_\gamma(x) + \ldots \]
satisfies a differential equation
\[dF_\gamma(z) + (L(z) + C(z))F_\gamma(z) = 0, \ \ F_\gamma(x_0) = Id. \]
Let us set
\[f_0(z) := \varphi_\gamma(z), \quad f_1(z) := \varphi_\gamma(z) \int_\gamma \varphi_\gamma(x)^{-1} \circ (-C(x)) \circ \varphi_\gamma(x), \]
\[\ldots \]
\[f_n(z) := \varphi_\gamma(z) \int_\gamma \varphi_\gamma(x)^{-1} \circ (-C(x)) \circ \varphi_\gamma(x), \ldots. \]

Let \(g_k(z) = \sum_{i=0}^{k} f_i(z) \). The functions \(g_k(z) \) satisfy the following system of differential equations
\[dg_0(z) + L(z)g_0(z) = 0, \quad g_0(x_0) = Id; \]
\[dg_1(z) + L(z)g_1(z) + C(z)g_0(z) = 0, \quad g_1(x_0) = Id; \]
\[\ldots \]
\[dg_n(z) + L(z)g_n(z) + C(z)g_{n-1}(z) = 0, \quad g_n(x_0) = Id. \]

Assume that \(f_i(z) = 0 \) for \(i \geq n + 1 \). Then \(g_n = g_{n+1} \) and
\[dg_n(z) + (L(z) + C(z))g_n(z) = 0. \]

Hence the columns of \(g_n(z) \) are flat sections of the connection
\[\nabla : \mathcal{O}_X^n \to \Omega_X^1 \otimes \mathcal{O}_X^n \]
given by \(\nabla(s) = ds + (L + C)s \).

Let \(\gamma_1 \) be a path from \(z \) to \(z' \). Then we have
\[F_{\gamma_1 \circ \gamma}(z') = F_\gamma(z') \cdot F_\gamma(z). \]

For an iterated integral of length \(n \) we get
\[\varphi_{\gamma_1 \cdot \gamma}(z') \int_{\gamma_1 \cdot \gamma} (\varphi_{\gamma_1 \cdot \gamma}(x))^{-1} \circ (-C_n(x)) \circ \varphi_{\gamma_1 \cdot \gamma}(x), \ldots, (\varphi_{\gamma_1 \cdot \gamma}(x))^{-1} \circ (-C_1(x)) \circ \varphi_{\gamma_1 \cdot \gamma}(x) = \]
\[
\varphi_{\gamma_1}(z') \circ \varphi_\gamma(z) \left(\sum_{i=0}^{n} \left(\int_{\gamma_1} \left(\varphi_\gamma(z) \right)^{-1} \circ (\varphi_{\gamma_1}(x))^{-1} \circ (-C_n(x)) \circ \varphi_{\gamma_1}(x) \circ \varphi_\gamma(z) \right) \right),
\]

We suppose for simplicity that the principal \(G \)-bundle equipped with the integrable connection \(\mathcal{M} : \mathcal{H} \to \mathcal{H} \otimes \mathcal{H} \) was motivated by the last equality.

4.1. We suppose for simplicity that the principal \(G \)-bundle \(\pi : P \to X \) is trivial.

Let \(\pi : X \times G \to X \) be a principal \(G \)-bundle equipped with the integrable connection given by a one-form \(\omega \in \Omega^1(X) \otimes \mathfrak{g} \), where \(\mathfrak{g} = \text{Lie}(G) \).

Let \(\rho : G \to \text{Aut}_{\text{alg}}(\mathcal{O}[G]) \) be given by \(g(f) := g \cdot f \), where \((g \cdot f)(x) := f(g^{-1} \cdot x) \). Let \(\tilde{\rho} : \mathfrak{g} \to \text{Der}_{\text{alg}}(\mathcal{O}[G]) \) be the induced map of Lie algebras.

Lemma 4.1.1. Let \(\mu : \mathcal{O}[G] \to \mathcal{O}[G] \otimes \mathcal{O}[G] \) be induced by the multiplication \(G \times G \to G, (g_2, g_1) \to g_2 \cdot g_1 \). Let us set \(\mu(f)(g_2, g_1) = \sum_i \mu(f)^i_2(g_2) \otimes \mu(f)^i_1(g_1) \). Let \(X \in \mathfrak{g} \). Then we have

\[
\mu(\tilde{\rho}(X)(f)) = \sum_i \tilde{\rho}(X)(\mu(f)^i_2) \otimes \mu(f)^i_1.
\]

Proof. It follows from the equality \(\mu(\rho f) = \sum_i \rho(\mu(f)^i_2) \otimes \mu(f)^i_1 \).

Let \(\varphi : G \to \text{Aut}(V) \) be a representation of \(G \) and let \(\tilde{\varphi} : \mathfrak{g} \to \text{End}(V) \) be the induced representation of the Lie algebra \(\mathfrak{g} \). Let us fix a base \(e_1, \ldots, e_n \) of \(V \). Let \(\varphi(g) = (a_{ij}(g))_{i,j} \) in this base. Let us set:

\[
\tau_\varphi := (a_{ij})_{i,j} \in \mathcal{O}[G] \otimes \text{End}(V).
\]

The group \(G \) acts on \(\mathcal{O}[G] \), hence it acts also on \(\mathcal{O}[G] \otimes \text{End}(V) \). We have

\[
g : (a_{i,j})_{i,j} \to (a_{i,j}(g^{-1}))_{i,j} \cdot (a_{i,j})_{i,j} = (\sum_k a_{i,k}(g^{-1})a_{k,j})_{i,j}.
\]

The subspace \(\tau_\varphi^{-1}\text{End}(V) \tau_\varphi \subset \mathcal{O}[G] \otimes \text{End}(V) \) is \(G \)-invariant.

31
Lemma 4.1.2. Let $X \in \mathfrak{g}$ and $C \in \text{End}(V)$. We have

$$\hat{\rho}(X)(\tau_{\varphi}^{-1}C \tau_{\varphi}) = \tau_{\varphi}^{-1}[\varphi(X), C] \tau_{\varphi},$$

$$\hat{\rho}(X)(\tau_{\varphi}^{-1}C) = \tau_{\varphi}^{-1}\hat{\varphi}(X)C, \quad \hat{\rho}(X)(C \tau_{\varphi}) = -C \hat{\varphi}(X) \tau_{\varphi}.$$

Proof. Observe that the subspaces $\tau_{\varphi}^{-1}\text{End}(V)$ and $\text{End}(V)\tau_{\varphi}$ of $\mathcal{O}[G] \otimes \text{End}(V)$ are also G-invariant. The group G acts on $\tau_{\varphi}^{-1}\text{End}(V)$. The element $g \in G$ maps $(a_{i,j})_{i,j}^{-1} \circ C$ into $(a_{i,j})_{i,j}^{-1} \circ (a_{k,l}(g))_{k,l} \circ C$. Let $X \in \mathfrak{g}$. Then $\hat{\rho}(X)((a_{i,j})_{i,j}^{-1} \circ C) = \lim_{t \to 0} \frac{1}{t} ((a_{i,j})_{i,j}^{-1} \circ \exp tX)_{i,j} \circ C - (a_{i,j})_{i,j}^{-1} \circ C) = (a_{i,j})_{i,j}^{-1} \circ \varphi(X) \circ C.$

4.2. The associated vector bundle $(X \times G) \times_{\rho} \mathcal{O}[G] \rightarrow X$

equipped with the connection given by a one-form $\hat{\rho}(\omega) \in \Omega^1(X) \otimes \text{Der}_{\text{algebra}}(\mathcal{O}[G])$ is the pair $(\mathcal{P} = \pi_* \mathcal{O}_P \rightarrow X, \nabla)$ from section 3.1. Let $f \in \mathcal{O}(X)$ and $\chi \in \mathcal{O}[G]$. Then

4.2.0. $$\nabla (f \otimes \chi) = df \otimes \chi + f \hat{\rho}(\omega)(\chi).$$

The connection ∇ defines trivially a connection also denoted by ∇, on the vector bundle

$$(X \times G) \times_{\rho} \mathcal{O}[G] \otimes \text{End}(V) \rightarrow X.$$

Lemma 4.2.1. Let $C(z) \in \mathcal{O}(X) \otimes \text{End}(V)$. We have

$$\nabla(\tau_{\varphi}^{-1}C(z) \tau_{\varphi}) = \tau_{\varphi}^{-1}(dC(z) + [\varphi(\omega), C(z)]) \tau_{\varphi}.$$

Proof. The lemma follows from the formula 4.2.0 and Lemma 4.1.2.

4.3. Let \mathcal{V} be a vector bundle on X equipped with the integrable connection $\nabla_{\mathcal{V}} : \mathcal{V} \rightarrow \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{V}$. We shall assume that \mathcal{V} is trivial and that it is equipped with the increasing filtration $\{W_i\}_i$ compatible with the connection, by trivial sub-bundles. We assume the associate graded bundle with the induced connection is a bundle

$$(X \times G) \times_{\varphi} \mathcal{V} \rightarrow X,$$
for a certain representation \(\varphi : G \to \text{Aut} V \), equipped with a connection given by a one-form

\[L(z) := \nabla \varphi(\omega) \in \Omega^1(X) \otimes \text{End}(V). \]

Hence the connection \(\nabla_V \) is given by a one-form

\[L(z) + C(z) \in \Omega^1(X) \otimes \text{End}(V). \]

Observe that \(C(z)^n = 0 \) if the filtration of has a length \(n \). We have

\[dL(z) + L(z) \wedge L(z) = 0. \]

The integrability of the connection \(\nabla_V \) implies

\[4.3.1. \quad dC(z) + C(z) \wedge L(z) + L(z) \wedge C(z) + C(z) \wedge C(z) = 0. \]

4.4. Let \(X \) be a smooth holomorphic variety and let \(\Omega^*(X) \) be the De Rham complex of smooth complex values differential forms on \(X \) or let \(X \) be an affine algebraic variety over \(k \) and let \(\Omega^*(X) \) be the algebraic De Rham complex on \(X \).

We recall from 2.5 that \(T_{x,x} \) is the total complex of the double complex

\[
\bigoplus_{n=0}^{\infty} \mathcal{O}[G] \otimes \Omega^*(\mathcal{P})(X) \otimes \mathcal{O}[G] = \bigoplus_{n=0}^{\infty} \mathcal{O}[G] \otimes (\Omega^*(X) \otimes \mathcal{O}[G]) \otimes \mathcal{O}[G].
\]

Definition 4.4.1. Let us set

\[
\tau^{(n)} := \tau \varphi(g_n)^{-1} \circ (-C(z_n)) \circ \tau \varphi(g_n) \otimes \ldots \otimes \tau \varphi(g_1)^{-1} \circ (-C(z_1)) \circ \tau \varphi(g_1) \otimes \tau \varphi(g_0)^{-1} \in (\mathcal{O}[G] \otimes (\Omega^*(X) \otimes \mathcal{O}[G])) \otimes \mathcal{O}[G] \otimes \text{End}(V)
\]

and

\[
\tau_V = \tau_{\nabla_V} := \tau^{(0)} + \tau^{(1)} + \ldots + \tau^{(n)} + \ldots.
\]

Observe that only a finite number of \(\tau^{(i)} \) are non-zero, hence \(\tau_{\nabla_V} \in T_{x,x}^0 \otimes \text{End}(V) \).

Lemma 4.4.2. The element \(\tau_{\nabla_V} \) is a cocycle.

Proof. We have \((-1)^n \delta(\tau^{(n)}) = (-1)^n \sum_{i=1}^{n+1} (-1)^i \otimes \tau \varphi(g_i)^{-1} \circ (C(z_i) \wedge C(z_i)) \circ \tau \varphi(g_i) \otimes \tau \varphi(g_i)^{-1} \circ (-C(z_i)) \circ \tau \varphi(g_i) \otimes \tau \varphi(g_0)^{-1} \)

\[\tau \varphi(g_{i-1})^{-1} \circ (-C(z_{i-1})) \circ \tau \varphi(g_{i-1}) \otimes \ldots \otimes \tau \varphi(g_1)^{-1} \circ (-C(z_1)) \circ \tau \varphi(g_1) \otimes \tau \varphi(g_0)^{-1} \]

and

\[
\delta(\tau^{(n-1)}) = \sum_{i=1}^{n-1} (-1)^{n-i-1} \otimes \tau \varphi(g_i)^{-1} \circ (-dC(z_i) - L(z_i) \circ C(z_i) - C(z_i) \circ L(z_i)) \circ \tau \varphi(g_i) \otimes \ldots.
\]

Hence it follows from 4.3.1 that \(\tau_{\nabla_V} \) is a cocycle.
Lemma 4.4.3. We have

\[(id_{T^0_{x,x}} \otimes \tau_{\nabla_V}) \circ \tau_{\nabla_V} = (\mathcal{M} \otimes id_V) \circ \tau_{\nabla_V}.\]

Proof. We recall that for a trivial bundle \(\pi : X \times G \to X\) the comultiplication \(\mathcal{M} : T^0_{x,x} \to T^0_{x,x} \otimes T^0_{x,x}\) is given by

\[
\mathcal{M}(f_{n+1}(g_{n+1}) \otimes \omega_n f_n(g_n) \otimes \ldots \otimes \omega_1 f_1(g_1) \otimes f_0(g_0)) = \sum_{i=0}^{n} (f_{n+1}(g_{n+1}) \otimes \omega_n f_n(g_n) \otimes \ldots \otimes \omega_{i+1} f_{i+1}(g_{i+1}) \otimes 1) \otimes (1 \otimes \omega_i f_i(g'_i g_i) \otimes \ldots \otimes \omega_1 f_1(g'_1 g_i) \otimes f_0(g'_0 g_i))
\]

Hence we have

\[
(\mathcal{M} \otimes id_V) \circ \tau^{(n)}(g_n, \ldots, g_1, g_0) = \sum_{i=0}^{n} (\tau_{\varphi}(g_n))^{-1} \circ (-C(z_n)) \circ \tau_{\varphi}(g_n) \otimes \ldots \otimes (\tau_{\varphi}(g_{i+1}))^{-1} \circ (-C(z_{i+1})) \circ \tau_{\varphi}(g_{i+1}) \otimes \ldots
\]

\[
\otimes (\tau_{\varphi}(g'_i g_i))^{-1} \circ (-C(z_i)) \circ \tau_{\varphi}(g'_i g_i) \otimes \tau_{\varphi}(g'_0 g_i)^{-1} = \sum_{i=0}^{n} \tau^{(n-i)}(g_n, \ldots, g_{i+1}, g_i) \otimes \tau^{(i)}(g'_1, \ldots, g'_i, g'_0).
\]

This implies the lemma.

Hence the class of \(\tau_{\nabla_V}\), which for simplicity, we also denote by \(\tau_{\nabla_V}\) is a representation of \(\mathcal{H}\). We shall show that \(\tau_{\nabla_V}\) is a mixed Hodge representation. First however we drop the assumption that the principal \(G\)-bundle \(\pi : P \to X\) and the vector bundle \(\mathcal{V}\) are trivial. We shall work in Cech cohomology.

4.5. Let \(\pi : P \to X\) be a principal \(G\)-bundle equipped with the integrable connection given by a one-form \(\omega \in \Omega^1(P) \otimes \mathfrak{g}\). Let \(\mathcal{U} = \{U_i\}_{i \in J}\) be an open covering of \(X\) and let \(\{\psi_i : \pi^{-1}(U_i) \to U_i \times G\}_{i \in J}\) be a family of \(G\)-isomorphisms. Let

\[
\{\psi_{j,i} : U_j \cap U_i \to G\}
\]

be the family of transition functions. They satisfy the cocycle condition

4.5.1. \(\psi_{k,i}(x) = \psi_{kj}(x) \cdot \psi_{ji}(x)\)
on $U_k \cap U_j \cap U_i$. For each i, let $\sigma_i : U_i \to P$ be a section on U_i defined by $\sigma_i(x) = \psi_i^{-1}(x, e)$. Let θ be the left invariant \mathfrak{g}-valued canonical 1-form on G.

For each i, we define a \mathfrak{g}-valued one-form ω_i on U_i by $\omega_i := (\sigma_i)^* \omega$. The forms $\{\omega_i\}_{i \in J}$ satisfy

4.5.2. \[\omega_j = \text{ad}(\psi_{ij}^{-1}) \omega_i + \psi_{ij}^* \theta \]
on $U_i \cap U_j$ and they determine the connection form ω.

Remark 4.5.3. Observe that the description of a principal G-bundle equipped with a connection as a family of transition functions satisfying cocycle condition and a family of one-forms satisfying 4.5.2 is valid in étale topology or flat topology.

4.6. Let $\rho : G \to \text{Aut}_{algebra}(\mathcal{O}[G])$ be given by $g(f) := \rho g f$, where $(\rho g f)(x) := f(g^{-1}x)$. Then $\{\Psi_{ji} := \rho \circ \psi_{ji}\}_{ji}$ are transition functions of the associated vector bundle

$$\mathcal{P} := (P \times_G \mathcal{O}[G] \to X).$$

Let $\tilde{\rho} : \mathfrak{g} \to \text{Der}_{algebra}(\mathcal{O}[G])$ be the induced map of Lie algebras. Let us set

$$\Lambda_i := \tilde{\rho}(\omega_i) \in \Omega^1(U_i) \otimes \text{Der}_{algebra}(\mathcal{O}[G]).$$

Then it follows from 4.5.2 that

4.6.1. \[\Psi_{ji} \Lambda_i = \Lambda_j \Psi_{ji} + d\Psi_{ji}. \]

Hence the family of one-forms $\{\Lambda_i\}_{i \in J}$ defines an integrable multiplicative connection on \mathcal{P}. This is the connection ∇ from section 3.1.

4.7. Let $\varphi : G \to \text{Aut}V$ be a representation of G. The functions $\{A_{ji} := \varphi \circ \psi_{ji}\}_{ji}$ satisfy the cocycle condition. They are transition functions of the associated vector bundle $\mathcal{L} := (P \times_{\varphi} V \to X)$. Let $\tilde{\varphi} : \mathfrak{g} \to \text{End}(V)$ be the induced map of Lie algebras. Let us set

$$\lambda_i := \tilde{\varphi}(\omega_i) \in \Omega^1(U_i) \otimes \text{End}(V).$$

It follows from 4.5.2 that

4.7.1. \[A_{ji} \lambda_i = \lambda_j A_{ji} + dA_{ji}. \]
The one-forms \(\{\lambda_i\}_{i \in J} \) determine an integrable connection \(\nabla_L \) on \(L \).

4.7.2. We assume that \(L \) is a graded vector bundle and the connection \(\nabla_L \) is compatible with the gradation i.e.

\[(L, \nabla_L) = (\oplus_\alpha L_\alpha, \oplus_\alpha \nabla_{L_\alpha}). \]

The transition functions \(\{A_{ji}\} \) and the one-forms \(\{\omega_i\} \) are compatible with the gradation.

4.8. Let \(\chi_{ji} : U_j \cap U_i \to \text{Aut}(V) \) \(((j, i) \in J \times J) \) be a family of functions satisfying a cocycle condition. Let \(M_i \in \Omega^1(U_i) \otimes \text{End}(V) \) \((i \in J) \) be a family of one-forms such that

4.8.1. \(\chi_{ji} \circ M_i = M_j \circ \chi_{ji} + d\chi_{ji} \).

The cocycle \(\{\chi_{ji}\} \) and the family of one-forms \(\{M_i\} \) define a vector bundle \(V \) and a connection \(\nabla_V \). We assume that the connection \(\nabla_V \) is integrable.

We assume that the vector bundle \(V \) is equipped with the filtration \(\{W_\alpha V\}_\alpha \) compatible with the transition functions \(\{\chi_{ji}\} \) and the connection one-forms \(\{M_i\} \). We assume further that the associated graded vector bundle with the induced connection is \((\oplus_\alpha L_\alpha, \oplus_\alpha \nabla_{L_\alpha}) \).

In terms of transition functions and connection matrices it means:

\[\chi_{ji} = A_{ji} + B_{ji}, \quad M_i = \lambda_i + C_i \]

and \(B_{ji} \) and \(C_i \) vanish when passing to the associated graded vector bundle.

4.9. We recall that a Cech complex \(C^*(\mathcal{U}; \Omega^*(\mathcal{P})) \) associated with a covering \(\mathcal{U} = \{U_i\}_{i \in J} \) is defined in the following way:

\[C^m(\mathcal{U}; \Omega^n(\mathcal{P})) := \{f(i_0, \ldots, i_m) \in \Omega^n(\mathcal{P})(U_{i_0} \cap \ldots \cap U_{i_m})\}_{(i_0, \ldots, i_m) \in J^m}; \]

\[\{(Df)(i_0, \ldots, i_{m+1})\} := \{\sum_{k=0}^{m+1} (-1)^k f(i_0, \ldots, \hat{i}_k, \ldots, i_{m+1})\}; \]

\(\partial \) is induced by the differential of twisted De Rham complex;

\[C^*(\mathcal{U}; \Omega^*(\mathcal{P})) := \text{Tot}(\bigoplus_{n,m=0}^{\infty} C^m(\mathcal{U}; \Omega^n(\mathcal{P}))) \]

with a differential \(d \) equal \(D + (-1)^m \partial \) on \(C^m(\mathcal{U}; \Omega^n(\mathcal{P})) \).
The trivialization \(\{ \psi_i : \pi^{-1}(U_i) \to U_i \times G \}_{i \in J} \) of the principal \(G \)-bundle \(\pi : P \to X \) induces an isomorphism

\[
\mathcal{O}_X(U_i) \otimes \mathcal{O}[G] \cong \Omega^0(\mathcal{P})(U_i).
\]

We define elements \(\tau_{\phi_i} \in \Omega^0(\mathcal{P})(U_i) \otimes \text{End}(V) \) by setting

\[
\tau_{\phi_i} := 1 \otimes \tau_{\phi} \in \mathcal{O}_X(U_i) \otimes \mathcal{O}[G] \otimes \text{End}(V).
\]

Let us define an element \(\sigma(\nabla_V) \) in

\[
C^1(\mathcal{U}; \Omega^0(\mathcal{P})) \otimes \text{End}(V) \oplus C^0(\mathcal{U}; \Omega^1(\mathcal{P})) \otimes \text{End}(V)
\]

by the following formula

\[
\sigma(\nabla_V) = \sigma := b + c := \{(j, i) \to \tau_{\phi_j}^{-1} \circ (-B_{ji}) \circ \tau_{\phi_i} \in \Omega^0(\mathcal{P})(U_j \cap U_i) \otimes \text{End}(V)\} + \{(i) \to \tau_{\phi_i}^{-1} \circ (-C_i) \circ \tau_{\phi_i} \in \Omega^1(\mathcal{P})(U_i) \otimes \text{End}(V)\}.
\]

Lemma 4.9.1. We have

\[
\partial c - c \wedge c = 0 \text{ in } C^0(\mathcal{U}; \Omega^2(\mathcal{P})) \otimes \text{End}(V);
\]

\[
D b - b \cup b = 0 \text{ in } C^2(\mathcal{U}; \Omega^0(\mathcal{P})) \otimes \text{End}(V);
\]

\[
\partial b + c \cup b + b \cup c - Dc = 0 \text{ in } C^2(\mathcal{U}; \Omega^0(\mathcal{P})) \otimes \text{End}(V).
\]

Proof. The first equality follows from the fact that the connections \(\nabla_L \) and \(\nabla_V \) are integrable. The fact that \(\{ \chi_{ji} \} \) is a cocycle implies the second equality. The third one follows from the formula 4.8.1.
Lemma 4.9.2. We have

\[d\sigma(\nabla_V) = \sigma(\nabla_V) \cup \sigma(\nabla_V) \text{ in } C^n(\mathcal{U}; \Omega^n(\mathcal{P})) \otimes \text{End}(V). \]

Proof. The lemma follows from Lemma 4.9.1.

Let \(\chi'_{ji} : U_j \cap U_i \to \text{Aut}(V') \) be another family of functions satisfying a cocycle condition and let \(M'_i \in \Omega^1(U_i) \otimes \text{End}(V') \) be a family of 1-forms satisfying 4.8.1. Assume that the vector bundle \(V' \) determined by the cocyle \(\chi'_{ji} \) and the connection \(\nabla_V \) defined by the family \(\{M'_i\} \) satisfy the condition 4.8. In terms of transition functions and connection matrices it means

\[\chi'_{ji} = A'_{ji} + B'_{ji}, \quad M'_i = \lambda'_i + C'_i \]

and \(B'_{ij} \) and \(C'_i \) vanish when passing to the associated graded vector bundle. The associated graded bundle \(L' \) is \(P \times_{\varphi'} V' \to X \), where \(\varphi' : G \to \text{Aut}(V') \) is a representation of \(G \), \(A'_{ji} = \varphi' \circ \psi_{ij} \) and \(\lambda'_i = \dot{\varphi}'(\omega_i) \).

We assume that the triples \((V, \{W_\alpha V\}_\alpha, \nabla_V) \) and \((V', \{W_\alpha V'\}_\alpha, \nabla_{V'}) \) are isomorphic. Hence we have an isomorphism

\[(L, \nabla_L) \approx (L', \nabla_{L'}). \]

Let \(f : V \to V' \) be an isomorphism of fibers over \(x \). The fact that the image of the monodromy representation \(\Theta_x : \pi_1(X, x) \to G \) is Zariski dense in \(G \) implies that

\[\varphi'(g) = f \circ \varphi(g) \circ f^{-1} \]

for all \(g \in G \).

Locally the isomorphism \((V, \{W_\alpha V\}_\alpha, \nabla_V) \approx (V', \{W_\alpha V'\}_\alpha, \nabla_{V'}) \) means that there are \(h_i \in O_X(U_i) \otimes \text{Hom}(V', V) \) such that

\[h_j \chi'_{ji} = \chi_{ji} h_i \quad \text{and} \quad h_i M'_i = M_i h_i + dh_i. \]

Let us set

\[\chi''_{ji} = f^{-1} \chi'_{ji} f \]
and in general
\[(f')'' = f^{-1}(f)''. \]

Observe that \(A_{ji}' = A_{ji} \) and \(\lambda_i'' = \lambda_i \). The cocycle \(\{\chi_{ji}'\} \) and a family \(\{M_i''\} \) define a vector bundle \(\mathcal{V}'' \) and an integrable connection \(\nabla_{\mathcal{V}''} \).

Let us set
\[k_i := h_i \circ f \in \mathcal{O}_X(U_i) \otimes \text{End}(V). \]

We have
\[k_j \chi_{ji}'' = \chi_{ji}k_i \text{ and } k_i M_i'' = M_i k_i + dk_i. \]

Hence the triples \((\mathcal{V}, \{W_a\}, \nabla_{\mathcal{V}}) \) and \((\mathcal{V}'', \{W_a\}'', \nabla_{\mathcal{V}''}) \) are isomorphic. Let
\[\eta \in \mathcal{C}^0(\mathcal{U}; \Omega^0_X(\mathcal{P})) \otimes \text{End}(V) \]
be given by:
\[\eta = \{(i) \to \tau_{\varphi_i}^{-1} \circ (k_i - \text{Id}) \circ \tau_{\varphi_i} \in \Omega^0_X(\mathcal{P})(U_i) \otimes \text{End}(V)\}. \]

Lemma 4.9.3. We have
\[\sigma - \sigma'' = d\eta - \sigma \cup \eta + \eta \cup \sigma'', \text{ where } \sigma = \sigma_{\nabla_{\mathcal{V}}} \text{ and } \sigma'' = \sigma_{\nabla_{\mathcal{V}'}}. \]

Lemma 4.9.4. Let us set \(\sigma' = \sigma_{\nabla_{\mathcal{V}'}} \). We have \(\sigma' = f \circ \sigma'' \circ f^{-1} \).

4.10. Now we shall compute Cech cohomology of \(\mathcal{V}_{yx} := (X; x, y)^{(\Delta[1]:0,1)} \). Let
\[\partial : \mathcal{O}[G] \otimes C^*(\mathcal{U}; \Omega^*_{\mathcal{P}}) \otimes \mathcal{O}[G] \to \mathcal{O}[G] \otimes C^*(\mathcal{U}; \Omega^*_{\mathcal{P}}) \otimes \mathcal{O}[G] \]
be the differential of a tensor product of complexes \(C^*(\mathcal{U}; \Omega^*_{\mathcal{P}}) \).

The two augmentations \(\varepsilon_x \) and \(\eta_x \) are non-zero only on \(\mathcal{C}^0(\mathcal{U}; \Omega^0(\mathcal{P})) = \prod_{i \in J} \mathcal{P}(U_i) \).

We choose \(i_0 \) such that \(x \in U_{i_0} \). The augmentation are compositions of the projection of \(\mathcal{C}^0(\mathcal{U}; \Omega^0(\mathcal{P})) \) onto \(\mathcal{P}(U_{i_0}) \) with \(\varepsilon_x \) and \(\eta_x \) defined in

Differentials
\[\delta : \mathcal{O}[G] \otimes C^*(\mathcal{U}; \Omega^*_{\mathcal{P}}) \otimes \mathcal{O}[G] \to \mathcal{O}[G] \otimes C^*(\mathcal{U}; \Omega^*_{\mathcal{P}}) \otimes (n-1) \otimes \mathcal{O}[G] \]

39
are defined using structure maps $\delta^i : y \times X^{n-1} \times x \to y \times X^n \times x$ $i = 0, 1, \ldots, n$ and augmentations. Let us set:

$$C^*(U; \mathcal{O}[G] \otimes \Omega_{y^n}^* \times \mathcal{O}[G]) := \operatorname{Tot}(\bigoplus_{n=0}^{\infty} \mathcal{O}[G] \otimes C^*(U; \Omega^* (\mathcal{P})^\otimes n \otimes \mathcal{O}[G])$$

with a differential d obtain from ∂ and δ with the same sign convention as in 4.9.

Definition 4.10.1. Let us set:

$$\tau^{(n)}_{\nabla V} := \sigma(\nabla V)(g_n, z_n) \otimes \ldots \sigma(\nabla V)(g_1, z_1) \otimes \tau_(g_0)^{-1} \in C^*(U; \mathcal{O}[G] \otimes \mathcal{O}[G]) \otimes \operatorname{End}(V)$$
and

$$\tau_{\nabla V} := \tau^{(0)}_{\nabla V} + \tau^{(1)}_{\nabla V} + \ldots + \tau^{(n)}_{\nabla V} + \ldots \in \operatorname{Tot}(\bigoplus_{n=0}^{\infty} \mathcal{O}[G] \otimes C^*(U; \Omega^* (\mathcal{P})^\otimes n) \otimes \mathcal{O}[G]) \otimes \operatorname{End}(V).$$

Lemma 4.10.2. The element $\tau_{\nabla V}$ is a cocycle.

Proof. The lemma follows from Lemma 4.9.2.

Let us set

$$\zeta(j, i) := \sigma(g_j) \otimes \ldots \otimes \sigma(g_1) \otimes \eta(g) \otimes \sigma''(h_i) \otimes \ldots \otimes \sigma''(h_1) \otimes \tau_{\nabla V}(g_0).$$

Without lost of generality we can assume that the family $\{h_i\}$ is such that $h_{0o}(x) = Id$.

Lemma 4.10.3. We have

$$d \left(\sum_{i, j=0}^{\infty} (-1)^j \zeta(j, i) \right) = \tau_{\nabla V} - \tau_{\nabla V''}.$$

Proof. It follows from Lemma 4.9.3.

Lemma 4.10.3. We have

$$\tau_{\nabla V''} = f \circ \tau_{\nabla V} \circ f^{-1}.$$

Proof. It follows from Lemma 4.9.4.

4.11. Mixed Hodge representations.

Definition 4.11.1. Let V be a vector space carring a mixed Hodge structure. Let H be a Hopf algebra equipped with a mixed Hodge structure such that the structures maps are
morphism of mixed Hodge structures. We say that a representation \(\rho : V \to H \otimes V \) of the Hopf algebra \(H \) is a mixed Hodge representation if \(\rho \) is a morphism of mixed Hodge structures.

We shall show that the class \(\tau_\nabla : V \to \mathcal{H} \otimes V \) constructed in sections 4.4 (for trivial bundles) and 4.10 (in general case) is a mixed Hodge representation. First we consider the case when \(\pi : P \to X \) and the vector bundle \(V \) are trivial (see sections 4.1-4.4).

4.11.2. We assume that \(\mathcal{O}[G] \) and \(\mathcal{P} \) satisfy 3.2.2. We assume that the vector bundle \(V \) carry a variation of mixed Hodge structures such that the triple

\[(\mathcal{V}, \{ W_i \}_i, \nabla_\mathcal{V} : \mathcal{V} \to \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{V}) \]

is such as in 4.3. We assume that the representation \(\varphi : GrV = V \to \mathcal{O}[G] \otimes (GrV) = \mathcal{O}[G] \otimes V \) is a Hodge representation. \(V \) is a fiber of \(\mathcal{V} \) at \(x \) and it is canonically equal \(GrV = \oplus_i Gr^i_{\mathcal{V}} V \). This implies that the variation of Hodge structures \(Gr\mathcal{V} = \oplus_i Gr^i_{\mathcal{V}} \mathcal{V} \) is in \(\text{VHS}_\Theta (\Theta : \pi_1(X, x) \to G \) is the monodromy homomorphism of the principal \(G \)-bundle \(\pi : X \times G \to X \).

Proposition 4.11.3. Let \(X \) be a smooth projective complex variety. Let \(\mathcal{V} \) be a variation of mixed Hodge structures over \(X \) satisfying 4.11.2. Then the representation \(\tau_\nabla : V \to \mathcal{H} \otimes V \) of \(\mathcal{H} \) is a mixed Hodge representation.

Proof. The matrix \(C(z) \in \Omega^1(X) \otimes W_{-1} \text{End}(V) \) because \(C(z) \) is nilpotent with respect to the weight filtration of \(\mathcal{V} \). The representation \(\tau_\varphi \in \mathcal{O}[G] \otimes \text{End}(V) \) is a Hodge representation compatible with the filtration \(\{ W_i \}_i \) of \(V \), hence \(\tau_\varphi \in \mathcal{O}[G] \otimes W_0(\text{End}(V)) \). Therefore \(\tau^{(n)} \in W_n(T^0) \otimes W_{-n}(\text{End}(V)) \). This implies \(\tau_\nabla \in W_0(\mathcal{H} \otimes \text{End}(V)) \). Observe that \(\tau_\varphi \in F^0(\mathcal{O}[G] \otimes \text{End}(V)) \). The matrix \(C(z) \in \Omega^1(X) \otimes F^{-1}(\text{End}(V)) \) because the connection \(\nabla_\mathcal{V} \) satisfies \(\nabla_\mathcal{V}(F^p\mathcal{V}) \subset \Omega^1_X \otimes_{\mathcal{O}_X} (F^{p-1}\mathcal{V}) \). Hence \(\tau_\nabla \in F^0(\mathcal{H} \otimes \text{End}(V)) \).

Now we consider the general case. The condition: “the triple \((\mathcal{V}, \{ W_i \}_i, \nabla_\mathcal{V} : \mathcal{V} \to \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{V}) \) is such as in 4.3” we replace by “the triple \((\mathcal{V}, \{ W_i \}_i, \nabla_\mathcal{V} : \mathcal{V} \to \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{V}) \) is such as in 4.8.”

41
Proposition 4.11.4. Let X be a smooth projective complex variety. Let \mathcal{V} be a variation of mixed Hodge structures over X satisfying 4.11.2. Then the representation $\tau_{\mathcal{V}} : V \to \mathcal{H} \otimes V$ of \mathcal{H} is a mixed Hodge representation.

Proof. Observe that $C_j \in \Omega^{\bullet}(U_j) \otimes W_{-1} \text{End}(V)$ and $B_{ji} \in \Omega^{\bullet}(U_j \cap U_i) \otimes W_{-1} \text{End}(V)$ because C_j and B_{ji} are nilpotent with respect to the weight filtration of \mathcal{V}.

4.12. The element $\tau_{\mathcal{V}} \in \mathcal{H} \otimes \text{End}(V)$. We recall that $\mathcal{H} \otimes \text{End}(V)$ is a fiber of $H^0(tR^p\Omega^*) \otimes \text{End}(V)$ over $(x,x) \in X \times X$. We shall calculate the monodromy of $\tau_{\mathcal{V}}$.

We construct a section s of $H^0(tR^p\Omega^*) \otimes \text{End}(V)$ such that $s(x) = \tau_{\mathcal{V}}$ and next we find conditions when this section is flat.

We suppose first that the principal G-bundle $\pi : P \to X$ and the pair $(\mathcal{V},\{W_i\})$ are trivial. We recall that $\tau_{\mathcal{V}} = \tau^{(0)} + \tau^{(1)} + \ldots + \tau^{(n)}$ for some n and we assume that $\tau^{(n)} \neq 0$. Let $K_0(z), \ldots, K_n(z) \in \mathcal{O}(X) \otimes \text{End}(V)$ and let $K_i(x) = \text{Id}$ for $i = 0, 1, \ldots, n$. Then

$$\tau(z) := \tau^{(0)} \circ K_n(z) + \tau^{(1)} \circ K_{n-1}(z) + \ldots + \tau^{(n)} \circ K_0(z)$$

is a section of $H^0(tR^p\Omega^*)$ such that $\tau(x) = \tau_{\mathcal{V}}$. This section is flat if and only if the functions $K_i(z)$ satisfy the following system of differential equations

$$dK_0(z) + L(z) \circ K_0(z) = 0,$$
$$dK_1(z) + L(z) \circ K_1(z) + C(z) \circ K_0(z) = 0,$$
$$\ldots$$
$$dK_n(z) + L(z) \circ K_n(z) + C(z) \circ K_{n-1}(z) = 0.$$

Observe that the functions $K_0(z), K_1(z), \ldots, K_n(z)$ coincide with sums of iterated integrals g_0, g_1, \ldots, g_n from 4.0.

Definition 4.12.1. Let us set

$$\int_{\gamma} \tau_{\mathcal{V}} := \varphi_{\gamma}(z) + \varphi_{\gamma}(z) \circ \int_{\gamma} \varphi_{\gamma}(t)^{-1} \circ (-C(t)) \circ \varphi_{\gamma}(t) + \varphi_{\gamma}(z) \circ \int_{\gamma} \varphi_{\gamma}(t)^{-1} \circ (-C(t)) \circ \varphi_{\gamma}(t), \varphi_{\gamma}(t)^{-1} \circ (-C(t)) \circ \varphi_{\gamma}(t) + \ldots.$$

(γ is a path from x to z, $\varphi_{\gamma}(z)$ is given by $d\varphi_{\gamma}(z) + L(z)\varphi_{\gamma}(z) = 0, \varphi_{\gamma}(x) = \text{Id}$).
Lemma 4.12.2. Let $\gamma \in \pi_1(X, x)$. Then the monodromy transformation of τ_{∇_V} along γ is given by
\[\gamma : \tau_{\nabla_V} \to \tau_{\nabla_V} \circ \int_\gamma. \]

Proof. It follows from equalities $K_i(z) = g_i(z)$.

Now we consider general case. Let $X' = (X, x)$. We shall calculate cohomology sheaves $H^i := H^i(\Omega^{\bullet}(P)) \otimes C^\bullet(U; \Omega^0(P))$. (We recall that $\Omega^* = \Omega^*_{X\times X} (P^{\otimes \bullet+1})$.) Next we compute the action of the Gauss-Manin connection on global sections of H_i.

Let us set
\[T := \text{Tot}(\bigoplus_{n=0}^{\infty} C^*(U; \Omega^0(P)) \otimes C^*(U; \Omega^0(P))). \]

We have
\[H^i(T) = \Gamma(X, H^i). \]

We define an element $\kappa \in C^0(U; \Omega^0(P)) \otimes \text{End}(V)$ in the following way:
\[\kappa := ((i) \to \tau_{\varphi_i}^{-1} \circ K_i), \]

where $K_i \in \mathcal{O}_X(U_i) \otimes \text{End}(V)$ and $K_{i_0}(x) = \text{Id}_V$. Let us set
\[K := \sum_{n=0}^{\infty} \sigma(g_n) \otimes \ldots \otimes \sigma(g_1) \otimes \kappa \in T \otimes \text{End}(V). \]

Lemma 4.12.3. The element K is a global section of $H^0 \otimes \text{End}(V)$ if and only if
\[B_{j,i}K_i + A_{j,i}K_i = K_j \]
for all pairs (j, i).

Proof. One verifies that the element K is a cocycle in T if and only if $B_{j,i}K_i + A_{j,i}K_i = K_j$.

Observe that a complex
\[T' := \text{Tot}(\bigoplus_{n=0}^{\infty} C^*(U; \Omega^0(P)^{\otimes n}) \otimes C^*(U; \Omega^0(P))) \]

computes the cohomology groups $H^i(tR\Omega^{\bullet}_X (P^{\otimes \bullet+1}))$. The section s of H^i (i.e., an element $s \in T'$ such that $ds = 0$ in T) is a flat section for the connection $d_{1,i}^{0,i} : H^i \to \Omega^1_{x \times X} \otimes \mathcal{O}_{x \times X} \mathcal{H}^i$ if and only if $ds = 0$ in the complex T'. Hence we get the following result.
Lemma 4.12.4. The (local) section K is flat over $\bigcup_{i \in I} U_i$, $I \subset J$ if and only if

$$dK_i + \lambda_i K_i + C_i K_i = 0$$

for all n and all $i \in I$.

Observe that K is a flat section of $\mathcal{H}^0 \otimes \text{End}(V)$ if and only κ is a flat section of the principal $GL(V)$-bundle corresponding to V. Let γ be a path from x to z. We denote by $\kappa(z) \in \text{End}(V)$ a value at z of the flat section κ continued along the path γ.

Definition 4.12.5. Let us set

$$\int_{\gamma} \tau_{\nabla_V} := \kappa(z).$$

Lemma 4.12.6. Let $\gamma \in \pi_1(X, x)$. The monodromy transformation of τ_{∇_V} along γ is given by

$$\gamma : \tau_{\nabla_V} \rightarrow \tau_{\nabla_V} \circ \int_{\gamma} \tau_{\nabla_V}.$$

The representation $\tau_{\nabla_V} : V \rightarrow \mathcal{H} \otimes V$ of the Hopf algebra \mathcal{H} induces a representation

$$(\tau_{\nabla_V})^* : (\text{Spec } \mathcal{H})(C) \rightarrow \text{End}(V)$$

given by

$$(\tau_{\nabla_V})^*(\sigma) := (\sigma \otimes \text{id}_V) \circ \tau,$$

where $\sigma \in (\text{Spec } \mathcal{H})(C) = Hom_{C-algebra}(\mathcal{H}, C)$. Let $\Theta_x : \pi_1(X, x) \rightarrow (\text{Spec } \mathcal{H})(C)$ be the monodromy representation of the principal $(\text{Spec } \mathcal{H})(C)$-bundle \mathcal{H}^0.

Lemma 4.12.7. We have

$$(\tau_{\nabla_V}) \circ \Theta_x = \int_{\gamma} \tau_{\nabla_V}.$$

Proof. Let $g = \Theta_x(\gamma)$ and let $\tau_{\nabla_V} = (f_{ij}(-)) \in \mathcal{H} \otimes \text{End}(V)$. We view $f_{ij}(-)$ as functions on $(\text{Spec } \mathcal{H})(C)$. After the monodromy transformation along the loop $\gamma \in \pi_1(X, x)$ the element τ_{∇_V} changes into $(f_{ij}(-g)) = (f_{ij}(-)) \circ (f_{ij}(g))$. Lemma 4.12.6 implies that $(f_{ij}(g)) = \int \gamma \tau_{\nabla_V}$. It follows from the definition of $(\tau_{\nabla_V})^*$ that $(\tau_{\nabla_V})^*(g) = (f_{ij}(g))$. Hence we proved the lemma.
Corollary 4.12.8. The monodromy homomorphism at x of the connection $\nabla \mathcal{V} : \mathcal{V} \to \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{V}$ is given by $\pi_1(X, x) \ni \gamma \to \int_\gamma \tau_{\nabla \mathcal{V}} \in \text{End}(\mathcal{V})$.

5. The Classification of variations of mixed Hodge structures.

5.0. Let $\mathcal{VMHS}_X(P)$ be a category of variations of mixed Hodge structures \mathcal{V} over X such that $\text{Gr}_{W} \mathcal{V}$ is in $\mathcal{VHS}_X(P)$. Let $\mathcal{MHRep}(\mathcal{H})$ be a category of mixed Hodge representations of \mathcal{H}. Let

$$F : \mathcal{VMHS}_X(P) \to \mathcal{MHRep}(\mathcal{H})$$

be a functor which to a variation of mixed Hodge structures \mathcal{V} associates a mixed Hodge representation $\tau_{\mathcal{V}_x} : V_x \to \mathcal{H} \otimes V_x$, where V_x is a fiber of \mathcal{V} over $x \in X$. The functor F on morphisms is a restriction to fibers over x. It follows from Lemmas 4.9.3, 4.9.4 and Propositions 4.11.3, 4.11.4 that F is well defined. Our aim is to prove that F is an equivalence of categories.

Theorem 5.0.1. Let X be a smooth complex projective variety. Then the functor $F : \mathcal{VMHS}_X(P) \to \mathcal{MHRep}(\mathcal{H})$ is an equivalence of categories.

Proof. Let \mathcal{V} and \mathcal{V}' be in $\mathcal{VMHS}_X(P)$. First show that

$$F : \text{Hom}_{\mathcal{VMHS}_X(P)}(\mathcal{V}, \mathcal{V}') \to \text{Hom}_{\mathcal{MHRep}(\mathcal{H})}(V_x, V'_x)$$

is bijective. It follows from that the restriction to fibers over x,

$$G : \text{Hom}_{\mathcal{VMHS}_X(P)}(\mathcal{V}, \mathcal{V}') \to \text{Hom}_{\pi_1(X, x)}(V_x, V'_x)$$

is bijective. This implies that F is injective. Let $\varphi : V_x \to V'_x$ be a morphism in $\mathcal{MHRep}(\mathcal{H})$. It follows from that $\varphi \in \text{Hom}_{\pi_1(X, x)}(V_x, V'_x)$. Hence there is $f : \mathcal{V} \to \mathcal{V}'$ such that $G(f) = \varphi$ and therefore also $F(f) = \varphi$.

It rests to show that any mixed Hodge representation $\tau : V \to \mathcal{H} \otimes V$ is isomorphic to $F(\mathcal{V})$ for a certain variation of mixed Hodge structures \mathcal{V}.

Let us set $\mathcal{V}_\tau := (\text{Spec} \mathcal{H}^0)(C) \times_{(\text{Spec} \mathcal{H})(C)} V$. $((\text{Spec} \mathcal{H})(C)$ acts on V on the right by $(v, g) \to g^{-1}(v)$). Let $\tau' : \mathcal{H}^0 \otimes V \to \mathcal{H} \otimes (\mathcal{H}^0 \otimes V)$ be the diagonal action of \mathcal{H}. Let $\iota : \mathcal{H}^0 \otimes V \to \mathcal{H} \otimes (\mathcal{H}^0 \otimes V)$ be given by $\iota(w) = 1 \otimes w$. Then $V_\tau = (\mathcal{H}^0 \otimes V)^{(\text{Spec} \mathcal{H})(C)} = \ldots$
This implies that V carries a variation of mixed Hodge structures because $\tau' - \iota$ is a morphism of variations of mixed Hodge structures. The monodromy representations at x of the variation V is equal to the composition

$$\pi_1(X, x) \xrightarrow{\Theta} (\text{Spec } \mathcal{H})^* \xrightarrow{\pi} \text{End}(V).$$

Let τ_{V_x} be a cocycle associated to V. Then the monodromy representation at x of V is equal $(\tau_{V_x})^* \circ \Theta_x$.

6. Classification of algebraic differential equations with regular singular points.

6.0. Let X be a smooth complex algebraic variety, complement of a divisor with normal crossings in a smooth projective variety.

Let $P \rightarrow X$ be a holomorphic principal G-bundle equipped with a holomorphic integrable connection. We assume that the image of the monodromy homomorphism at x

$$\theta : \pi_1(X, x) \rightarrow G$$

is Zariski dense in G.

Let $DE(X; \theta)_{hol}$ be a category of holomorphic vector bundles V on X equipped with an increasing filtration $\{W_i V\}$ by holomorphic sub-vector bundles and with a holomorphic integrable connection ∇_V compatible with the filtration $\{W_i V\}$ such that the pair $(Gr_{W} V, \nabla_{Gr_{W} V})$ ($\nabla_{Gr_{W} V}$ is a connection induced by ∇_V on $Gr_{W} V$) is of the form $(P \times_{\rho} V; \nabla_{\rho})$, where $\rho : G \rightarrow \text{Aut}V$ is a representation and ∇_{ρ} is the connection induced on the associated vector bundle by the connection on the principal G-bundle $P \rightarrow X$.

We recall from previous sections that given a principal G-bundle $P \rightarrow X$ equipped with an integrable connection we have constructed a Hopf algebra \mathcal{H} and a holomorphic bundle \mathcal{H}^0 equipped with an integrable holomorphic connection.

We denote by $\text{Rep}(\mathcal{H})$ the category of representations of the Hopf algebra \mathcal{H} in a finite dimensional vector spaces.
Theorem 6.0.1. The categories $DE(X, \theta)_{hol}$, $\text{Rep}(\pi_1(X, x); \theta)$ and $\text{Rep}(\mathcal{H})$ are equivalent.

Proof. It follows from [D1] that the first two categories are equivalent. The equivalence

$$G : DE(X, \theta)_{hol} \to \text{Rep}(\pi_1(X, x); \theta)$$

associates to a pair (\mathcal{V}, ∇) a monodromy representation of $\pi_1(X, x)$ in a fiber over x and to a morphism $f : (\mathcal{V}, \nabla) \to (\mathcal{V}', \nabla')$ its restriction to fibers over x, $f_x : V_x \to V'_x$. The functor F is well defined by Lemmas 4.1.0.2. and 4.10.3. It is injective on morphisms because the functor G, which on morphisms is also a restriction to fibers over x, is an equivalence of categories. Let (\mathcal{V}, ∇) and (\mathcal{V}', ∇') be in $DE(X, \text{th})_{hol}$. Let $\alpha \in \text{Hom}_{\text{Rep}(\mathcal{H})}(\pi_1(\mathcal{V}, \nabla), (\mathcal{V}', \nabla'))$. The monodromy representations of (\mathcal{V}, ∇) and (\mathcal{V}', ∇') factor through $(\pi_1(\mathcal{V}, \nabla))^*$ and $(\pi_1(\mathcal{V}', \nabla'))^*$ respectively. Hence $\alpha \in \text{Hom}_{\text{Rep}(\pi_1(X, x))}(V_x, V'_x)$, where V_x and V'_x are fibers over x of \mathcal{V} and \mathcal{V}' respectively. The fact that the functor G is an equivalence of categories implies that $\alpha = F(f)$ for some $f : (\mathcal{V}, \nabla) \to (\mathcal{V}', \nabla')$.

Let $\tau : V \to \mathcal{H} \otimes V$ be a representation of \mathcal{H}. Then $\tau^* : (\text{Spec } \mathcal{H})(C) \to \text{Aut}(V)$ is a representation of a group $(\text{Spec } \mathcal{H})(C)$. The principal $(\text{Spec } \mathcal{H})(C)$-bundle $(\text{Spec } \mathcal{H}^0)(C)$ is equipped with the integrable connection, hence the associated vector bundle $\mathcal{V}(\tau) := (\text{Spec } \mathcal{H}^0)(C) \times_{\tau^*} V \to X$ is equipped with an integrable connection $\nabla_{\mathcal{V}(\tau)}$ induced by the connection of the principal bundle. The monodromy representation of $\nabla_{\mathcal{V}(\tau)}$ is equal $\tau^* \circ \Theta_x$. On the other hand it is equal $(\pi_{\nabla_{\mathcal{V}(\tau)}})^* \circ \Theta_x$.

6.1. Now we shall prove an algebraic analogue of Theorem 6.0.1.

Let \tilde{X} be a smooth proper scheme of finite type over $\text{Spec } k$ and let D be a divisor with normal crossings in \tilde{X}. Let $X := \tilde{X} \setminus D$.

We assume that $P \to X$ is an algebraic principal G-bundle equipped with an algebraic integrable regular connection. Let $\sigma : k \hookrightarrow C$ be an embedding. Let us set $X_{\sigma} := X \times_k C$. We assume that the image of the monodromy homomorphism at x

$$\theta : \pi_1(X_{\sigma}(C), x) \to G(C)$$

47
is Zariski dense in G.

Let $DE(X, \theta)_{alg}$ be a category of algebraic vector bundles \mathcal{V} on X equipped with an increasing filtration $\{W_i\mathcal{V}\}$ by algebraic subvector bundles and with an algebraic integrable regular connection $\nabla_\mathcal{V}$ compatible with the filtration $\{W_i\mathcal{V}\}$ such that the pair $(Gr_W \mathcal{V}, \nabla_{Gr_W \mathcal{V}})$ is of the form $(P \times_\rho V; \nabla_\rho)$.

We recall from previous sections that given an algebraic principal G-bundle equipped with an algebraic integrable regular connection we have constructed a Hopf k-algebra \mathcal{H} and a bundle \mathcal{H}^0 equipped with a regular integrable connection.

Theorem 6.1.1. The categories $DE(X, \theta)_{alg}$ and $Rep(\mathcal{H})$ are equivalent.

Proof. First we consider the case $k = \mathbb{C}$. Let $h : DE(X, \theta)_{alg} \to DE(X, \theta)_{hol}$ be a functor which to an algebraic object associates a corresponding analytic object. This functor is an equivalence of categories. Hence the functor

$$F : DE(X, \theta)_{alg} \to Rep(\mathcal{H})$$

is an equivalence of categories. This implies that F is an equivalence of categories for any algebraically closed field k contained in \mathbb{C}. Let $k \subset \mathbb{C}$ and let $\bar{k} \subset \mathbb{C}$ be its algebraic closure. We have a commutative diagram of functors

$$\begin{array}{ccc}
DE(X\theta)_{alg} & \xrightarrow{F_k} & Rep(\mathcal{H}) \\
i_1 & & \downarrow i_2 \\
DE(X \times_k \bar{k}, \theta)_{alg} & \xrightarrow{F_k} & Rep(\mathcal{H} \otimes_k \bar{k}).
\end{array}$$

We shall use the following observation. If a system of linear equations over k has a generic solution in \bar{k}, then it has a generic solution in k. This implies that i_1 and i_2 are injective on classes of isomorphisms of objects. The functors i_1 and i_2 on morphisms behaves like tensoring with \bar{k} over k. Hence the functor F_k is an equivalence of categories.

STOP HERE

The fiber of $Hi(trp)$ over $(y,X \times y)$ times X can be describe in the following way:

We choose a point X prime in $\pi-1(X)$. Hence we get an isomorphism $P \approx G$. The restriction of $Ome y$ times X n+1 (p ot (n+1)) to y times X times X is ot og. Hence the fiber of $Hi(trp)$ over (y,X) is $Hi \ (t \ Rga \ Ome \ (X \ y,x)(\text{Del 1} ;y,X) \ (p \ ot \ bullet) \ ot \ og.$

48
A. Cosimplicial spaces.

A.1. We review here some definitions from [W]. The category Δ is defined in the following way. The objects of Δ are sequences of integers $\Delta_n = (0, 1, \ldots, n)$. The morphisms of Δ are monotonic maps $\mu : \Delta_n \to \Delta_m$. Morphisms $\delta^i : \Delta_{n-1} \to \Delta_n$ for $n \geq i \geq 0$ given by $\delta^i(j) = j$ if $j < i$ and $\delta^i(j) = j + 1$ if $j \geq i$ are called coface operators. Morphisms $s^j : \Delta_n \to \Delta_{n-1}$ for $n - 1 \geq j \geq 0$ given by $s^j(k) = k$ if $j \geq k$ and $s^j(k) = k - 1$ if $k \geq j + 1$ are called codegeneracy operators. A cosimplicial object in a category C is a covariant functor $X : \Delta \to C$. We usually denote $X(\Delta_n)$ by X^n, $X(\delta^i)$ by δ^i and $X(s^j)$ by s^j.

A.1. Let $K^{*,\bullet}$ be a bicomplex with commuting differentials $\partial^{i,j} : K^{i,j} \to K^{i+1,j}$ and $\delta^{i,j} : K^{i,j} \to K^{i,j-1}$. We define the total complex of $K^{*,\bullet}$ in the following way:

$$(\text{Tot}K^{*,\bullet})_m := \bigoplus_{i-j=m} K^{i,j},$$

$$d_m : (\text{Tot}K^{*,\bullet})_m \to (\text{Tot}K^{*,\bullet})_{m-1}$$

and

$$d_m|_{K^{i,j}} = \partial^{i,j} + (-1)^i \delta^{i,j}.$$

Let X^\bullet be a cosimplicial space. A sheaf on X^\bullet consists of sheaves F_n on X^n together with maps $F_m \to \alpha_* F_n$ for any $\Delta_n \to \Delta_m$ in Δ satisfying the obvious compatibility conditions.

If F_\bullet is a sheaf on X^\bullet with values in an abelian category C then the global section functor on X^\bullet,

$$\Gamma(F_\bullet; X^\bullet) : n \to \Gamma(F_n; X^n)$$

is a simplicial object in C. The obvious functor

$$(\text{simplicial objects in } C) \to (\text{complexes in } C)$$

associates to $\Gamma(F_\bullet; X^\bullet)$ and hence also to F_\bullet, a complex which we shall denote also by $\Gamma(F_\bullet; X^\bullet)$.

A.2. Let X^\bullet be a cosimplicial space. A category of sheaves of abelian groups on X^\bullet is an abelian category which we denote by $\text{Ab}(X^\bullet)$. If F_\bullet is a sheaf of abelian groups on X^\bullet, then F_\bullet has a right resolution K^\bullet_\bullet in $\text{Ab}(X^\bullet)$ such that $H^r(X^q; K^p_q) = 0$ for $r > 0$. One can take a canonical Godement resolution. The resolution K^\bullet_\bullet, after applying the functor of global sections leads to a bicomplex $\Gamma(K^\bullet_\bullet; X^\bullet)$. One defines

$$H^n(X^\bullet; F_\bullet) := H^n(\text{Tot}\Gamma(K^\bullet_\bullet; X^\bullet)).$$

49
Let F^*_n be a complex of sheaves of abelian groups on X^\bullet. One shows that there is a quasi-isomorphism $F^*_n \to K^*_n$ such that $H^r(X^q; K^*_n) = 0$ for $r > 0$. One can take for each pair (n, m) a canonical Godement resolution of F^m_n, $C^*(X^n; F^m_n)$. Then $C^p(X^n; F^q_n)_{p,q}$ is a bicomplex of sheaves on X^n and K^*_n is its total complex. We define (hyper-) cohomology of X^\bullet with coefficients in F^*_n in the following way:

$$H^n(X^\bullet; F^*_n) := H^n(\text{Tot}(K^*_n; X^\bullet)).$$

A.3. Let A^*_n be a complex of sheaves of k-vector spaces on a cosimplicial space X^\bullet. We say that A^*_n is a sheaf of commutative differential graded k-algebras on X^\bullet if for each n, A^*_n is a sheaf of commutative differential graded k-algebras on X^n and if the structure maps are morphisms of k-algebras.

Example. Ω^*_n (in degree n, on X^n, we have the De Rham complex Ω^*_n) is a sheaf of commutative differential graded k-algebras on X^\bullet.

It follows from [N] that for any sheaf A^*_n of cdg k-algebras on X^\bullet, there is a sheaf I^*_n of cdg k-algebras on X^\bullet, and a quasi-isomorphism, a morphism of k-algebras $A^*_n \to I^*_n$ such that I^*_n is a complex of flasque sheaves for each n. Then $(n \to \Gamma(I^*_n, X^n))$ is a simplicial object in the category of commutative graded differential k-algebras. We shall describe how to introduce the product in the cohomology of the total complex.

Let $A^{*,*} = \{n \to A^{*,n}\}_n$ be a simplicial object in the category of cdg k-algebras with face maps δ_i and degeneracy maps s_j. We shall define a shuffle product in the total complex $\text{Tot}A$ by the following formula:

$$x * y := \sum_{(q_1, q_2) - \text{shuffles } \sigma^{-1}} (s_{\sigma(q_2+q_1)} \circ \ldots \circ s_{\sigma(q_1+1)}(x)) \cdot (s_{\sigma(q_1)} \circ \ldots \circ s_{\sigma(1)})(y),$$

$$\pi_1(X, x) \xrightarrow{\theta} \text{Spec } \mathcal{H} \xrightarrow{\tau^*} \text{End}(V).$$

References

Université de Nice-Sophia Antipolis
Département de Mathématiques
Laboratoire Jean Alexandre Dieudonné
U.R.A. au C.N.R.S., No 168
Parc Valrose - B.P.N° 71
06108 Nice Cedex 2, France