On distribution formulas for complex and \(\ell \)-adic polylogarithms

Dedicated to the memory of Professor Jean-Claude Douai

HIROAKI NAKAMURA AND ZDZISŁAW WOJTKOWIAK

Abstract. We study an \(\ell \)-adic Galois analogue of the distribution formulas for polylogarithms with special emphasis on path dependency and arithmetic behaviors. As a goal, we obtain a notion of certain universal Kummer-Heisenberg measures that enable interpolating the \(\ell \)-adic polylogarithmic distribution relations for all degrees.

Contents

1. Introduction
2. Complex distribution relations
3. \(\ell \)-adic case (general)
4. \(\ell \)-adic polylogarithms (review)
5. Distribution relations for \(\tilde{\chi}_m \)
6. Homogeneous form
7. Translation in Kummer-Heisenberg measure
8. Inspection of special cases
References

1. Introduction

One of the most important and useful functional equations of classical complex polylogarithms are distribution relations

\[
\text{Li}_k(z^n) = n^{k-1} \left(\sum_{i=0}^{n-1} \text{Li}_k(\zeta_n^i z) \right) \quad (\zeta_n = e^{2\pi i/n}).
\]

J. Milnor [M83, (7), (32)] says that a function \(\mathcal{L}_s(z) \) has (multiplicative) Kubert identities of degree \(s \in \mathbb{C} \), if it satisfies

\[
\mathcal{L}_s(z) = n^{s-1} \sum_{w^n = z} \mathcal{L}_s(w)
\]

for every positive integer \(n \). The aforementioned classical identity (1.1) for \(\text{Li}_k(z) \) is, of course, a typical example of Kubert identity of degree \(k \), assuming, however, correct
choice of branches of the multivalued function \(Li_k \) in all terms of the identity. To avoid the ambiguity of branch choice, we would rather consider \(\mathcal{L}_k(z) \) as a function \(\mathcal{L}_k(z; \gamma) \) of paths \(\gamma \) on \(\mathbb{P}^1 - \{0, 1, \infty\} \) from the unit vector \(\overrightarrow{01} \) to \(z \). The main aim of this paper is to study generalizations of the above distribution relation for multiple polylogarithms and their \(\ell \)-adic Galois analogs (\(\ell \)-adic iterated integrals) with special emphasis on path dependency.

Let \(K \) be a subfield of \(\mathbb{C} \) with the algebraic closure \(\overline{K} \subset \mathbb{C} \). The \(\ell \)-adic polylogarithmic characters

\[
\bar{\chi}_k^i : G_K \to \mathbb{Z}_\ell \quad (k = 1, 2, \ldots)
\]

are introduced in [NW1] as \(\mathbb{Z}_\ell \)-valued 1-cochains on the absolute Galois group \(G_K := \text{Gal}(\overline{K}/K) \) for any given path \(\gamma \) from \(\overrightarrow{01} \) to a \(K \)-rational point \(z \) on \(\mathbb{P}^1 - \{0, 1, \infty\} \). Our study in [NW2] showed that \(\bar{\chi}_k^i : G_K \to \mathbb{Z}_\ell \) behave nicely as \(\ell \)-adic analogues of the classical polylogarithms \(Li_k(z) \). The \(\ell \)-adic polylogarithms and \(\ell \)-adic iterated integrals are \(\mathbb{Q}_\ell \)-valued variants (and generalizations) of the above 1-cochains \(\bar{\chi}_k^i : G_K \to \mathbb{Z}_\ell \). (See §2 and §3 for their precise definitions.) We will give a geometrical proof of distribution relations for classical multiple polylogarithms and their \(\ell \)-adic analogues in considerable generality. In particular, we will obtain several versions of Kubert identities with explicit path systems for:

- classical multiple polylogarithms (Theorem 2.3),
- \(\ell \)-adic iterated integrals (Proposition 3.2, Theorem 6.3),
- \(\ell \)-adic polylogarithms and polylogarithmic characters (Theorem 6.5, Corollary 6.7).

The polylogarithm is interpreted as a certain coefficient of an extension of the Tate module by the logarithm sheaf arising from the fundamental group of \(V_1 := \mathbb{P}^1 - \{0, 1, \infty\} \). The motivic construction dates back to the fundamental work of Beilinson-Deligne [BD], Huber-Wildeshaus [HW98] (see also [HK] §6 and references therein for more recent generalizations). In this article, we mainly work on the \(\ell \)-adic realization which forms a \(\mathbb{Z}_\ell \)- or \(\mathbb{Q}_\ell \)-valued 1-cochain on the Galois group \(G_K \). In the collaboration [DW] of the last author with J.-C. Douai, it was shown that certain linear combinations of \(\ell \)-adic polylogarithms at various points give rise to 1-cocycles on \(G_K \), which lead to an \(\ell \)-adic version of Zagier’s conjecture. See also Remark 4.2 and [NSW] §3.2.

We will intensively make use of a system of simple cyclic covers \(V_n := \mathbb{P}^1 - \{0, \mu_n, \infty\} \) over \(V_1 = \mathbb{P}^1 - \{0, 1, \infty\} \), where \(\mu_n \) is the group of \(n \)-th roots of unity \(\{1, \zeta_n, \ldots, \zeta_n^{n-1}\} \) \((\zeta_n := e^{2\pi i/n}) \), and \(\{0, \mu_n, \infty\} \) denotes \(\{0, \infty\} \cup \mu_n \) by abuse of notation. We consider the family of cyclic coverings \(V_n \to V_1 \) and open immersions \(V_n \hookrightarrow V_1 \) together with induced relations between their fundamental group(oid)s. Our basic idea is to understand the distribution relations of polylogarithms as the “trace property” of relevant coefficients (“iterated integrals”) arising in those fundamental groups.

As observed in [NW2] and will be seen in §3 below, unlike in the classical complex case, there generally occur lower degree terms in \(\ell \)-adic case when a distribution relation is naively derived. This problem prevents artless approaches to \(\ell \)-adic Kubert identities i.e., distribution formulas of homogeneous form (with no lower degree terms). Our line of studies in §2-6 will lead us to understand why and how to make use of \(\mathbb{Q}_\ell \)-paths (\(\ell \)-adic paths with ‘denominators’) to eliminate such lower degree terms dramatically. Consequently in §7, as a primary goal of this paper, we arrive at introducing a generalization of
the Kummer-Heisenberg measure of \([NW1]\) so as to interpolate those \(\ell\)-adic distribution relations of polylogarithms for all degrees.

Remark 1.1. We have already studied in [W05a] and [W04b] the distribution relations for those \(\ell\)-adic polylogarithms under certain restricted assumptions (see [W05a, Prop. 11.1.4] for \(\ell\)-adic dilogarithms, [W05a, Cor. 11.2.2, 11.2.4] for \(\ell\)-adic polylogarithms on restricted Galois groups, and [W04b, Th. 2.1] for \(\ell\)-adic polylogarithmic characters with \(\ell \nmid n\)).

Basic setup, notations and convention:

Below, we understand that all algebraic varieties are geometrically connected over a fixed field \(K \subset \mathbb{C}\) and that all morphisms between them are \(K\)-morphisms. A path on a \(K\)-variety \(V\) is a topological path on \(V(\mathbb{C})\) or an étale path on \(V \otimes K\) whose distinction will be obvious in contexts. The notation \(\gamma : x \rightsquigarrow y\) means a path from \(x\) to \(y\), and write \(\gamma_1\gamma_2\) for the composed path tracing \(\gamma_1\) first and then \(\gamma_2\) afterwards. We write \(\chi : G_K \to \mathbb{Z}_\ell^\times\) for the \(\ell\)-adic cyclotomic character (\(\ell\): a fixed prime). The Bernoulli polynomials \(B_k(T)\) \((k = 0, 1, \ldots)\) are defined by the generating function \(\frac{e^{Tz}}{1 - e^{Tz}} = \sum_{k=0}^{\infty} B_k(T) \frac{z^k}{k!}\), and the Bernoulli numbers are set as \(B_k := B_k(0)\). For a vector space \(H\), we write \(H^*\) for its dual vector space.

Assume \(K \supset \mu_n\). We shall be concerned with two kinds of standard morphisms defined by

\[
\begin{align*}
\gamma : V_n &\hookrightarrow V_1 & \gamma(z) = \zeta z & (\zeta \in \mu_n); \\
\pi : V_n &\to V_1 & \pi(z) = z^n.
\end{align*}
\]

As easily seen, each \(\gamma\) is an open immersion, while \(\pi\) is an \(n\)-cyclic covering. Write \(\overrightarrow{01}_n\) for the tangential base point represented by the unit tangent vector on \(V_n\). Since \(\gamma : V_n \hookrightarrow V_1\) maps \(\overrightarrow{01}_n\) to \(\overrightarrow{01}_1\) (often written just \(\overrightarrow{01}\)), it induces the surjection homomorphism

\[
\pi_1(V_n, \overrightarrow{01}_n) \twoheadrightarrow \pi_1(V_1, \overrightarrow{01}).
\]

On the other hand, although the image \(\pi_n(\overrightarrow{01}_n)\) is not exactly the same as \(\overrightarrow{01}_1\) as a tangent vector, they give the same tangential base point on \(V_1\) in the sense that they give equivalent fiber functors on the Galois category of finite étale covers of \(V_1\). Henceforth, for simplicity, we shall regard \(\pi_n(\overrightarrow{01}_n) = \overrightarrow{01}_1 = \overrightarrow{01}\), and regard \(\pi_1(V_n, \overrightarrow{01}_n)\) as a subgroup of \(\pi_1(V_1, \overrightarrow{01})\) by the homomorphism

\[
\pi_1(V_n, \overrightarrow{01}_n) \hookrightarrow \pi_1(V_1, \overrightarrow{01})
\]
induced from \(\pi_n\).
For each $\zeta \in \mu_n$, introduce a path $\delta_\zeta : \bar{0}^1 \to \zeta \bar{0}^1 = \bar{\gamma}(0 \bar{1}^1_n)$ on V_1 to be the arc from $\bar{0}^1$ to $\zeta \bar{0}^1$ anti-clockwise oriented. Using the path δ_ζ, we obtain the identification $\pi_1(V_1, \bar{0}^1) \to \pi_1(V_1, \zeta \bar{0}^1)$.

Let x, y be standard loops based at $\bar{0}1$ on $V_1 = \mathbb{P}^1 - \{0, 1, \infty\}$ turning around the punctures 0, 1 once anticlockwise respectively. We introduce loops $x_n, y_{0,n}, \ldots, y_{n-1,n}$ based at $\bar{0}^1_n$ on V_n characterized by:

$$\begin{cases}
x_n := \pi_n^{-1}(x^n) = j_n^{-1}(x), \\
y_{s,n} := j_n^{-1}(\delta_\zeta) \cdot j_n^{-1}(y) \cdot j_n^{-1}(\delta_\zeta)^{-1} (\zeta = e^{\frac{2is\pi}{n}}, s = 0, \ldots, n - 1)
\end{cases}$$

so that $x_n, y_{0,n}, \ldots, y_{n-1,n}$ freely generate $\pi_1(V(C), \bar{0}^1_n)$.

Note that, in view of the above inclusion (1.4), we have the identifications:

$$(1.5) \quad x_n = x^n, \quad y_{s,n} = x^s y x^{-s}.$$

2. Complex distribution relations

For $n = 1, 2, \ldots$, let

$$\omega(V_n) := \frac{dz}{z} \otimes \left(\frac{dz}{z} \right)^* + \sum_{i=0}^{n-1} \frac{dz}{z - \zeta^n_i} \otimes \left(\frac{dz}{z - \zeta^n_i} \right)^* \in \Omega^1_{\log}(V_n) \otimes \Omega^1_{\log}(V_n)^*$$

be the canonical one-form on V_n. Traditionally, we set

$$X_i := \left(\frac{dz}{z} \right)^* \quad \text{and} \quad Y_{i,n} := \left(\frac{dz}{z - \zeta^n_i} \right)^*.$$

Let $\mathcal{R}_n := \mathbb{C}[X_n, Y_{i,n} \mid 0 \leq i < n]$ be the non-commutative algebra of formal power series over \mathbb{C} generated by non-commuting variables X_n and $Y_{i,n}$ ($0 \leq i < n$). Consider the trivial bundle

$$\mathcal{R}_n \times V_n \to V_n$$

equipped with the (flat) connection $\nabla : \Phi \mapsto d\Phi - \Phi \omega(V_n)$ for smooth functions $\Phi : V_n \to \mathcal{R}_n$. For a piecewise smooth path $\gamma : [0, 1] \to V_n$ from $\gamma(0) = a$ to $\gamma(1) = z$, let $\Phi : [0, 1] \to \mathcal{R}_n$ be the solution to the differential equation $d\Phi = \Phi \omega(V_n)$ pulled back on γ with $\Phi(0) = 1$ and define $\Lambda(a \leadsto \gamma z) \in \mathcal{R}_n$ to be $\Phi(1)$. (Cf. [H86] §2, [W96] §1; we here follow Hain’s path convention in loc. cit.) In the case a being the tangential base point $\bar{0}^1$, we interpret $\Lambda(\bar{0}^1 \leadsto \gamma z)$ in a suitable manner introduced in [De89], [W97, §3.2].

Let \mathcal{M}_n be the set of all monomials (words) in X_n and $Y_{i,n}$ ($0 \leq i < n$). Then, we can expand

$$(2.1) \quad \Lambda(a \leadsto \gamma z) = 1 + \sum_{w \in \mathcal{M}_n} \text{Li}_w(a \leadsto \gamma z) \cdot w$$

in \mathcal{R}_n. If $w = X_{a_0}^{a_1}Y_{i_1,n}X_{a_2}^{a_1} \cdots Y_{i_k,n}X_{a_l}^{a_k}$, then

$$(2.2) \quad \text{Li}_w(a \leadsto \gamma z) = \int_{a,\gamma}^{z} \frac{dz}{z - \zeta_{a_0}^{i_1}} \cdots \frac{dz}{z - \zeta_{a_k}^{i_k}},$$

the iterated integral along γ.

Definition 2.1. For a word \(w = X_n^{a_0} Y_{i_1,n} X_n^{a_1} \cdots Y_{i_k,n} X_n^{a_k} \), we define its \(X \)-weight by
\[
\text{wt}_X(w) = a_0 + \cdots + a_k.
\]

Let the cyclic cover
\[
\pi_{r;n,r} : V_{r;n} \rightarrow V_r
\]
be given by \(\pi_{r;n,r}(z) = z^n \). Then, we have
\[
\left[\text{Id} \otimes (\pi_{r;n,r})_* \right] (\omega(V_{r;n})) = \left[(\pi_{r;n,r})^* \otimes \text{Id} \right] (\omega(V_r)).
\]
This implies that the induced map from \((\pi_{r;n,r})_*\) on complete tensor algebras (denoted by the same symbol):
\[
\hat{T}(\Omega^1_{\log}(V_{r;n})) \rightarrow \hat{T}(\Omega^1_{\log}(V_r))
\]
\[
\mathbb{C}<\langle X_{r;n}, Y_{j;r;n} \mid 0 \leq j < nr \rangle \rightarrow \mathbb{C}<\langle X_r, Y_{i;r} \mid 0 \leq i < r \rangle
\]
preserves the associated power series:
\[
(\pi_{r;n,r})_* \left(\Lambda(\overrightarrow{01} \gamma z) \right) = \Lambda(\overrightarrow{01} \pi_{r;n,r}(\gamma) z^n)
\]

Note that
\[
(\pi_{r;n,r})(X_{r;n}) = nX_r,
(\pi_{r;n,r})(Y_{j;r;n}) = Y_{i;r} \quad (i \equiv j \mod r).
\]

Definition 2.2. For \(w \in M_{r;n} \), we mean by \((w \mod r)\) the word in \(M_r \) obtained by replacing each letter \(X_{r;n}, Y_{j;r;n} \) \((0 \leq j < nr)\) appearing in \(w \) by \(X_r, Y_{i;r} \) \((i \equiv j \mod r)\) respectively. If \(r \) is a common divisor of \(m \) and \(n \), \(w \in M_m, w' \in M_n \) and \((w \mod r) = (w' \mod r)\), then we shall write
\[
w \equiv w' \mod r.
\]

Theorem 2.3. Notations being as above, let \(\gamma \) be a path on \(V_{r;n} \) from \(01 \) to a point \(z \). Then, for any word \(w \in M_r \), we have the distribution relation
\[
\text{Li}_w(\overrightarrow{01} \pi_{r;n,r}(\gamma) z^n) = n^{\text{wt}_X(w)} \sum_{u \in M_{r;n} \atop u \equiv w \mod r} \text{Li}_u(\overrightarrow{01} \gamma z).
\]

Proof. The theorem follows immediately from the formula (2.4): Write \(\Lambda(\overrightarrow{01} \gamma z) = 1 + \sum_{u \in M_{r;n}} \text{Li}_u(\overrightarrow{01} \gamma z) \cdot u \) in \(R_{r;n} \). Applying (2.4), we obtain
\[
1 + \sum_{w \in M_r} \text{Li}_w(\overrightarrow{01} \pi_{r;n,r}(\gamma) z^n) \cdot w = 1 + \sum_{u \in M_{r;n}} \text{Li}_u(\overrightarrow{01} \gamma z) \cdot (\pi_{r;n,r})(u).
\]
Given any specific \(w \in M_r \) in LHS, collect from RHS all the coefficients of \((\pi_{r;n,r})(u)\) for those \(u \) satisfying \((u \mod r) = w\). Noting that \((\pi_{r;n,r})(u) = n^{\text{wt}_X(u)}w = n^{\text{wt}_X(w)}w\) for them, we settle the assertion of the theorem. \(\square \)
The above theorem generalizes the distribution relation (1.1) for the classical polylogarithm \(\text{Li}_k(z) \) along the path \(\gamma : \overline{01} \to z \). Indeed, in the notation above, since \(\frac{dz}{1-z} = -\frac{dz}{z-1} \), we may identify

\[
\text{Li}_k(z)_{\gamma} = -\text{Li}_{V^X} (01 \to z).
\]

Applying the theorem to the special case \(\pi_{n,1} : V_n \to V_1 \), \(w = YX^{k-1} \) where \(Y = Y_{0,1}, X = X_1 \), we obtain

\[
\int_{01, \pi_{n,1}(\gamma)} \frac{dz}{z-1} \frac{dz}{z} \cdots \frac{dz}{z} = n^{k-1} \sum_{\zeta \in \mu_n} \int_{01, \gamma} \frac{dz}{z} \frac{dz}{z} \cdots \frac{dz}{z}.
\]

Each term of RHS turns out to be \(\text{Li}_k(\zeta z) \) along the path \(\delta_{\zeta} \cdot j_{\zeta}(\gamma) : \overline{01} \to \zeta \overline{01} \to \zeta z \), after integrated by substitution \(z \to \zeta z \). Noting that the integration here over \(\delta_{\zeta} : \overline{01} \to \zeta \overline{01} \) vanishes (cf. [W97] §3), we obtain (1.1) with path system specified as follows:

\[
(2.6) \quad \text{Li}_k(z^n)_{\pi_{n,1}(\gamma)} = n^{k-1} \sum_{\zeta \in \mu_n} \text{Li}_k(\zeta z)_{\delta_{\zeta} j_{\zeta}(\gamma)}.
\]

3. \(\ell \)-adic case (general)

We shall look at the \(\ell \)-adic analogue of the previous section by recalling the following construction which essentially dates back to [W04a]. Let \(K \subset \mathbb{C} \) and consider

\[
\pi_1^\ell(V_n \otimes \overline{K}, \overline{01}),
\]

the pro-\(\ell \) (completion of the étale) fundamental group of \(V_n \otimes \overline{K} \). It is easy to see the loops \(x_n, y_{1,n}, \ldots, y_{n-1,n} \) introduced in §1 form a free generator system of the pro-\(\ell \) fundamental group. Consider the (multiplicative) Magnus embedding into the ring of non-commutative power series

\[
(3.1) \quad \iota_{Q_1} : \pi_1^\ell(V_n \otimes \overline{K}, \overline{01}) \hookrightarrow \mathbb{Q}_\ell \langle \langle X_n, Y_{i,n} \mid 0 \leq i < n-1 \rangle \rangle
\]

defined by \(\iota_{Q_1}(x_n) = \exp(X_n), \iota_{Q_1}(y_{i,n}) = \exp(Y_{i,n}) \) (cf. [W05b, 15.1]). For simplicity, we often identify elements of \(\pi_1^\ell(V_n \otimes \overline{K}, \overline{01}) \) with their images by \(\iota_{Q_1} \). Let us write again \(M_n \) for the set of monomials in \(X_n, Y_{i,n} \) (although variables have different senses from the previous section where they were duals of differential forms). We shall also employ the usage ‘\(\text{wt}_X(w) \)’ and ‘\(w \equiv w' \mod r \)’ by following the same manners as Definitions 2.1 and 2.2.

Recall that we have a canonical Galois action \(G_K \) on (étale) paths on \(V_n \otimes \overline{K} \) with both ends at \(K \)-rational (tangential) points. Given a path \(\gamma \) from such a point \(a \) to a point \(z \in V_n(K) \), we set, for any \(\sigma \in G_K \),

\[
(3.2) \quad f^\sigma_\sigma := \gamma \cdot \sigma(\gamma)^{-1} \in \pi_1^\ell(V_n \otimes \overline{K}, a),
\]

where the RHS is understood to be the image in the pro-\(\ell \) quotient. When \(a = \overline{01} \), we expand \(f^\sigma_\sigma \in \pi_1^\ell(V_n \otimes \overline{K}, \overline{01}) \) in the form

\[
(3.3) \quad f^\sigma_\sigma = 1 + \sum_{w \in M_n} \text{Li}_w(\overline{01} \to z)(\sigma) \cdot w
\]

in \(\mathbb{Q}_\ell \langle \langle X_n, Y_{i,n} \mid 0 \leq i < n-1 \rangle \rangle \), and associating the coefficient

\[
\text{Li}_w(\overline{01} \to z)(\sigma) := \text{Coeff}_w(f^\sigma_\sigma)
\]
of \(w \in M_n \) to \(\sigma \in G_K \), we define the \(\ell \)-adic Galois 1-cochain
\[
\text{Li}_w(\overline{01} \bar{\gamma} z) = \text{Li}^{(\ell)}_w(\overline{01} \bar{\gamma} z) : G_K \to \mathbb{Q}_\ell
\]
for every monomial \(w \in M_n \). We call each \(\text{Li}_w(\overline{01} \bar{\gamma} z) \) the \(\ell \)-adic iterated integral associated to \(w \in M_n \) and to the path \(\gamma \) on \(V_n \).

Remark 3.1. The above naming ‘\(\ell \)-adic iterated integral’ is intended to be an analog of the iterated integral appearing in the complex case (2.1), (2.2). They represent general coefficients of the associator in the Magnus expansion. Conceptually, the associator lies in the pro-unipotent hull of the fundamental group and the monodromy information encoded in the total set of them is equivalent to that encoded in the general coefficients with respect to any fixed Hall basis of the corresponding Lie algebra. This line of formulation was, in fact, taken up, e.g., in [W04a] §5. However for the purpose of pursuing the distribution formulas in the present paper, the simple form of trace properties (2.4), (2.5) along the cyclic coverings \(\pi_{rn,r} : V_{rn} \to V_r \) is most essential. This is why we start with Magnus expansions \(f'_\sigma \) in \(\mathbb{Q}_\ell\langle\langle X_n, Y_{r,n} \rangle\rangle_i \) rather than with Lie expansions of \(\log f'_\sigma \) with respect to a Hall basis in \(\text{Lie}(\langle\langle X_n, Y_{r,n} \rangle\rangle_i) \). But we shall discuss their relations in the polylogarithmic part of \(n = 1 \) in §4.

Now, as in §2, let us consider the morphism \(\pi_{rn,r} : V_{rn} \to V_r \) given by \(\pi_{rn,r}(z) = z^n \) for \(n, r > 0 \), and let \(\gamma \) be a path on \(V_{rn} \) from \(01 \) to a \(K \)-rational point \(z \). By our construction, the \(\ell \)-adic analogue of the equality (2.4) holds, i.e., \(\pi_{rn,r} \) preserves the \(\ell \)-adic associators:
\[
(\pi_{rn,r})_*(f'_\sigma) = f'_{\pi_{rn,r}(\gamma)} \quad (\sigma \in G_K).
\]
However, unlike the complex case (2.5), \(\pi_{rn,r} \) does not preserve the expansion coefficients homogeneously, i.e., it maps as
\[
(\pi_{rn,r})_*(X_{rn}) = nX_r, \quad (\pi_{rn,r})_*(Y_{j,rn}) = \exp(kX_r)Y_{i,r} \exp(-kX_r) \quad (j = i + kr, \ 0 \leq i < r).
\]

Proof of (3.5). Note that the cyclic projections \(\pi_{rn,r} \) identify \(\{\pi_1(V_n)\}_n \) as a sequence of subgroups of \(\pi_1(V_1) \) as in (1.4), and regard \(x_{rn} = x^n = x^{rn}, \ y_{j,rn} = x^{j}y^{x^{-j}} = (x^r)^k x^i y^{x^{-i}} (x^r)^{-k} = x^r y_{i,r} x^{-r} \). Although \(\pi_{rn,r} \) does not keep injectivity on the complete envelops, it does induce a functorial homomorphism on them. The formula follows then from \(x_n = \exp(X_n), \ y_{sn} = \exp(Y_{s,n}) \). □

This causes generally (lower degree) error terms to appear in distribution relations for \(\ell \)-adic iterated integrals.

Still, if we restrict ourselves to the words whose \(X \)-weights are zero, we have the following

Proposition 3.2. Notations being as above, if \(w \in M_r \) is a word with \(\text{wt}_X(w) = 0 \), i.e., of the form \(w = Y_{i_1,r} \cdots Y_{i_t,r} \), then it holds that
\[
\text{Li}_w(\overline{01} \pi_{rn,r}(\gamma) z^n)(\sigma) = \sum_{u \in M_{rn}, u \equiv w \mod r} \text{Li}_u(\overline{01} \bar{\gamma} z)(\sigma) \quad (\sigma \in G_K).
\]

Proof. In the expansion of \((\pi_{rn,r})_*(f'_\sigma) = f'_{\pi_{rn,r}(\gamma)} \), the contributions to the coefficient of \(w \) come only from the first ‘\(Y \)-only’ term of each \(u \in M_{rn} \) with \(u \equiv w \mod r \). The proposition follows from this observation. □
Remark 3.3. In the ℓ-adic Galois case, the distribution relations of Proposition 3.2 are used in [W14] to construct measures on \(\mathbb{Z}_\ell^r\) which generalize the measure on \(\mathbb{Z}_\ell\) in [NW1]. The general distribution formula analogous to Theorem 2.3 for arbitrary words in \(M\), hold only up to lower degree terms in the ℓ-adic Galois case. More generally, any covering maps between smooth algebraic varieties will give some kind of distribution relations.

4. ℓ-adic polylogarithms (review)

Henceforth, we shall closely look at the case of ℓ-adic polylogarithm where \(r = 1\) and only those words \(w \in M_1\) involving \(Y_{0,1}\) only once are concerned, in the setting of the previous section. For simplicity, we write \(x := x_1, y := y_{0,1}\) and \(X := \log(x), Y := \log(y)\), and will be concerned with those coefficients of the words \(YX^{k-1}\) of \(f_\sigma\).

Let us recall some basic facts from [NW1], [NW2]. We introduced, for any path \(\gamma : \overrightarrow{01} \rightsquigarrow z\) on \(V_1 = \mathbb{P}^1 - \{0, 1, \infty\}\), the ℓ-adic polylogarithms

\[
\ell_i z, \gamma) : G_K \to \mathbb{Q}_\ell
\]

(4.1)

(with regard to the fixed free generator system \(\{x, y\}\) of \(\pi_1^G(V_1 \otimes \overline{\mathbb{K}}, \overrightarrow{01})\)) to be the Lie expansion coefficients of the associator \(f_\sigma = \gamma \cdot \sigma(\gamma)^{-1}\) for \(\sigma \in G_K\) modulo the ideal \(I_Y\) of Lie monomials including \(Y\) twice or more:

\[
\log(f_\sigma) = \rho_z(\sigma)X + \sum_{m=1}^{\infty} \ell_i z, \gamma)(\sigma)\text{ad}(X)^{m-1}(Y) \mod I_Y.
\]

Here, \(\rho_z : G_K \to \mathbb{Z}_\ell(1)\) designates the Kummer 1-cocycle for power roots of \(z\) along \(\gamma\). Note, however, that the other coefficients \(\ell_i z, \gamma)(\sigma) \in \mathbb{Q}_\ell\) are generally not valued in \(\mathbb{Z}_\ell\) due to applications of log respectively to \(x, y\) and \(f_\sigma \in \pi_1^G(V_1 \otimes \overline{\mathbb{K}}, \overrightarrow{01})\). In fact, we can bound the denominators of \(\ell_i z, \gamma)(\sigma)\) by relating them with more explicitly defined \(\mathbb{Z}_\ell\)-valued 1-cochains called the ℓ-adic polylogarithmic characters

\[
\hat{\chi}_m(= \hat{\chi}_m, \gamma) : G_K \to \mathbb{Z}_\ell \quad (m \geq 1)
\]

defined by the Kummer properties for \(n \geq 1\):

\[
\hat{\chi}_m(z, \gamma)(\sigma) = \sigma \left(\prod_{a=0}^{n-1} (1 - \zeta^{a} z^{1/\ell^n}) \right)^{\frac{m-1}{n}} \prod_{a=0}^{n-1} (1 - \zeta^{a+\rho_z(\sigma)} z^{1/\ell^n})^{\frac{m-1}{n}},
\]

where \((1 - \zeta^{a} z^{1/\ell^n})^{\beta}\) means the \(\beta\)-th power of a carefully chosen \(n\)-th root of \((1 - \zeta^{a} z^{1/\ell^n})\) along \(\gamma\). It is shown in [NW1, p.293 Corollary] that, for each \(\sigma \in G_K\), the ℓ-adic polylogarithm \(\ell_i z, \gamma)(\sigma) \in \mathbb{Q}_\ell\) can be expressed by the Kummer- and ℓ-adic polylogarithmic characters \(\rho_z(\sigma), \hat{\chi}_m(\sigma) \in \mathbb{Z}_\ell\) as follows:

\[
\ell_i z, \gamma)(\sigma) = (-1)^{m+1} \sum_{k=0}^{m-1} \frac{B_k}{k!} (-\rho_z(\sigma))^k \hat{\chi}_m-k(\sigma) \frac{z^{m-k-1}}{m-k-1} \quad (m \geq 1).
\]

One has then the following relations among \(\ell_i z, \gamma)(\sigma) \in \mathbb{Q}_\ell\) (4.1), \(\hat{\chi}_m(\sigma) \in \mathbb{Z}_\ell\) (4.3) and \(\operatorname{Li}_{YX^{m-1}}(\overrightarrow{01} z, \gamma)(\sigma) \in \mathbb{Q}_\ell\) (§3):

Proposition 4.1. (i) Notations being as above, we have

\[
\hat{\chi}_m(\sigma) = (-1)^{m+1}(m-1)! \sum_{k=1}^{m} \frac{\rho_z(\sigma)^{m-k}}{(m+1-k)!} \ell_i z, \gamma)(\sigma) \quad (m \geq 1).
\]
(ii) Moreover, the expansion of \(f_\sigma^\circ \) in \(\mathbb{Q}_\ell \langle \langle X, Y \rangle \rangle \) partly looks like

\[
f_\sigma^\circ = 1 + \sum_{i=1}^{\infty} \frac{(-\rho_{\sigma}(\sigma))^i}{i!} X^i - \sum_{i=0}^{\infty} \frac{\bar{\chi}_{i+1}^{\circ}(\sigma)}{i!} Y X^i + \ldots \text{(other terms)}.
\]

In particular, we have

\[
\text{Li}_{Y X^{m-1}}(\overline{1} \cdot \langle \langle z \rangle \rangle)(\sigma) = -\frac{\bar{\chi}_m^{\circ}(\sigma)}{(m-1)!} \quad (m \geq 1).
\]

Proof. (i) follows immediately from inductively reversing the formula (4.5). (ii) also follows easily from discussions in [NW2, p.284-285]: Suppose \(f_\sigma^\circ \) has monomial expansion as

\[
f_\sigma^\circ = 1 + \sum_{i=1}^{\infty} c_i \frac{X^i}{i!} - \sum_{i=0}^{\infty} d_{i+1} Y X^i + \ldots \text{(other terms)}.
\]

First, from (4.2), we see that \(f_\sigma^\circ \equiv e^{cX} \) modulo \(Y = 0 \) with a constant \(c := -\rho_{\sigma}(\sigma) \), hence that \(c_i = c^i \). Next, to look at the coefficients of monomials of the forms \(X^i, Y X^i \) \((i = 0, 1, 2, \ldots)\) closely, we take reduction modulo the ideal \(J_Y := \langle XY, Y^2 \rangle \) of \(\mathbb{Q}_\ell \langle X, Y \rangle \). Observe then the congruence:

\[
\log(f_\sigma^\circ) \equiv (f_\sigma^\circ - 1) \left\{1 - \frac{1}{2}(f_\sigma^\circ - 1) + \frac{1}{3}(f_\sigma^\circ - 1)^2 - + \ldots\right\} \\
\equiv \left(-\sum_{i=0}^{\infty} d_{i+1} Y X^i\right) \left\{1 - \frac{1}{2}(e^{cX} - 1) + \frac{1}{3}(e^{cX} - 1)^2 - + \ldots\right\} \\
\equiv \left(-\sum_{i=0}^{\infty} d_{i+1} Y X^i\right) \left\{\sum_{k=0}^{\infty} \frac{B_k}{k!} c^k X^k\right\} \quad \text{(mod } J_Y)\)
\]

and find that the coefficient of \(Y X^{m-1} \) in \(\log(f_\sigma^\circ) \) is

\[
(*) \quad -\sum_{k=0}^{m-1} \frac{B_k}{k!} c^k d_{m-k}
\]

for \(m \geq 1 \). On the other hand, the formula (4.2) combined with (4.5) calculates the same coefficient, which is \((-1)^{m-1}\)-multiple of that of \(\text{ad}(X)^{m-1}(Y) \), as to be

\[
(**) \quad (-1)^{m-1} \ell_{i,m}(z, \gamma) = \sum_{k=0}^{m-1} \frac{B_k}{k!} (-\rho_{\sigma}(\sigma))^k \frac{\bar{\chi}_{m-k}^{\circ}(\sigma)}{(m-k-1)!}
\]

for \(m \geq 1 \). Comparing those (*) and (**) inductively on \(m \geq 1 \), we conclude our desired identities \(d_{i+1} = -\bar{\chi}_{i+1}(\sigma)/i! \) \((i \geq 0)\). \(\square \)

Remark 4.2. The \(\ell \)-adic polylogarithm was constructed as a certain lisse \(\mathbb{Q}_\ell \)-sheaf on \(V_1 = \mathbb{P}^1 - \{0, 1, \infty\} \) as in [BD], [HW98], [HK] and [W12]. The fiber over a point \(z \in V_1(K) \) forms a polylogarithmic quotient torsor of \(\ell \)-adic path classes from \(\overline{0} \) to \(z \). We have the \(G_K \)-action on the path space whose specific coefficients are the \(\ell \)-adic (Galois) polylogarithms in our sense (4.1), viz., realized as \(\mathbb{Q}_\ell \)-valued 1-cochains on \(G_K \). See also,

Note that there are misprints in [NW2, p.284] where exponents \(\circ \in \{2, 3\} \) of \((e^{(\log z)X} - 1)\) should read \(\circ = 1, 2 \) respectively in the 2nd and 3rd terms in line \(-11\).
5. Distribution relations for \(\tilde{\chi}_n^z \)

Suppose now that \(\mu_n \subseteq K \subset \mathbb{C} \) and that we are given a point \(z \in V_n(K) \) together with a(n étale) path \(\gamma : \bar{01}_n \rightsquigarrow z \) on \(V_n \otimes K = P^1_K - \{0, \mu_n, \infty\} \). We consider the \(\ell \)-adic polylogarithmic characters \(\tilde{\chi}_m^n, \tilde{\chi}_m^z : G_K \to \mathbb{Z}_\ell \) (\(\zeta \in \mu_n \)) along the paths \(\pi_n(\gamma) : \bar{01}_n \rightsquigarrow z^n \) and \(\delta_\zeta \pi_n(\gamma) : \bar{01}_n \rightsquigarrow \zeta \) respectively. In this section, we shall show the following \(\ell \)-adic analog of the distribution formula:

Theorem 5.1. Notations being as above, we have

\[
\tilde{\chi}_n^z(\sigma) = \sum_{d=1}^{k} \left(k - 1 \right) n^{d-1} \sum_{s=0}^{n-1} (-s\chi(\sigma))^{k-d} \tilde{\chi}_n^s(\sigma) \quad (\sigma \in G_K, \ z_n = e^{2\pi i n}, 0^0 = 1)
\]

Consider the \(\ell \)-adic Lie algebras \(L_{Q_\ell}(\bar{01}_n) \) and \(L_{Q_\ell}(\bar{01}_1) \) associated to \(\pi_1(V_n, \bar{01}_n) \) and \(\pi_1(V_1, \bar{01}_1) \) respectively, and set specific elements of them by \(X_n := \log x_n, Y_{i,n} := \log y_{i,n} \) (\(i = 0, \ldots, n-1 \)), \(X := \log x \) and \(Y := \log y \).

In the following of this section, \(\sigma \) is fixed and frequently omitted. For our fixed \(\sigma \in G_K \), let us determine the polylogarithmic part of the Galois transformation \(f_\gamma := \gamma \cdot \sigma(\gamma)^{-1} \) of the path \(\gamma : \bar{01}_n \rightsquigarrow z \) in the form:

\[
(5.1) \quad \log(f_\gamma)^{-1} \equiv CX_n + \sum_{s=0}^{n-1} \sum_{m=1}^{\infty} C_{s,m} \text{ad}(X_n)^{m-1}(Y_{s,n})
\]

\[
\equiv CX_n + \sum_{s=0}^{n-1} C_{s} \text{ad}(X_n)(Y_{s,n}) \quad \text{mod } I_Y,
\]

where, \(I_Y \) represents the ideal generated by those terms including \(\{Y_{0,n}, \ldots, Y_{n-1,n}\} \) twice or more, and \(C_s(t) = \sum_{m=1}^{\infty} C_{s,m} t^{m-1} \in \mathbb{Q}_\ell[[t]] \) (\(s = 0, \ldots, n-1 \)).

We determine the above coefficients \(C, C_{s,m} \) by applying the morphisms \(j_\zeta \) (\(\zeta \in \mu_n \)). Let us set

\[
L^{(\zeta)}(t) := L_1(\zeta t) + L_2(\zeta t) t + L_3(\zeta t) t^2 + \cdots \quad (\zeta \in \mu_n);
\]

\[
L^{(n)}(t) := L_1(z^n) + L_2(z^n) t + L_3(z^n) t^2 + \cdots,
\]

with

\[
\begin{align*}
L_0(\zeta) &:= \rho_\zeta = \rho + \frac{\zeta}{n}(\chi - 1) \quad (\zeta = e^{2\pi is/n}, \ s = 0, 1, \ldots, n-1), \\
L_1(\zeta) &:= \rho_{1 - \zeta}, \\
L_k(\zeta) &:= \frac{\phi_k(\sigma)}{(k-1)!} \quad (k \geq 2);
\end{align*}
\]

\[
\begin{align*}
L_0(z^n) &:= \rho_{z^n} = n \rho_z, \\
L_1(z^n) &:= \rho_{1 - z^n} = \sum_{\zeta \in \mu_n} \rho_{1 - \zeta}, \\
L_k(z^n) &:= \frac{\phi_k(z)}{(k-1)!} \quad (k \geq 2).
\end{align*}
\]

Then,
Lemma 5.2.

(1) \(C = L_0(z) = \rho_z. \)

(2) \(C_0(t) = L^{(1)}(-t) \frac{\rho_{zt}}{e^{\rho_{zt}} - 1}. \)

(3) \(C_s(t) = L^{(s)}(-t) e^{((\frac{s}{n} - \frac{nt}{\zeta})^t)} \frac{\rho_{zt}}{e^{\rho_{zt}} - 1} \quad (s = 1, \ldots, n - 1; \, \zeta = e^{-\frac{2\pi i s}{n}}). \)

The proof of this lemma will be given later in this section.

Proof of Theorem 5.1 assuming Lemma 5.2:

We apply the morphism \(\pi_n : V_n \to V_1 \) to \(\log(f_\sigma)^{-1} \). We first observe that \(\pi_n(X_n) = nX, \pi_n(Y_{s,n}) = x^sYx^{-s} = \sum_{k=0}^{\infty} \frac{g^k}{k!} (\text{ad}X)^k(Y) = e^{s\text{ad}X}(Y) \) for \(s = 0, \ldots, n - 1. \) Hence,

\[
\pi_n(\log(f_\sigma)^{-1}) = CnX + \sum_{s=0}^{n-1} C_s(n \text{ad}X) \left(\sum_{k=0}^{\infty} \frac{g^k}{k!} (\text{ad}X)^k \right)(Y)
\]

The above LHS equals to

\[
\log(f_{\sigma n}(\gamma))^{-1} = \rho_{\pi n}X + \sum_{k=1}^{\infty} \ell i_k(z^n, \pi_n(\gamma))(\text{ad}X)^{k-1}(Y).
\]

From the formula (4.5) we see that

\[
\sum_{k=1}^{\infty} \ell i_k(z^n, \pi_n(\gamma)) t^k = t L^{(n)}(-t) \frac{\rho_{zt}}{e^{\rho_{zt}} - 1},
\]

hence that the equality of RHSs of (5.2) and (5.3) results in:

\[
\sum_{s=0}^{n-1} C_s(nt) e^{st} = L^{(n)}(-t) \frac{\rho_{zt}}{e^{\rho_{zt}} - 1}.
\]

Substituting \(C_s(t) \) \((s = 0, \ldots, n - 1) \) by Lemma 5.2 (2), (3), the above left side equals

\[
\left(L^{(1)}(-nt) + \sum_{s=1}^{n-1} L^{(s)}(-nt) e^{((\frac{s}{n} - \frac{nt}{\zeta})^t)e^{st}} \right) \frac{\rho_{zt}}{e^{\rho_{zt}} - 1}
\]

where, in the summation \(\sum_s \), we understand \(\zeta = e^{-\frac{2\pi i s}{n}} \). As \(((\frac{s}{n} - 1)\chi - \frac{s}{n})nt + st = -(n - s)\chi t \), the replacement of \(\zeta \) by \(\zeta_n = e^{\frac{2\pi i s}{n}} \) enables us to collect the sum as \(\sum_{s=0}^{n-1} L^{(s)}(-nt)e^{-st} \). Finally, substituting \(t \) for \(-t\), we obtain

\[
L^{(n)}(t) = \sum_{s=1}^{n-1} L^{(s)}(nt) e^{s\chi t} \quad (\zeta = e^{\frac{2\pi i s}{n}}).
\]

Theorem 5.1 follows from comparing the coefficients of the above equation. \(\square \)

We prepare the following combinatorial lemma concerning the Baker-Campbell-Hausdorff sum: \(S \oplus T = \log(e^S e^T) \). Let

\[
\beta(t) = \frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}
\]
be the generating function for Bernoulli numbers.

Lemma 5.3. Let \(K \) be a field of characteristic 0 and let \(\alpha, \ell_0, \ell_1, \ldots \in K \). Let \(\ell(X, Y) = \ell_0 X + \ell_+(\text{ad}X)(Y) = \ell_0 X + \sum_{k=0}^{\infty} \ell_k (\text{ad}X)^{k-1}(Y) \) be an arbitrary element of the formal Lie series ring \(\text{Lie}_K \langle X, Y \rangle \) with \(\ell(t) \in K[[t]] \). Then, we have the following congruence formulas modulo \(I_Y \).

(i) \[\ell(X, Y) \oplus \alpha X \equiv (\alpha + \ell_0)X + \left(\frac{\beta((\alpha + \ell_0)\text{ad}X)}{\beta(\alpha \text{ad}X)} \ell_+(\text{ad}X) \right)(Y); \]

(ii) \[\alpha X \oplus \ell(X, Y) \equiv (\alpha + \ell_0)X + \left(\frac{\beta((\alpha + \ell_0)\text{ad}X)}{\beta(\ell_0 \text{ad}X)} \ell_+(\text{ad}X)e^{\alpha \text{ad}X} \right)(Y). \]

Proof. Both formulas follow from the polylogarithmic BCH formula and with a representation of the core generating function. See [NW2, Prop. 5.9 and (5.8)]. \(\square \)

Proof of Lemma 5.2:

Apply the morphisms \(j_{k} (\zeta \in \mu_n) \) to determine the coefficients \(C_{m,s} \) of the polylogarithmic terms of \(\log f^\gamma_\sigma \) in (5.1).

Case \(\zeta = 1 \): Observe that \(j_1(X_n) = X, j_1(Y_{0,n}) = Y \) and \(j_1(Y_{i,n}) = 0 (i \neq 0) \). Then, it follows from (5.1) that

\[j_1(\log(f^\gamma_\sigma)^{-1}) = \log(f^\gamma_\sigma)^{-1} \equiv CX + (C_0(\text{ad}X))(Y) \mod I_Y. \]

We immediately see that the first coefficient \(C \) is given by

\[C = \rho_z = L_0(z), \]

and that the other polylogarithmic coefficients are given by (4.5) as follows:

\[C_0(t) = \sum_{k=1}^{\infty} \ell_k(z,j_1(\gamma))t^{k-1} = L^{(1)}(-t)\frac{\rho_z t}{e^{\rho_z t} - 1}. \]

Case \(\zeta \neq 1 \): Assume \(\zeta = e^{-\frac{2\pi is}{n}} (s = 1, \ldots, n-1) \). We observe in this case that \(\delta_\zeta j_\zeta(X_n) \delta_\zeta^{-1} = X, \delta_\zeta j_\zeta(Y_{s,n}) \delta_\zeta^{-1} = xy^{-1} = \sum_{k=0}^{\infty} \frac{\text{ad}X^k(Y)}{k!} = e^{\text{ad}X}(Y) \) and \(j_\zeta(Y_{i,n}) = 0 (i \neq 0) \). Therefore, it follows from (5.1) that

\[\delta_\zeta \cdot j_\zeta(\log(f^\gamma_\sigma)^{-1}) \cdot \delta_\zeta^{-1} \equiv CX + (C_\zeta(\text{ad}X)e^{\text{ad}X})(Y) \mod I_Y. \]

On the other side, since \(j^\delta_\zeta j_\zeta(\gamma) = \delta_\zeta j_\zeta(\gamma) \delta_\zeta^{-1} j^\delta_\zeta \) by (3.2), we have

\[\delta_\zeta \cdot j_\zeta(\log(f^\gamma_\sigma)^{-1}) \cdot \delta_\zeta^{-1} = \delta_\zeta \cdot \log(f^\gamma_\sigma)^{-1} \cdot \delta_\zeta^{-1} \]

\[= \left(-\log(f^\gamma_\sigma)^{-1} \right) \oplus_{\text{CH}} \left(\log(f^\gamma_\sigma)^{-1} \right) \]

\[\equiv \left(-\frac{n-s}{n}(\chi - 1)X \oplus_{\text{CH}} \left(\ell_0(\zeta)X + \sum_{k=1}^{\infty} \ell_k(\zeta)(\text{ad}X)^{k-1}(Y) \right) \right) \mod I_Y, \]

where \(\ell_k(\zeta) (k \geq 0) \) are taken along the path \(\delta_\zeta j_\zeta(\gamma) \). Note here that \(\ell_0(\zeta) = L_0(\zeta) = \rho_z + \frac{n-s}{n}(\chi - 1) \) and that (4.5) implies

\[\sum_{k=1}^{\infty} \ell_k(\zeta,\delta_\zeta j_\zeta(\gamma))t^{k-1} \equiv L^{(\zeta)}(-t)B(L_0(\zeta)t) = L^{(\zeta)}(-t)\frac{L_0(\zeta)t}{e^{L_0(\zeta)t} - 1}. \]
Putting this into (5.11) and using Lemma 5.3(ii), we find

\[(5.13) \quad \delta_\zeta \cdot \zeta (\log(f_\zeta))^{-1}) \cdot \delta_\zeta^{-1} \equiv \rho_z X + \left(L^{(\zeta)}(-\text{ad} X) e^{-\frac{n-s}{n}(x-1)\text{ad} X} \frac{\rho_z \text{ad} X}{e^{\rho_z \text{ad} X} - 1}\right) (Y) \mod I_Y.\]

Comparing this with (5.10), we obtain

\[(5.14) \quad C_s(t) = L^{(\zeta)}(-t) e^{-\frac{n-s}{n}(x-1) t} \frac{\rho_z t}{e^{\rho_z t} - 1} \quad (s = 1, \ldots, n-1; \zeta = e^{-\frac{2\pi i a}{n}}).\]

Thus, the proof of Lemma 5.2 is completed. \(\square\)

Remark 5.4. In [NW2, Theorem 5.7], we gave a general tensor criterion to have a functional equation of (complex and \(\ell\)-adic) polylogarithms from a collection of morphisms \(\{f_i : X \to \mathbb{P}^1 - \{0,1,\infty\}\}_{i \in I}\) and their formal sum \(\sum_{i \in I} c_i[f_i]\). In our above case, it holds that the collection \(\{\pi_n, j_0, \ldots, j_{n-1} : V_n \to V_1\}\) satisfies the criterion with coefficients \(1, -n^{-k-1}, \ldots, -n^{-k-1}\) (as observed already in [Ga96, (1.9) (iii)]). Explicit evaluation of the error terms \(E_k := E_k(\sigma, \gamma)\) discussed in [NW2] (that explains part of lower degree inhomogeneous terms of our functional equation) can be obtained a posteriori from (5.4), (5.9), (5.12) and (5.7) as:

\[\sum_{k=1}^{\infty} E_k t^k = \frac{\rho_z n t^2}{e^{\rho_z n t} - 1} \sum_{s=1}^{n-1} L^{(\zeta)}(-s t) (e^{-s t} - e^{-s(x-1)t}).\]

Note that the lower degree terms other than \(E_k\) are explained by the Roger type normalization (difference from \(\ell\)-type and \(\chi\)-type) and the effects from compositions of paths \(\overrightarrow{01} \sim \zeta \overrightarrow{01} \sim \zeta\) of Baker-Campbell-Hausdorff type.

Remark 5.5. Replacing \(L^{(\zeta)}(nt)\), \(L^{(\zeta)}(nt)\) in (5.7) by generating functions for \(\ell_\zeta(z^n, \pi_n(\gamma))\), \(\ell_\zeta(z^n, \delta_\zeta(\gamma))\) by (5.4), (5.9) and (5.12), we obtain an equation

\[\sum_{k=1}^{\infty} \ell_\zeta(z^n, \pi_n(\gamma))^{t-1} \]

\[= \frac{\rho_z n t}{e^{\rho_z n t} - 1} \sum_{s=0}^{n-1} e^{s t} \left(\frac{e^{-L_0(\zeta^n z) n t} - 1}{-L_0(\zeta^n z) n t} \right) \sum_{k=1}^{\infty} \ell_\zeta(z^n, \delta_\zeta(\gamma))(-n t)^{k-1}\]

in \(\mathbb{Q}_\ell[t]\). From this, for every fixed \(k \geq 1\), one may express \(\ell_\zeta(z^n, \pi_n(\gamma))\) as a linear combination of the \(\ell_\zeta(\zeta^n z, \delta_\zeta(\gamma))\) \((s = 0, \ldots, n-1, d = 1, \ldots, k)\). However, those coefficients are apparently more complicated than those in Theorem 5.1 where the polylogarithmic characters \(\chi_{\zeta^n}, \chi_{\zeta^n}\) are treated.

6. Homogeneous form

We keep the notations in §5 with assuming \(\mu_n \subset K\). Let \(\pi_{\mathbb{Q}_\ell}(\overrightarrow{01}_n)\) denote the \(\ell\)-adic pro-unipotent fundamental group of \(V_n \otimes K\) based at \(\overrightarrow{01}_n\) which is by definition the pro-unipotent hull of the image of the Magnus embedding (3.1) consisting of all the group-like elements of the complete Hopf algebra \(\mathbb{Q}_\ell\langle X, Y_{i,n} \mid 0 \leq i < n-1 \rangle\). We also define the \(\ell\)-adic pro-unipotent path space (or \(\mathbb{Q}_\ell\)-path space for short) \(\pi_{\mathbb{Q}_\ell}(\overrightarrow{01}_n, v)\) for a \(K\)-(tangential) point \(v\) on \(V_n\) to be the \(\mathbb{Q}_\ell\)-rational extension of the path torsor \(\pi^1_{\mathbb{Q}_\ell}(V_n \otimes K, \overrightarrow{01}_n, v)\) via
Let us introduce rational modifications of the loops $y_{s,n}$ ($s = 0, \ldots, n - 1$) and the paths δ_ζ ($\zeta \in \mu_n$) respectively as follows. For $s = 0, \ldots, n - 1$ and $\zeta = e^{2\pi is/n}$, set
\[
\tilde{y}_{s,n} := x_n^{-\frac{s}{n}} y_{s,n} x_\tilde{n}^2 \in \pi_{Q_\ell}(\tilde{0}^1_n),
\]
\[
\tilde{\epsilon}_\zeta := x_n^{-\frac{s}{n}} \cdot \delta_\zeta \in \pi_{Q_\ell}(\tilde{0}^1_n, \zeta).
\]
Note that, in the case $n = 1$, we have $x = x_1$, $y = \tilde{y}_{0,1}$ by definition.

The following lemma is the key to homogenize the ℓ-adic distribution formula.

Lemma 6.1. (i) For every $\sigma \in G_K$ and $\zeta \in \mu_n$, we have $\sigma(\tilde{\epsilon}_\zeta) = \tilde{\epsilon}_\sigma$. Moreover, for any path γ from $\zeta \tilde{0}^1$ to a K-point w on V_1, we have $\tilde{\epsilon}_\zeta f_\gamma \tilde{\epsilon}_\zeta^{-1} = f_{\sigma \gamma} \tilde{\epsilon}_\zeta$.

(ii) The natural extensions of the homomorphisms on $\pi_{Q_\ell}(\tilde{0}^1_n)$ induced by $J_\zeta : V_n \to V_1$, $\pi_{r,n} : V_{r,n} \to V_r$ (denoted by the same symbols) map the loops x_n, $\tilde{y}_{s,n}$ ($s = 0, \ldots, n - 1$) as follows.

(a) $\tilde{\epsilon}_\zeta J_\zeta(x_n) \tilde{\epsilon}_\zeta^{-1} = x$.
(b) $\pi_{r,n,r}(x_{rn}) = x_r^n$.
(c) $\tilde{\epsilon}_\zeta J_\zeta(\tilde{y}_{s,n}) \tilde{\epsilon}_\zeta^{-1} = \begin{cases} y & (\zeta = e^{-2\pi is/n}), \\ 1 & (\zeta \neq e^{-2\pi is/n}). \end{cases}$
(d) $\pi_{r,n,r}(\tilde{y}_{j,rn}) = \tilde{y}_{i,r} \ (0 \leq i < r, \ 0 \leq j < rn, \ i \equiv j \mod r)$.

Proof. (i): Let $\zeta = e^{2\pi is/n}$ ($s = 0, \ldots, n - 1$). By the assumption $\mu_n \subset K$, we have $\chi(\sigma) \equiv 1 \mod n$ for $\sigma \in G_K$. The first assertion follows immediately from the formula
\[
\sigma(\tilde{\epsilon}_\zeta) = x_{r}^\frac{s}{n}(\chi(\sigma)-1) \delta_\zeta,
\]
which can be easily seen from an argument similar to the proof of [NW1, Prop.1] with replacement of $\tilde{F}(t - z)$ by $\tilde{F}(\{\zeta t\})$. The second claim follows easily from the definition (3.2): $\tilde{f}_p = p \cdot \sigma(p)^{-1}$ for any path $p : a \sim b$.

(ii): (a), (b) and the case $\zeta \neq e^{-2\pi is/n}$ of (c) are trivial. (d) follows from (b) and the fact $\pi_{r,n,r}(y_{j, rn}) = x_{rn}^k y_{s,n} x_{r}^{-k}$ with $j = i + kr, \ 0 \leq i < r$ (3.5). It remains to prove (c) in the case $\zeta = e^{-2\pi is/n}$. Suppose first that ζ is different from 1, i.e., $\zeta = e^{-2\pi is/n}$ for any fixed $s = 1 \ldots n - 1$. Then $\tilde{\epsilon}_\zeta = x_n^{-\frac{1}{n}} \delta_\zeta$. Since $\delta_\zeta J_\zeta(y_{s,n}) \delta_\zeta^{-1} = xy^{-1}$, (a) implies $\delta_\zeta J_\zeta(\tilde{y}_{s,n}) \delta_\zeta^{-1} = x_n^{-\frac{1}{n}} xy x^{-1} x_n = x_n^{-\frac{1}{n}} y x_n^{-\frac{1}{n}}$. It follows then that $\tilde{\epsilon}_\zeta J_\zeta(\tilde{y}_{s,n}) \tilde{\epsilon}_\zeta^{-1} = y$. Next, suppose $\zeta = 1$ (i.e., $s = 0$). Then, it is easy to settle this case by $J_1(y_{0,n}) = y$. We thus complete the proof of (c). \qed

Now, we embed $\pi_{Q_\ell}(\tilde{0}^1_n)$ and its Lie algebra $L_{Q_\ell}(\tilde{0}^1_n)$ into the non-commutative power series ring $Q_\ell[\langle X_n, Y_{s,n} \mid 0 \leq s < n \rangle]$ by setting $X_n := X_n = \log x_n$, $Y_{s,n} := \log y_{s,n}$, and denote by \mathcal{M}_n the set of monomials in $X_n, Y_{s,n}$ ($s = 0, \ldots, n - 1$). For $w \in \mathcal{M}_n$, let $\text{wt}_X(w)$ denote the number of X_n appearing in w. We shall also employ the monomial congruence `$w \equiv w'$ mod r' by following the same manner as Definition 2.2 after replacing $X_n, Y_{i,n}$
by \mathcal{X}_n, $\mathcal{Y}_{i,n}$ ($n \in \mathbb{Z}_{>0}$, $0 \leq i < n$) respectively. For the case $n = 1$, we will also simply write $\mathcal{X} = \mathcal{X}_1$, $\mathcal{Y} = \mathcal{Y}_{0,1}$.

Definition 6.2. Let z be a point in $V_n(K)$. Given a \mathbb{Q}_ℓ-path $p \in \pi_{\mathbb{Q}_\ell}(\overline{01}, z)$ and any $\sigma \in G_K$, we set $f^p_\sigma := p \cdot \sigma(p)^{-1}$ and expand it in the form

$$f^p_\sigma = 1 + \sum_{w \in \mathcal{M}_n} \mathcal{L}_{iw}(\overline{01}^p \cdots \cdots z)(\sigma) \cdot w$$

in $\mathbb{Q}_\ell \langle \mathcal{X}_n, \mathcal{Y}_{i,n} \mid 0 \leq i < n - 1 \rangle$. (Recall that, in (3.3), another (non-commutative) expansion of f^p_σ for $\gamma \in \pi_1(V_n \otimes \overline{K}, \overline{01}, z)$ was considered by using a different set of variables.) We call the above coefficient character

$$\mathcal{L}_{iw}(\overline{01}^p \cdots \cdots z) \left(= \mathcal{L}_{iw}^{(\ell)}(\overline{01}^p \cdots \cdots z) \right) : G_K \to \mathbb{Q}_\ell$$

the ℓ-adic iterated integral associated to the word $w \in \mathcal{M}_n$ and to the \mathbb{Q}_ℓ-path p on V_n.

Theorem 6.3. Let p be a \mathbb{Q}_ℓ-path on V_{rn} from $\overline{01}$ to a point $z \in V_{rn}(K)$. Then, for any word $w \in \mathcal{M}_r$, we have the distribution relation

$$\mathcal{L}_{iw}(\overline{01}^{\pi_{rn},r(p)} \cdots \cdots z^n)(\sigma) = n^{\text{wt}_X(w)} \sum_{u \equiv w \mod r} \mathcal{L}_{iu}(\overline{01}^p \cdots \cdots z)(\sigma)$$

for $\sigma \in G_K$.

Proof. The assertion follows in the same way as Theorem 2.3 after the above Lemma 6.1 (b), (d). \qed

Next, let us concentrate on the polylogarithmic part on V_1. Recall that both $\pi_{\mathbb{Q}_\ell}(\overline{01})$ and its Lie algebra $L_{\mathbb{Q}_\ell}(\overline{01})$ are embedded in $\mathbb{Q}_\ell \langle X, Y \rangle$, where $X = \mathcal{X}_1$ and $Y = \mathcal{Y}_{0,1}$.

Definition 6.4. Let z be a point in $V_1(K) = \mathbb{P}^1(K) \setminus \{0, 1, \infty\}$ and $p : \overline{01} \rightarrow z$ a \mathbb{Q}_ℓ-path. Consider the associator $f^p_\sigma := p \cdot \sigma(p)^{-1} \in \pi_{\mathbb{Q}_\ell}(\overline{01})$ for $\sigma \in G_K$, and define

$$\rho_{z,p} : G_K \to \mathbb{Q}_\ell, \quad \ell_{im}(z,p) : G_K \to \mathbb{Q}_\ell$$

by the non-commutative expansion corresponding to (4.2):

$$\log(f^p_\sigma)^{-1} \equiv \rho_{z,p}(\sigma)X + \sum_{m=1}^{\infty} \ell_{im}(z,p)(\sigma)(\text{ad}X)^{m-1}(Y) \mod I_Y,$$

where I_Y represents the ideal generated by those terms including Y twice or more. Using these, we also define

$$\tilde{\mathcal{X}}_m^{z,p} : G_K \to \mathbb{Q}_\ell$$

for $m \geq 1$ by the equation extending Proposition 4.1 (i):

$$\tilde{\mathcal{X}}_m^{z,p}(\sigma) = (-1)^{m+1}(m-1)! \sum_{k=1}^{m} \frac{\rho_{z,p}(\sigma)^{m-k}}{(m+1-k)!} \ell_{ik}(z,p)(\sigma). \quad (6.1)$$

Since \mathbb{Q}_ℓ-paths generally do not give bijection systems between fibers of endpoints on finite étale covers, no simple interpretation is available for $\rho_{z,p}$ or $\tilde{\mathcal{X}}_m^{z,p}$ by Kummer properties: For example, the above $\tilde{\mathcal{X}}_m^{z,p}(\sigma)$ ($\sigma \in G_K$) generally has a denominator in \mathbb{Q}_ℓ, i.e., may not be valued in \mathbb{Z}_ℓ. This makes it difficult to understand $\tilde{\mathcal{X}}_m^{z,p}(\sigma)$ in terms of Kummer properties at finite levels of an arithmetic sequence like (4.4).
Once $\rho_{z,p}$, $\ell_i(m,z,p)$ and $\hat{X}_m^{z,p}$: $G_K \to \mathbb{Q}_\ell$ are defined as in the above Definition, the identities as in Proposition 4.1 (ii) and (4.5) can be extended in obvious ways for them by formal transformations of generating functions. In the same way, it holds that

$$\frac{-\hat{X}_m^{z,p}(\sigma)}{(m-1)!} = \mathcal{L}_{i_{YX}}(01 \sim p \sim z)(\sigma)$$

for $p \in \pi_{\mathbb{Q}_\ell}(01, z)$ and $\sigma \in G_K$.

Theorem 6.5. Suppose $\mu_n \subset K \subset \mathbb{C}$ and let p be a \mathbb{Q}_ℓ-path on V_n from 01 to a point $z \in V_n(K)$. Then,

$$\ell_i(s,n,\pi_n(p))(\sigma) = n^{k-1} \sum_{\zeta \in \mu_n} \ell_i(\zeta, \varepsilon\zeta J(p))(\sigma)$$

holds for $\sigma \in G_K$.

Proof. We first put the Lie expansion of $\log(f_p^{n})^{-1}$ in $X_n = X_n = \log x_n$, $Y_{s,n} = \log \tilde{y}_{s,n}$ $(s = 0, \ldots, n - 1)$ in the Lie algebra $L_{\mathbb{Q}_\ell}(01_n)$ as:

$$\log(f_p^{n})^{-1} \equiv DX_n + \sum_{s=0}^{n-1} \sum_{m=1}^{\infty} D_{s,m} (\text{ad} X_n)^{m-1}(Y_{s,n})$$

$$\equiv DX_n + \sum_{s=0}^{n-1} (D_s(\text{ad} X_n)) (\text{Y}_{s,n}) \mod I_{Y_s},$$

where, I_{Y_s} represents the ideal generated by those terms including $\{Y_{0,n}, \ldots, Y_{n-1,n}\}$ twice or more, and $D_s(t) = \sum_{m=1}^{\infty} D_{s,m} t^{m-1} \in \mathbb{Q}_\ell[[t]]$ $(s = 0, \ldots, n - 1)$. We shall determine those coefficients D and $D_{s,m}$ by applying the morphisms J_{ζ}. For any fixed $\zeta = \zeta^{-s}$ $(s = 0, \ldots, n - 1)$, by Lemma 6.1 (i), we obtain $f_{\zeta J(p)}^{n} = \varepsilon \zeta \cdot J_p(p \cdot \sigma(p)^{-1}) \cdot (\sigma^{-1} = \varepsilon \zeta \cdot J_p(p \cdot \sigma^{-1})^{-1} \cdot \varepsilon^{-1}$, hence

$$\varepsilon \zeta \cdot J_p(\log(f_p^{n})^{-1}) \cdot \varepsilon^{-1} = \log(f_{\zeta J(p)}^{n})^{-1}.$$

As the right hand side comes from the associator for the path $\varepsilon \zeta J(p) : 01 \sim \zeta z$, it should coincide, by definition, with

$$\rho_{\zeta z, \varepsilon \zeta J(p)}(\sigma)X + \sum_{k=1}^{\infty} \ell_i(\zeta z, \varepsilon \zeta J(p))(\sigma) (\text{ad} X)^{k-1}(Y),$$

while, the left hand side can be calculated after Lemma 6.1 (ii) (a), (c) to equal to

$$DX + \sum_{k=1}^{\infty} D_{s,k} (\text{ad} X)^{k-1}(Y)$$

with s given by $\zeta = e^{-2\pi i s/n}$. Therefore, we conclude

$$\frac{-\hat{X}_m^{z,p}(\sigma)}{(m-1)!} = \mathcal{L}_{i_{YX}}(01 \sim p \sim z)(\sigma)$$
for \(\zeta = e^{-2\pi is/n} \) (\(s = 0, \ldots, n-1 \)). Now, apply the projection morphism \(\pi_n := \pi_{n,1} : V_n \to V_1 \) and interpret the both sides of equality \(\pi_n(\log(f_\sigma)')^{-1} = \log(f_\sigma(p))^{-1} \). Then, we obtain

\[
DnX + \sum_{s=0}^{n-1} \sum_{k=1}^\infty D_{s,k} (n \operatorname{ad}X)^{k-1}(Y) = \rho_{z^n,\pi_n(p)} X + \sum_{k=1}^\infty \ell_i k(z^n, \pi_n(p)) \operatorname{ad}(X)^{k-1}(Y).
\]

Comparing the coefficient of \((\operatorname{ad}X)^{k-1}(Y) \) in the above and (6.5), we conclude the proof of the theorem. \(\square \)

In the above proof, for a given \(\mathbb{Q}_\ell \)-path \(p : \overline{0\ell} \sim z \) on \(V_n \), we considered the collection of \(\mathbb{Q}_\ell \)-paths

\[
\mathcal{P}_n := \{ \varepsilon \zeta J(\zeta) : \overline{0\ell} \sim \zeta z \mid \zeta = \zeta_n^s \in \mu_n \ (s = 0, 1, \ldots, n-1) \}
\]
on \(V_1 = \mathbb{P}^1 - \{0, 1, \infty\} \). Note that each \(\varepsilon \zeta J(\zeta) \) can also be written as the composite of paths on \(V_1 \):

\[
(6.6) \quad \varepsilon \zeta \cdot [\zeta p] = x^{-\frac{x}{z}} \cdot \delta \zeta \cdot [\zeta p] : \overline{0\ell} \xrightarrow{x^{-\frac{x}{z}}} \overline{0\ell} \xrightarrow{\delta \zeta} \zeta \overline{0\ell} \xrightarrow{[\zeta p]} \zeta z
\]

where \([\zeta p] : \zeta \overline{0\ell} \sim \zeta z \) means a path obtained by “rotating” \(p : \overline{0\ell} \sim z \) by the automorphism of \(\mathbb{P}^1 - \{0, 1, \infty\} \) with multiplication by \(\zeta \).

Corollary 6.6. Notations being as above, the maps \(\rho_{\zeta z, p}(\sigma) : G_K \to \mathbb{Q}_\ell \) are all the same for the \(\mathbb{Q}_\ell \)-paths \([p : \overline{0\ell} \sim \zeta z] \in \bigcup_{n=1}^\infty \mathcal{P}_n \).

Proof. As seen in (6.4), we have the common \(D \) upon applying \(J_\zeta \) to the first term of \(\log(f_\sigma')^{-1} \). The assertion follows from this and the fact that \(\mathcal{P}_n \) contains \(\mathcal{P}_1 \neq \emptyset \). \(\square \)

From this corollary, we immediately see that the above theorem also gives homogeneous functional equations for the rationally extended \(\ell \)-adic polylogarithmic characters.

Corollary 6.7. Notations being as in Theorem 6.5, let \(\tilde{X}_k^{z^n,\pi_n(p)} \) and \(\tilde{X}_k^{\zeta z,\pi_n(p)} (\zeta \in \mu_n) \) be the extended \(\ell \)-adic polylogarithmic characters. Then, we have

\[
\tilde{X}_k^{z^n,\pi_n(p)}(\sigma) = n^{k-1} \sum_{\zeta \in \mu_n} \tilde{X}_k^{\zeta z,\pi_n(p)}(\sigma) \quad (\sigma \in G_K).
\]

Proof. The assertion follows from Theorem 6.5 by applying Corollary 6.6 to the definition of \(\ell \)-adic polylogarithmic characters for \(\mathbb{Q}_\ell \)-paths (Definition 6.4). \(\square \)

7. Translation in Kummer-Heisenberg measure

Let \(\gamma : \overline{0\ell} \sim z \) be an \(\ell \)-adic path in \(\pi_1(\mathbb{P}_K - \{0, 1, \infty\}; \overline{0\ell}, z) \) and \(p := x^{-\frac{x}{z}} \gamma \) be the pro-unipotent path in \(\pi_{Q_\ell}(\overline{0\ell}, z) \) produced by the composition with \(x^{-\frac{x}{z}} \) for any fixed \(s \in \mathbb{Z}_\ell \) and \(n \in \mathbb{N} \). By definition we have \(f_\sigma = x^{-\frac{x}{z}} f_\sigma x^{\frac{x}{z} \chi(\sigma)} \) for \(\sigma \in G_K \). Since \(x^{-\frac{x}{z}} = \exp(\frac{1}{n} X) \equiv 1 \) modulo the right ideal \(X \cdot \mathbb{Q}_\ell \langle X, Y \rangle \), it follows from Proposition 4.1 (ii)
Thus we obtain

$$\frac{-\tilde{\chi}_k^{z,p}(\sigma)}{(k-1)!} = \text{Coeff}_{YX^{k-1}}(f^{p}_{\sigma}) = \text{Coeff}_{YX^{k-1}} \left(1 \cdot \tilde{f}^p_{\sigma} \cdot \exp \left(\frac{s \chi(\sigma)}{n} X \right) \right)$$

$$= \sum_{i=0}^{k-1} \text{Coeff}_{YX^{i}}(\tilde{f}^p_{\sigma}) \cdot \left(\frac{s \chi(\sigma)}{n} \right)^{k-i-1} \tilde{\chi}_{i+1}^{z,\gamma} = -\sum_{i=0}^{k-1} \frac{\tilde{\chi}_{i+1}^{z,\gamma}(\sigma)}{i!} \cdot \left(\frac{s \chi(\sigma)}{n} \right)^{k-i-1} \left(k-i-1 \right)! .$$

Thus we obtain

$$\tilde{\chi}_k^{z,p}(\sigma) = \sum_{i=0}^{k-1} \binom{k-1}{i} \left(\frac{s \chi(\sigma)}{n} \right)^{k-i-1} \tilde{\chi}_{i+1}^{z,\gamma}(\sigma) \quad (\sigma \in G_K).$$

Recall then that, in [NW1], introduced is a certain \(Z_{\ell}\)-valued measure (called the Kummer-Heisenberg measure) \(\kappa_{z,\gamma}(\sigma)\) on \(Z_{\ell}\) for every path \(\gamma : \overline{01} \to z\) and \(\sigma \in G_K\), which is characterized by the integration properties:

$$\tilde{\chi}_k^{z,\gamma}(\sigma) = \int_{Z_{\ell}} a^{k-1}d\kappa_{z,\gamma}(\sigma)(a) \quad (k \geq 1).$$

Putting this into (7.1), we may rewrite the RHS to get

$$\tilde{\chi}_k^{z,p}(\sigma) = \int_{Z_{\ell}} \left(a + \frac{s \chi(\sigma)}{n} \right)^{k-1} d\kappa_{z,\gamma}(\sigma)(a).$$

Note that \(\frac{s}{n} + Z_{\ell} = \frac{s}{n} \chi(\sigma) + Z_{\ell}\) as a subset of \(Q_{\ell}\) when \(\mu_n \subset K\). Comparison of (7.2) and (7.3) leads us to introduce the following

Definition 7.1. Suppose \(\mu_n \subset K\), and let \(\sigma \in G_K\) and \(p = x^{-\frac{s}{n}} \gamma \in \pi_{Q_{\ell}}(\overline{01}, z)\) be as above. Define a \(Z_{\ell}\)-valued measure \(\kappa_{z,p}(\sigma)\) on the coset \(\frac{s}{n} + Z_{\ell} \subset Q_{\ell}\) by the property:

$$\tilde{\chi}_k^{z,p}(\sigma) = \int_{\frac{s}{n} + Z_{\ell}} a^{k-1}d\kappa_{z,p}(\sigma)(a) \quad (k \geq 1).$$

A verification of this new notion of the extended measure \(\kappa_{z,p}(\sigma)\) is that our distribution relations in Corollary 6.7 can be summarized into a single relation of measures:

Theorem 7.2. For \(s \in Z_{\ell}\), let \([n] : \frac{s}{n} + Z_{\ell} \to Z_{\ell}\) denote the continuous map of multiplication by \(n \in N\), and denote by \([n]_{\star} \kappa\) the push-forward measure on \(Z_{\ell}\) obtained from any measure \(\kappa\) on \(\frac{s}{n} + Z_{\ell}\) by \(U \mapsto \kappa([n]^{-1}(U))\) for the compact open subsets \(U\) of \(Z_{\ell}\). Then,

$$\kappa_{z^{\gamma},\gamma}(\sigma) = \sum_{\zeta \in \mu_n} [n]_{\star} \kappa_{\zeta^{\gamma},\zeta^{\gamma}}(\gamma)(\sigma) \quad (\sigma \in G_K).$$

Proof. The formula follows immediately from Corollary 6.7 and the characteristic property (7.3) of the Kummer-Heisenberg measure.

Question 7.3. In the above discussion, we defined \(\kappa_{z,p}(\sigma)\) only for \(Q_{\ell}\)-paths \(p : \overline{01} \to z\) of the form \(p = x^{\sigma} \gamma\) with \(\alpha \in Q_{\ell}\) and \(\gamma : \overline{01} \to z\) being \(\ell\)-adic (i.e., \(Z_{\ell}\)-integral) paths. It is natural to conjecture existence of a suitable measure \(\kappa_{z,p}(\sigma)\) for a more general \(Q_{\ell}\)-path \(p : \overline{01} \to z\) satisfying the property of Definition 7.1. The support of this measure should be a parallel transport \(R(p, \sigma)\) of \(Z_{\ell}\) in \(Q_{\ell}\) such that \(x^{R(p,\sigma)} \subset x^{Q_{\ell}}\) is the image of \(\pi_{\ell}^{1}(V_1 \otimes \overline{K}; \overline{01}, z) \cdot \sigma(p)^{-1}\) via the projection \(\pi_{Q_{\ell}}(\overline{01}) \to x^{Q_{\ell}}\).
8. Inspection of special cases

In this section, we shall closely look at special cases of the \(\ell \)-adic distribution formula. Let us first consider dilogarithms, i.e., for the case of \(k = 2 \). By Theorem 5.1, we have

Corollary 8.1. Let \(\mu_n \subset K \) and \(\gamma : \overrightarrow{1} \leadsto z \in V_n(K) \) be an \(\ell \)-adic path which induces paths \(\pi_n(\gamma) : \overrightarrow{1} \leadsto z^n \) and \(\delta_\zeta \zeta(\gamma) : \overrightarrow{1} \leadsto \zeta z \) (\(\zeta = \zeta_n \in \mu_n \)) on \(V_1 = \mathbb{P}^1 - \{0, 1, \infty\} \). Along these paths, we have the following \(\mathbb{Z}_\ell \)-valued functional equation

\[
\tilde{\chi}^{\zeta z}_n(\sigma) = \sum_{s=0}^{n-1} \tilde{\chi}^{\zeta^s z}_2(\sigma) + \sum_{s=1}^{n-1} s\chi(\sigma)\rho_{1-\zeta^s z}(\sigma) \quad (\sigma \in G_K),
\]

where \(\rho_{1-\zeta^s z} \) is the same as the 1st polylogarithmic character \(\tilde{\chi}^{\zeta z}_1 : G_K \to \mathbb{Z}_\ell \).

In particular when \(n = 2 \), the above formula is specialized to the following.

Corollary 8.2. For \(\gamma : \overrightarrow{1} \leadsto z \) on \(V_2 = \mathbb{P}^1 - \{0, 1, \infty\} \), let \(\pi_2(\gamma) : \overrightarrow{1} \leadsto z^2 \), \(j_1(\gamma) : \overrightarrow{1} \leadsto z \) and \(\delta_{-1} j_{-1}(\gamma) : \overrightarrow{1} \leadsto -z \) be the induced paths on \(\mathbb{P}^1 - \{0, 1, \infty\} \). Note here that \(\delta_{-1} : \overrightarrow{1} \leadsto -\overrightarrow{1} \) is the positive half rotation. Along these paths, we have a functional equation of the \(\ell \)-adic polylogarithmic characters

\[
\tilde{\chi}^{\zeta z}_2(\sigma) = 2(\tilde{\chi}^{\zeta z}_2(\sigma) + \tilde{\chi}_2(\sigma)) + \chi(\sigma)\rho_{1+\zeta z}(\sigma) \quad (\sigma \in G_K). \quad \Box
\]

Putting \(z = \overrightarrow{1} \) in the above, and recalling \(\tilde{\chi}^{\overrightarrow{1}_{0}}_2(\sigma) = \frac{B_{2k}}{2(2k)}(\chi(\sigma)^{2k} - 1) \) (\(\sigma \in G_{\mathbb{Q}} \)) from [NW2] Proposition 5.13, we immediately obtain

Corollary 8.3. Along the path \(\gamma_{-1} : \overrightarrow{1} \leadsto (z = 1) \leadsto (z = -1) \) induced by the positive half arc on the unit circle on \(\mathbb{P}^1 - \{0, 1, \infty\} \), we have the following \(\mathbb{Z}_\ell \)-valued equation:

\[
\tilde{\chi}^{\overrightarrow{1}_{0}}_{2^{n-1}}(\sigma) = -\frac{\chi(\sigma)^2 - 1}{48} - \frac{1}{2}\chi(\sigma)\rho_{2}(\sigma) \quad (\sigma \in G_{\mathbb{Q}}). \quad \Box
\]

This result is an \(\ell \)-adic analog of the classical result \(\text{Li}_2(-1) = -\frac{\pi^2}{12} \) ([Le], and is compatible with [NW2, Remark 5.14 and Remark after (6.31)].

To confirm validity of our above narrow stream of geometrical arguments toward Corollary 8.3, we here present an alternative direct proof in a purely arithmetic way as below:

Arithmetic proof of Corollary 8.3. We (only) make use of the characterization of \(\tilde{\chi}^{z}_m \) by the Kummer properties (4.4). Applying it to our case \(m = 2, z = -1 \) where \(\rho_{z}(\sigma) = \frac{1}{2}(\chi(\sigma) - 1) \), we obtain

\[
(*) \quad \zeta^{\overrightarrow{1}_{0}}_{2^{n-1}}(\sigma) = \sigma \left(\prod_{a=0}^{\ell^n-1} \left(1 - \zeta_{2^a(\sigma)}^{-1} \right)^{\frac{n}{2}} \right) / \prod_{a=0}^{\ell^n-1} \left(1 - \zeta_{2^a+\chi(\sigma)} \right)^{\frac{\overrightarrow{n}}{2}}.
\]

We evaluate both the denominator and numerator of the above right hand side, first by pairing two factors indexed by \(a \) and \(a' = -\chi(\sigma) - a \) and by simplifying their product by

\[
\left(1 - \zeta_{2^a+\chi(\sigma)} \right)^{\frac{\overrightarrow{n}}{2}} = \left(1 - \zeta_{2^a+\chi(\sigma)} \right)^{\frac{\overrightarrow{n}}{2}} \cdot \zeta_{2^{a}(\sigma) - 2\chi(\sigma)}^{n}(2a + \chi(\sigma))
\]

with \(0 \leq 2(a + \chi(\sigma)) \leq 2\ell^n \) being the unique residue of \(2a + \chi(\sigma) \) mod \(2\ell^n \). Pick a disjoint decomposition of the index set \(S := \{0 \leq a \leq \ell^n - 1\} \) into \(S_+ \cup S_- \cup S_0 \) so that, for all \(a \in S, \)
(i) \(a \in S_+ \) iff \(-\chi(\sigma) - a \) \(\in S_- \);
(ii) \(a \in S_0 \) iff \(a \equiv -a - \chi(\sigma) \mod \ell^n \).

Then, one finds:

\[
\prod_{a \in S - S_0} (1 - \zeta_{2\ell^n}^{2\chi(\sigma)^{-1}a + 1})^\frac{a}{\ell} = \prod_{a \in S_0} (1 - \zeta_{2\ell^n}^{2\chi(\sigma)^{-1}a + 1})^{-\chi(\sigma)}_{\ell^n} \zeta_{2\ell^n}^{(\ell^n - (1 + \chi(\sigma)^{-1}a))(a - \chi(\sigma))},
\]

\[
\prod_{a \in S - S_0} (1 - \zeta_{2\ell^n}^{2a + \chi(\sigma)})^\frac{a}{\ell} = \prod_{a \in S_0} (1 - \zeta_{2\ell^n}^{2a + \chi(\sigma)})^{-\chi(\sigma)}_{\ell^n} \zeta_{2\ell^n}^{(\ell^n - (2a + \chi(\sigma))(a - \chi(\sigma)))}.
\]

Noting that \(\prod_{a \in S} (1 - \zeta_{2\ell^n}^{2a + 1}) = 2 \), we obtain the squared sides of (*) as

\[
\zeta_{\ell^n}^{2\chi(\sigma)^{-1}a + 1} = \frac{\sigma}{2} \frac{2 - \chi(\sigma)}{\prod_{a \in S_1} \zeta_{\ell^n}^{(\ell^n - (2a + \chi(\sigma))(a - \chi(\sigma)))}}.
\]

Here, note that contribution from \(S_0 \) (which is empty when \(\ell = 2 \)) is included into the factor \(2^{-\chi(\sigma)} \) both in the numerator and the denominator. Now, choose integers \(c, \bar{c} \in \mathbb{Z} \) so that \(c \equiv \chi(\sigma), \ bar{c} \equiv 1 \mod 2\ell^n \). Then, we obtain the following congruence equation mod \(\ell^n \):

\[
2\overline{\zeta}_2^{2\chi(\sigma)^{-1}a + 1} \equiv -\chi(\sigma)\rho_2(\sigma) + \frac{1}{2} \sum_{a \in S} \chi(\sigma)(-a - c)(\ell^n - (1 + \bar{c}a)) - (a - c)(\ell^n - (1 + 2\bar{c}a))
\]

\[
\equiv -\chi(\sigma)\rho_2(\sigma) + \frac{1}{2} \sum_{a \in S} (-a - c) \left[\frac{\chi(\sigma)}{2} - 1 + 2a + \frac{c + 2\bar{c}a}{2\ell^n} - c \left\{ \frac{1 + 2\bar{c}a}{2\ell^n} \right\} \right]
\]

\[
\equiv -\chi(\sigma)\rho_2(\sigma) + \frac{1}{2} \sum_{b \in S} c \left\{ \frac{1 + 2\bar{c}b}{2\ell^n} \right\} - c \left\{ \frac{2b + c}{2\ell^n} \right\} + \frac{1 - c}{2} .
\]

By basic properties of the Bernoulli polynomial \(B_2(X) = X^2 - X + \frac{1}{6} \) (cf. [La90]), the last sum is congruent modulo \(\frac{\ell_0}{48} \mathbb{Z} \) to

\[
\sum_{b \in S} \frac{\ell^n}{2} \left[c^2 B_2 \left(\left\{ \frac{1 + 2\bar{c}b}{2\ell^n} \right\} \right) - B_2 \left(\left\{ \frac{2b + c}{2\ell^n} \right\} \right) \right]
\]

\[
= \frac{1}{2} (\chi(\sigma)^2 - 1) B_2(\frac{1}{2}) = -\frac{1}{24} \chi(\sigma)^2 - 1 .
\]

Summing up, we find the congruence relations

\[
2\overline{\zeta}_2^{2\chi(\sigma)^{-1}a + 1} \equiv -\chi(\sigma)\rho_2(\sigma) - \frac{1}{24} (\chi(\sigma)^2 - 1) \mod \frac{\ell_0}{48} \mathbb{Z}
\]

for all \(n \), hence the equality in \(\mathbb{Z}_n \). This concludes the proof of the corollary.

Turning to Theorem 5.1, by specialization to the case \(n = 2 \) (but for general \(k \)), we obtain:

Corollary 8.4. Along the paths from \(\overrightarrow{01} \) to \(\pm z, z^2 \) on \(\mathbb{P}^1 - \{0, 1, \infty\} \) used in Corollary 8.2, it holds that

\[
\hat{\chi}_k^2(\sigma) = 2^{k-1} \overline{\chi}_k^2(\sigma) + \sum_{d=0}^k \binom{k-1}{d-1} 2^{d-1} \chi(\sigma)^{k-d} \overline{\chi}^d(\sigma) \quad (k \geq 1, \ \sigma \in G_K).
\]
Upon observing special cases of the above formula, we find that \(\chi_{1}^{z=1} \) does not factor through \(\text{Gal}(\mathbb{Q}(\mu_{\infty})/\mathbb{Q}) \), because it involves a nontrivial term from \(\chi_{3}^{10}(\sigma) \) which does not vanish on \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(\mu_{\infty})) \) by Soulé [So].

With regard to the classical formula \(Li_{2k}(-1) = (-1)^{k+1}(1 - 2^{2k-1})B_{2k} \pi_{2k}^{2k}([Le]) \), we should rather figure out its \(\ell \)-adic analog in terms of the “\(\mathbb{Q} \ell \)-adic” polylogarithmic characters introduced in Definition 6.4. In fact,

Corollary 8.5. Let \(\gamma_{-1} : \overline{1} \rightarrow_{\ell} (z = -1) \) be the path in Corollary 8.3. Then, along the \(\mathbb{Q} \ell \)-path \(x^{-\frac{1}{2}} \gamma_{-1} : \overline{1} \rightarrow_{\ell} (z = -1) \), it holds that

\[
\chi_{2k}^{z=1}(\sigma) = \frac{(1 - 2^{2k-1})}{2^{k}} B_{2k}^{k} \left(\chi(\sigma)^{2k} - 1 \right) \quad (\sigma \in G_{\overline{Q}}).
\]

Proof. Applying Corollary 6.7 to the case where \(n = 2 \) and \(p : \overline{1} \rightarrow_{\ell} \overline{10} \) is the straight path on \(V_{2} = P^{1} - \{0, \pm 1, \infty\} \), we obtain

\[
\chi_{k}^{10, \pi_{2}(p)}(\sigma) = 2^{k-1} \left(\chi_{k}^{10, j_{1}(p)}(\sigma) + \chi_{k}^{z=1, \gamma_{-1}}(\sigma) \right).
\]

Since \(\pi_{2}(p) \) and \(j_{1}(p) \) are the same standard path \(\overline{1} \rightarrow_{\ell} \overline{10} \) on \(V_{1} \), the values \(\chi_{k}^{10, \pi_{2}(p)}(\sigma) \) and \(\chi_{k}^{10, j_{1}(p)}(\sigma) \) coincide with the (extended) Soulé value \(\chi_{k}^{10}(\sigma) \) (cf. [NW1, Remark 2]). The desired formula follows then from a basic formula from [NW2, Proposition 5.13]:

\[
\chi_{2k}^{10}(\sigma) = \frac{B_{2k}}{2^{2k}} (\chi(\sigma)^{2k} - 1) \quad (\sigma \in G_{\overline{Q}}). \tag*{\Box}
\]

Unlike the \(\mathbb{Z} \ell \)-integral analog stated in Corollary 8.3, the above right hand side generally has denominators in \(\mathbb{Q} \ell \). This is due to the concern of \(x^{-\frac{1}{2}} \in \pi_{1}(\overline{1}) \) which does not lie in \(\pi_{1}(V_{1} \otimes \overline{\mathbb{K}}, \overline{1}) \) when \(\ell = 2 \).

Acknowledgement: This work was partially supported by JSPS KAKENHI Grant Number JP26287006.

References

Hiroaki Nakamura: Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
E-mail address: nakamura@math.sci.osaka-u.ac.jp

Zdzislaw Wojtkowiak: Université de Nice-Sophia Antipolis, Dépt. of Math., Laboratoire Jean Alexandre Dieudonné, U.R.A. au C.N.R.S., No 168, Parc Valrose -B.P.N° 71, 06108 Nice Cedex 2, France
E-mail address: wojtkow@math.unice.fr