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Abstract. For the two-periodic discrete one-dimensional Schrödinger operator

(Hψ)n = −(ψn+1 + ψn−1) + Vnψn, n ∈ Z,
with Vn+2 = Vn for every n ∈ Z and V0, V1 ∈ R, we show the dispersive estimate

‖e−itHψ‖`∞ ≤ 181
(
1 + (V0 − V1)2

) 1
4 (1 + |t|)−

1
3 ‖ψ‖`1 , ∀ ψ ∈ `1(Z), ∀ t ∈ R.

1. Introduction and main result

Consider the two-periodic discrete one-dimensional Schrödinger operator

(1) (Hψ)n = −(ψn+1 + ψn−1) + Vnψn, n ∈ Z

with Vn+2 = Vn for every n ∈ Z, and V0, V1 ∈ R. It is well known that the spectrum
of H is purely absolutely continuous and the time evolution e−itH presents ballistic
transport (see [4]), i.e., the weighted `2−norm(∑

n∈Z
n2
∣∣(e−itHψ)n

∣∣2) 1
2

grows linearly with t provided that
∑

n∈Z n
2 |ψn|2 < ∞. Since ballistic transport

means that, for a given well-localized initial condition ψ, e−itHψ does not keep
well-localized as ψ, we wander the variation of shape for e−itHψ.

For the free Schrödinger operator, −∆ : `2(Zν)→ `2(Zν), ν ≥ 1,

(2) (−∆ψ)n = −
∑

|m−n|=1

ψm, n ∈ Zν ,

we recall that Stefanov-Kevrekidis [9] have shown: there exists a constant C > 0
such that

(3) ‖eit∆ψ‖`∞ ≤ C(1 + |t|)−
1
3 ‖ψ‖`1 , ∀ ψ ∈ `1(Zν).

The above inequality is called “dispersive estimate”, by which we see that the

`∞−norm tends to zero as time goes to infinity, with the “|t|−
1
3 ” decay rate.

In general, the dispersion for a one-dimensional linear operator is related to the
absolutely continuous spectrum, even though there is not yet rigorous argument
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describing the link between them. For the operator H : `2(Z)→ `2(Z),

(4) (Hψ)n = −(ψn+1 + ψn−1) + Vnψn, n ∈ Z,

Pelinovsky-Stefanov [7] have shown

‖e−itHPacψ‖`∞ ≤ C (1 + |t|)−
1
3 ‖ψ‖`1 , ∀ ψ ∈ `1(Z),

for “generic”1 pointwise decaying potential (Vn) ⊂ R satisfying∑
n

(1 + n2)
s
2 |Vn| <∞, s >

5

2
,

where Pac means the projection onto the absolutely continuous part of spectrum.
Another classical dispersive estimate is given by Komech-Kopylova-Kunze [6], who
show that, for s > 7

2 ,

(5) ‖e−itHPac‖`2s→`2−s = O
(
t−

3
2

)
, t→∞,

for the operator (4) for “generic”2 (Vn) ⊂ R with finite support, where the weighted
`2−norm is defined by

‖q‖`2σ :=

(∑
n∈Z

(1 + n2)
σ
2 |qn|2

) 1
2

, σ ∈ R.

Other related work has been done by Cuccagna-Tarulli [3] (see also [1]). For the
dispersive estimates for continuous Schrödinger operators, we can refer to [8].

Recently, Bambusi-Zhao [2] have considered the quasi-periodic Schrödinger oper-
ator Hθ : `2(Z)→ `2(Z),

(6) (Hθψ)n = −(ψn+1 + ψn−1) + V (θ + nω)ψn, n ∈ Z,

where V ∈ Cωr (Td,R) with T := R/2πZ, d ≥ 1, and ω ∈ DCd(γ, τ) for γ > 0 and
τ > d− 1, i.e.,

inf
j∈Z
|〈k, ω〉 − jπ| > γ

|k|τ
, ∀ k ∈ Zd \ {0}.

It is well known that when the potential function V is sufficiently small, the oper-
ator Hθ has purely absolutely continuous spectrum for every θ ∈ Td and the time
evolution e−itHθ presents ballistic transport (see [11]). As for the dispersion, it is
shown that, if |V |r is sufficiently small, then for every θ ∈ Td:

‖e−itHθψ‖`∞ ≤ C| ln |V |r|a ln ln(3+|t|))2d(1 + |t|)−
1
3 ‖ψ‖`1 , ∀ ψ ∈ `1(Z),

for some absolute constants C, a > 0, which implies a |t|−ζ−dispersive decay for any
0 < ζ < 1

3 .

In this paper, the main conclusion is:

Theorem 1.1. Consider the operator H given in (1). For arbitrary t ∈ R,

(7) ‖e−itHψ‖`∞ ≤ 181
(
1 + (V0 − V1)2

) 1
4 (1 + |t|)−

1
3 ‖ψ‖`1 , ψ ∈ `1(Z).

1See Definition 1 of [7].
2See Definition 5.1 of [6].
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Remark 1.1. For the case V0 = V1, H is equivalent to −∆ given in (2) with ν = 1.
Hence, for proving Theorem 1.1, we always assume that V0 6= V1. In view of (7),
we see that the variation of the 2−periodic potential does not essentially affect the

|t|−
1
3−dispersive decay, while the coefficient in front grows with |V0 − V1| and goes

to ∞ as |V0 − V1| → ∞.

Remark 1.2. The method employed in this manuscript is mainly by Fourier trans-
form. However, it is not suitable for exploiting the weighted `2 dispersive estimate
as Komech-Kopylova-Kunze [6]. Firstly, it is non-trivial to verify the conditions
in their theorems (for example “generic” and “finitely supported” etc) for periodic
potentials. Secondly, their techniques such as Laplace transformation and Puiseux
expansion of resolvent still have some differences from our proof. Therefore, we are
not able to achieve an easy corollary similar to (5), even though we believe that it
should be true.

As usual, from this estimate in Theorem 1.1, one can deduce Strichartz esti-
mates via [5] as well as decay for the solution of the non-linear two-periodic discrete
Schrödinger equation

(8) iq̇n = −(qn+1 + qn−1) + Vnqn ± |qn|p−1 qn, n ∈ Z,

provided p is large enough. Here we concentrate just on dispersive decay in `∞ and
give the result for p ≥ 5 (indeed 1

p−2 ≤
1
3 is necessary).

Corollary 1.1. Under the assumptions of Theorem 1.1, consider Eq. (8) with p ≥ 5.
There exist C > 0 and δ > 0 s.t., if the initial datum q(0) fulfills ‖q(0)‖`1(Z) < δ,

then the solution of Eq. (8) fulfills

(9) ‖q(t)‖`∞ ≤ C(1 + |t|)−
1
3 .

The remaining part of paper is organised as follows. In Section 2, by Fourier
transform, we get the explicit form of the time evolution e−itH , which is represented
by the eigenvectors and eigenvalues of the 2× 2 matrix

A(θ) =

(
V0 −2 cos(θ)

−2 cos(θ) V1

)
, θ ∈ T.

Then, we show the C1−regularity of its eigenvectors and the C3−transversality of
its eigenvalues (w.r.t. θ) in Section 3, with a technical lemma shown in Section 4.
By applying Van der Corput lemma (Lemma A.1 in Appendix A), we estimate the
oscillatory integrals in e−itH in Section 3.3, hence the dispersive estimate is shown.

2. Fourier transform and explicit form of e−itH

We focus on the 2−periodic time-dependent Schrödinger equation

(10) iq̇n = −(qn+1 + qn−1) + Vn qn, n ∈ Z,

with q(0) ∈ `1(Z). By the Fourier transform

(qn)n∈Z 7→ G(θ) :=
∑
n∈Z

qne
inθ, θ ∈ T := R/2πZ,
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the above equation is transformed into

i∂tG(θ, t) =
∑
n∈Z

[−(qn+1(t) + qn−1(t)) + Vnqn(t)]einθ.

Decompose G(θ, t) as G(θ, t) = G0(θ, t) +G1(θ, t), with

Gj(θ, t) :=
∑
k∈Z

q2k+j(t)e
i(2k+j)θ, j = 0, 1.

We find that

i∂tG0(θ, t) = i
∑
k∈Z

q̇2k(t)e
i·2kθ

=
∑
k∈Z

[−(q2k−1(t) + q2k+1(t)) + V0q2k(t)] e
i·2kθ

= −(e−iθ + eiθ)G1(θ, t) + V0G0(θ, t)

= −2 cos(θ)G1(θ, t) + V0G0(θ, t)

and similarly,

i∂tG1(θ, t) = −2 cos(θ)G0(θ, t) + V1G1(θ, t)

It is exactly the 2−dimensional system
(11)

i∂t

(
G0(θ, t)

G1(θ, t)

)
= A(θ)

(
G0(θ, t)

G1(θ, t)

)
, A(θ) :=

(
V0 −2 cos(θ)

−2 cos(θ) V1

)
.

For the Hermitian matrix A(θ), there exists an 2× 2 orthonormal matrix

U(θ) =

(
U00(θ) U01(θ)

U10(θ) U11(θ)

)
analytically depending on θ, such that

U∗(θ)A(θ)U(θ) = Λ(θ) :=

(
λ0(θ) 0

0 λ1(θ)

)
,

with λ0(θ) and λ1(θ) two real eigenvalues of A(θ). Hence, for Eq. (11), its solution
is (

G0(θ, t)

G1(θ, t)

)
= U(θ)

(
e−iλ0(θ)t 0

0 e−iλ1(θ)t

)
U∗(θ)

(
G0(θ, 0)

G1(θ, 0)

)
.

Then, for n = 2k∗ + j with k∗ ∈ Z and j = 0 or 1, the solution of Eq. (10) satisfies

qn(t) =
1

2π

∫
T
Gj(θ, t)e

−i(2k∗+j)θ dθ

=
1

2π

∫
T

∑
l1,l2=0,1

e−iλl1 (θ)tUjl1(θ)U∗l1l2(θ)Gl2(θ, 0)e−i(2k∗+j)θ dθ

=
1

2π

∑
l1,l2=0,1

∫
T
e−iλl1 (θ)tUjl1(θ)U∗l1l2(θ)

∑
k∈Z

q2k+l2(0)ei(2(k−k∗)+l2−j)θ dθ.

By the condition q(0) ∈ `1(Z), we can commute the order of integration and sum-
mation. Summarizing the above demonstration, we get
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Proposition 2.1. Given ψ ∈ `1(Z), t ∈ R, for n = 2k∗ + j with k∗ ∈ Z and j = 0
or 1, we have(
e−itHψ

)
n

=
1

2π

∑
l1,l2=0,1

∑
k∈Z

ψ2k+l2

∫
T
Ujl1(θ)U∗l1l2(θ)ei[−λl1 (θ)t+(2(k−k∗)+l2−j)θ] dθ.

3. Properties of eigenvalues and eigenvectors

By Proposition 2.1, we see that the dispersive estimate is determined by the
properties of eigenvalues and eigenvectors of matrix A(θ) with respect to θ ∈ T.

3.1. Transversality of eigenvalues for A(θ). For the Hermitian matrix A(θ)
given in (11), it is easy to calculate that

λ0(θ) =
−(V0 + V1) +

√
(V0 − V1)2 + 16 cos2(θ)

2
,

λ1(θ) =
−(V0 + V1)−

√
(V0 − V1)2 + 16 cos2(θ)

2
.

So for j = 0, 1, the derivatives of eigenvalues w.r.t. θ satisfy that

(12)
∣∣∣λ(k)
j (θ)

∣∣∣ = 2

∣∣∣∣∣∣
(√

(V0 − V1)2

16
+ cos2(θ)

)(k)
∣∣∣∣∣∣ , k ≥ 1.

By the following lemma, we can get a lower bound for |λ′′j |+ |λ′′′j |.

Lemma 3.1. For any a > 0, we have that

fa(θ) :=

∣∣∣∣ d2

dθ2

√
cos2(θ) + a

∣∣∣∣+

∣∣∣∣ d3

dθ3

√
cos2(θ) + a

∣∣∣∣ ≥ 1

4
√
a+ 1

, ∀ θ ∈ T.

Moreover, the subset{
θ ∈ T :

∣∣∣∣ d2

dθ2

√
cos2(θ) + a

∣∣∣∣ < 1

8
√
a+ 1

}
consists of at most 8 mutually disjoint subintervals.

We postpone the proof of this technical lemma to Section 4. Now, with Lemma
3.1, we get immediately the following estimate.

Corollary 3.1. The eigenvalues of A(θ) satisfy

(13) |λ′′j (θ)|+ |λ′′′j (θ)| ≥ 2√
16 + (V0 − V1)2

, j = 0, 1, ∀ θ ∈ T.

Moreover, for j = 0, 1,

(14) Θj :=

{
θ ∈ T : |λ′′j (θ)| <

1√
16 + (V0 − V1)2

}
consists of at most 8 mutually disjoint subintervals.
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Remark 3.1. The dispersive estimate is usually related to the transversality of
kernel function in the oscillatory integral. We will see in the proof of Proposition
3.1 the necessity of the lower bound of the second or third derivative of λj for getting

the “ t−
1
3 ” asymptotic decay estimate by applying Van der Corput lemma. Moreover,

the number of segments on which the second or third derivative is bounded from below
is related to the coefficient in front of the decay.

3.2. C1 property of eigenvectors for A(θ). Since U(θ) is an orthonormal matrix
for any θ ∈ T, we have immediately that

|Ulm(θ)U∗mn(θ)| ≤ |Ulm(θ)|2 + |U∗mn(θ)|2

2
≤ 1, ∀ l,m, n = 0, 1.

More precisely, for α := V1 − V0, by a straightforward calculation, we get the eigen-
vector of A(θ) corresponding to λ0(θ), i.e., the first column of U(θ) is(
U00(θ)

U10(θ)

)
=

1√(
α+

√
α2 + 16 cos2(θ)

)2
+ 16 cos2(θ)

(
α+

√
α2 + 16 cos2(θ)

4 cos(θ)

)
,

and the eigenvector corresponding to λ1(θ), i.e., the second column of U(θ) is(
U01(θ)

U11(θ)

)
=

1√(
α−

√
α2 + 16 cos2(θ)

)2
+ 16 cos2(θ)

(
α−

√
α2 + 16 cos2(θ)

4 cos(θ)

)
.

By a straightforward calculation, we get

|(U00(θ)U∗00(θ))′|, |(U01(θ)U∗10(θ))′|, |(U10(θ)U∗01(θ))′|, |(U11(θ)U∗11(θ))′|

=
8|α| · | sin(θ) cos(θ)|
(α2 + 16 cos2(θ))

3
2

,

|(U00(θ)U∗01(θ))′|, |(U10(θ)U∗00(θ))′|, |(U01(θ)U∗11(θ))′|, |(U11(θ)U∗10(θ))′|

=
2α2| sin(θ)|

(α2 + 16 cos2(θ))
3
2

,

then we calculate their integrals:∫
T
|(U00(θ)U∗00(θ))′|dθ = 2− 2|α|√

α2 + 16
,∫

T
|(U00(θ)U∗01(θ))′|dθ =

8√
α2 + 16

.

To summarise, we have

Lemma 3.2. For l,m, n = 0, 1,

sup
θ∈T
|Ulm(θ)U∗mn(θ)|+

∫
T

∣∣(Ulm(θ)U∗mn(θ))′
∣∣ dθ ≤ 3.
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3.3. Proof of Theorem 1.1. With the estimates obtained for the eigenvalues and
eigenvectors of A(θ), we have that

Proposition 3.1. For j, l1, l2 = 0, 1, for any t ∈ R,∣∣∣∣∫
T
Ujl1(θ)U∗l1l2(θ)ei[−λl1 (θ)t+(2(k−k∗)+l2−j)θ] dθ

∣∣∣∣ < 284
(
16 + (V0 − V1)2

) 1
4

(1 + |t|)
1
3

.

Proof. For |t| ≤ 1, since 2
1
3 (1 + |t|)−

1
3 ≥ 1, we have, by Lemma 3.2,

(15)

∣∣∣∣∫
T
Ujl1(θ)U∗l1l2(θ)ei[−λl1 (θ)t+(2(k−k∗)+l2−j)θ] dθ

∣∣∣∣ ≤ 6π ≤ 6π · 2
1
3 (1 + |t|)−

1
3 .

Now we assume that |t| > 1, which implies that

2σ(1 + |t|)−σ > |t|−σ for σ =
1

2
and

1

3
.

In view of (13) in Corollary 3.1, we deduce that, for l1 = 0, 1, for any θ ∈ T,

|λ′′l1(θ)| ≥ 1√
16 + (V0 − V1)2

or |λ′′′l1(θ)| ≥ 1√
16 + (V0 − V1)2

.

According to the definition of Θj given in (14), we apply Van der Corput lemma
(Corollary A.1 in Appendix A) for k = 3 on each segment of Θ, and get∣∣∣∣∣

∫
Θl1

Ujl1(θ)U∗l1l2(θ)ei[−λl1 (θ)t+(2(k−k∗)+l2−j)θ] dθ

∣∣∣∣∣
≤ 8 · 18 · 2

1
3
(
16 + (V0 − V1)2

) 1
6 (1 + |t|)−

1
3 .(16)

recalling that Θl1 consists of at most 8 segments (hence T \Θl1 consists of at most
9 segments). Then, by applying Van der Corput lemma for k = 2, on each segment
of T \Θl1 , we get ∣∣∣∣∣

∫
T\Θl1

Ujl1(θ)U∗l1l2(θ)ei[−λl1 (θ)t+(2(k−k∗)+l2−j)θ] dθ

∣∣∣∣∣
≤ 9 · 8 · 2

1
2
(
16 + (V0 − V1)2

) 1
4 (1 + |t|)−

1
2 .(17)

Thus, combining (16) and (17), we have, for |t| > 1,∣∣∣∣∫
T
Ujl1(θ)U∗l1l2(θ)ei[−λl1 (θ)t+(2(k−k∗)+l2−j)θ] dθ

∣∣∣∣
≤

(
8 · 18 · 2

1
3 + 9 · 8 · 2

1
2

) (
16 + (V0 − V1)2

) 1
4 (1 + |t|)−

1
3

< 284
(
16 + (V0 − V1)2

) 1
4 (1 + |t|)−

1
3 .(18)

Then Proposition 3.1 is shown by combining (15) and (18). �

Let us go back to the expression of e−itH given in Proposition 2.1. Since∑
l2=0,1

∑
k∈Z
|ψ2k+l2 | = ‖ψ‖`1 ,
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we have, for every n ∈ Z,

|(e−itHψ)n| ≤
1

2π

∑
l1,l2=0,1

∑
k∈Z
|ψ2k+l2 |

∣∣∣∣∫
T
Ujl1(θ)U∗l1l2(θ)ei[−λl1 (θ)t+(2(k−k∗)+l2−j)θ] dθ

∣∣∣∣
≤ 284

π

(
16 + (V0 − V1)2

) 1
4 ‖ψ‖`1(1 + |t|)−

1
3

≤ 568

π

(
1 + (V0 − V1)2

) 1
4 ‖ψ‖`1(1 + |t|)−

1
3 .

Thus Theorem 1.1 is proved.

4. Proof of Lemma 3.1

Section 4 is devoted to the proof of Lemma 3.1. By a direct calculation, we get

d2

dθ2

√
cos2(θ) + a =

− cos4(θ)− a cos2(θ) + a sin2(θ)

(cos2(θ) + a)
3
2

,(19)

d3

dθ3

√
cos2(θ) + a =

sin(θ) cos(θ)
(
4a2 + 3a sin2(θ) + 5a cos2(θ) + cos4(θ)

)
(cos2(θ) + a)

5
2

.(20)

Given any ε > 0,
∣∣∣ d2dθ2√cos2(θ) + a

∣∣∣ < ε is equivalent to

(
− cos4(θ)− 2a cos2(θ) + a

)2 − ε2
(
cos2(θ) + a

)3
< 0.

For the above 8−degree polynomial of cos(θ), there are at most 8 zeroes and hence
at most 4 subintervals of cos(θ) such that the above inequality holds. Since the
cosine function is strictly monotonic on (0, π) and (π, 2π), we see that there are at

most 8 subintervals of θ ∈ T such that
∣∣∣ d2dθ2√cos2(θ) + a

∣∣∣ < ε.

We notice that

fa(θ) =
| cos4(θ) + a cos2(θ)− a sin2(θ)|

(cos2(θ) + a)
3
2

+
| sin(θ) cos(θ)| · |4a2 + 3a sin2(θ) + 5a cos2(θ) + cos4(θ)|

(cos2(θ) + a)
5
2

.

is a π−periodic even function. So it is sufficient to focus on the interval [0, π2 ], on
which we have∣∣∣∣ d3

dθ3

√
cos2(θ) + a

∣∣∣∣ =
d3

dθ3

√
cos2(θ) + a

=
sin(θ) cos(θ)

(
4a2 + 3a sin2(θ) + 5a cos2(θ) + cos4(θ)

)
(cos2(θ) + a)

5
2

.

As for the second derivative, there exists θ∗ ∈ [π4 ,
π
2 ] with

(21) cos4(θ∗) + a cos2(θ∗)− a sin2(θ∗) = 0
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such that

∣∣∣∣ d2

dθ2

√
cos2(θ) + a

∣∣∣∣ =


− d2

dθ2

√
cos2(θ) + a, θ ∈ [0, θ∗]

d2

dθ2

√
cos2(θ) + a, θ ∈ [θ∗,

π
2 ]

=


cos4(θ) + a cos2(θ)− a sin2(θ)

(cos2(θ) + a)
3
2

, θ ∈ [0, θ∗]

− cos4(θ)− a cos2(θ) + a sin2(θ)

(cos2(θ) + a)
3
2

, θ ∈ [θ∗,
π
2 ]

.

Indeed, Equation (21) can be written as cos4(θ∗) + 2a cos2(θ∗)− a = 0, which gives
a unique solution θ∗ ∈ [0, π2 ] such that

cos2(θ∗) =
√
a2 + a− a =

a√
a2 + a+ a

<
1

2
.

This means θ∗ ∈ (π4 ,
π
2 ] and

cos4(θ) + 2a cos2(θ)− a

{
> 0, θ ∈ [0, θ∗)

< 0, θ ∈ (θ∗,
π
2 ]

.

Lemma 4.1. For every a > 0, we have

(22) fa(θ) ≥
1√

cos2(θ) + a
, ∀ θ ∈

[
0,
π

4

]
.

Proof. On x ∈ [0, π4 ] ⊂ [0, θ∗), we have

fa(θ) =
cos4(θ) + a cos2(θ)− a sin2(θ)

(cos2(θ) + a)
3
2

+
sin(θ) cos(θ)

(
4a2 + 3a sin2(θ) + 5a cos2(θ) + cos4(θ)

)
(cos2(θ) + a)

5
2

.

Hence (cos2(θ) + a)
5
2 fa(θ) = L1(θ) + L2(θ) + L3(θ) with

L1(θ) := −a2 sin2(θ) + a2 cos2(θ) + 4a2 sin(θ) cos(θ)

= a2 (2 sin(2θ) + cos(2θ)) ,(23)

L2(θ) := 2a cos4(θ) + 5a sin(θ) cos3(θ)− a sin2(θ) cos2(θ) + 3a sin3(θ) cos(θ)

= a

(
2 sin(2θ) + cos(2θ) +

1

4
sin(4θ) +

3

8
cos(4θ) +

5

8

)
,(24)

L3(θ) := cos6(θ) + sin(θ) cos5(θ)

=
√

2 sin
(
θ +

π

4

)
cos5(θ).(25)
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Note that for θ ∈ [0, π4 ], we have cos(θ) ≥ sin(θ). Then

L1(θ) = a2 + 2a2 sin(θ)(2 cos(θ)− sin(θ))

≥ a2,

L2(θ) ≥ 2a cos2(θ) + (3a sin(θ) cos3(θ)− a sin2(θ) cos2(θ) + 3a sin3(θ) cos(θ))

≥ 2a cos2(θ),

L3(θ) ≥ cos4(θ).

Therefore,

(cos2(θ) + a)
5
2 fa(θ) ≥ a2 + 2a cos2(θ) + cos4(θ) = (cos2(θ) + a)2

which implies (22). �

Lemma 4.2. For 0 < a ≤ 1
8 , we have

fa(θ) >
1

4
√

1 + a
, ∀ θ ∈

(π
4
,
π

2

]
.

Proof. For θ ∈ (π4 , θ∗],

cos2(θ) ≥
√
a2 + a− a =

a√
a2 + a+ a

,

and we still have that (cos2(θ)+a)
5
2 fa(θ) = L1(θ)+L2(θ)+L3(θ) with L1(θ), L2(θ),

L3(θ) defined as in (23)–(25). Note that on [π4 ,
π
2 ], L1, L3 are decreasing and L2 ≥ 0.

• For L3 on (π4 , θ∗], we have

L3(θ)

(cos2(θ) + a)
5
2

=
√

2 sin
(
θ +

π

4

) cos5(θ)

(cos2(θ) + a)
5
2

≥ 1

(1 + a
cos2(θ∗)

)
5
2

=
1

(1 + a+
√
a2 + a)

5
2

≥ 2

3
√

3 ·
√

1 + a

since 0 < a ≤ 1
8 .

• For L1 on (π4 , θ∗], we have

L1(θ) ≥ L1(θ∗)

=
a2

√
a2 + a+ a

(
4(a2 + a)

1
4
√
a+ 2a−

√
a2 + a− a

)
=

a2

√
a2 + a+ a

(
4(a2 + a)

1
4
√
a+ a−

√
a2 + a

)
≥ 0, if a ≥ 1

(2 +
√

5)4 − 1
=

9

8
√

5
− 1

2
.

Hence, for 9
8
√

5
− 1

2 ≤ a ≤
1
8 ,

fa(θ) =
1

(cos2(θ) + a)
5
2

(L1(θ) + L2(θ) + L3(θ)) ≥ 2

3
√

3 ·
√

1 + a
.
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As for the case 0 < a < 9
8
√

5
− 1

2 , we have

L3(θ∗)

60
+ L1(θ∗) ≥

cos5(θ∗)

60
+

a2

√
a2 + a+ a

(
4(a2 + a)

1
4
√
a+ 2a−

√
a2 + a− a

)
=

a
5
2

60(
√
a2 + a+ a)

5
2

− a2
√
a2 + a√

a2 + a+ a

=
a

5
2 − 60a2

√
a2 + a(

√
a2 + a+ a)

3
2

60(
√
a2 + a+ a)

5
2

> 0

since a is small enough. Then

fa(θ) ≥
59

60

L3(θ∗)

(cos2(θ∗) + a)
5
2

≥ 59

90
√

3
√

1 + a
>

1

4
√

1 + a
.

For θ ∈ (θ∗,
π
2 ], we have

fa(θ) =
− cos4(θ)− a cos2(θ) + a sin2(θ)

(cos2(θ) + a)
3
2

+
sin(θ) cos(θ)

(
4a2 + 3a sin2(θ) + 5a cos2(θ) + cos4(θ)

)
(cos2(θ) + a)

5
2

By a straightforward calculation, we get

(cos2(θ) + a)
7
2 · f ′a(θ)

= −a2 sin2(θ)
(
4a+ 3 sin2(θ)

)
(26)

+ 2a cos2(θ)
(
2a2 + 5a sin2(θ) + 6 sin4(θ)

)
(27)

+ a2 sin(θ) cos(θ)
(
4a+ 3 sin2(θ)

)
+ 6a cos6(θ) + 6a sin(θ) cos5(θ)(28)

+ a cos4(θ)
(
9a+ 14 sin2(θ)

)
+ 3a sin(θ) cos3(θ)

(
3a+ sin2(θ)

)
(29)

+ cos8(θ) + sin(θ) cos7(θ).(30)

A simple observation shows that

• the term 12a cos2(θ) sin4(θ) in (27) is decreasing on (arctan(
√

2), π2 ),

• the term 3a2 sin3(θ) cos(θ) in (28) is decreasing on (π3 ,
π
2 ),

• all the other terms in (26)–(30) are decreasing on (π4 ,
π
2 ).

Recalling that a ≤ 1
8 , we have cos2(θ∗) = a

a+
√
a2+a

≤ 1
4 , which implies that (θ∗,

π
2 ) ⊂

(π3 ,
π
2 ). Hence (cos2(θ) + a)

7
2 · f ′a(θ) is decreasing on (θ∗,

π
2 ). Since

(
cos2

(π
2

)
+ a
) 7

2 · f ′a
(π

2

)
= −a

11
2 (4a+ 3) < 0,
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there is at most one local maximum in (θ∗,
π
2 ) for fa(θ). After simple calculations

as following:

fa(θ∗) =
sin(θ∗) cos(θ∗)

(
4a2 + 3a sin2(θ∗) + 5a cos2(θ∗) + cos4(θ∗)

)
(cos2(θ∗) + a)

5
2

=
sin(θ∗) cos(θ∗)

(
4a2 + 3a+ 2a cos2(θ∗) + cos4(θ∗)

)
(cos2(θ∗) + a)

5
2

=
(a2 + a)

1
4a

1
2

(a2 + a)
5
4 (
√
a2 + a+ a)

(
4a2 + 3a+ 2a(

√
a2 + a− a) + (

√
a2 + a− a)2

)
=

4a
1
2

a+
√
a2 + a

,

we can get that for every θ ∈ (θ∗,
π
2 ],

fa(θ) ≥ min
{
fa(θ∗), fa

(π
2

)}
= min

{
4a

1
2

a+
√
a2 + a

,
1√
a

}
>

1√
1 + a

. �

Lemma 4.3. For a > 1
8 , we have

fa(θ) >
1

4
√

1 + a
, ∀ θ ∈

(π
4
,
π

2

]
.

Proof. On
(
π
4 ,

π
2

]
, we always have sin(θ) > cos(θ).

For θ ∈ (π4 , θ∗], a direct computation yields that

fa(θ) =
cos2(θ)√

cos2(θ) + a
+

4 sin(θ) cos(θ)√
cos2(θ) + a

+
3 sin3(θ) cos(θ)− 3 sin(θ) cos3(θ)

(cos2(θ) + a)
3
2

− a sin2(θ)

(cos2(θ) + a)
3
2

− 3 sin3(θ) cos3(θ)

(cos2(θ) + a)
5
2

.

We can see

sin(θ) cos(θ)√
cos2(θ) + a

− a sin2(θ)

(cos2(θ) + a)
3
2

=
sin(θ) cos(θ)(cos2(θ) + a)− a sin2(θ)

(cos2(θ) + a)
3
2

=
sin(θ)

(cos2(θ) + a)
3
2

(
cos3(θ) + a(cos(θ)− sin(θ))

)
,

where cos3(θ) + a(cos(θ)− sin(θ)) is decreasing and hence

cos3(θ) + a(cos(θ)− sin(θ)) >
1

sin(θ∗)

[
sin(θ∗) cos3(θ∗) + a sin(θ∗)(cos(θ∗)− sin(θ∗))

]
=

1

sin(θ∗)

[
sin(θ∗) cos(θ∗)

√
a2 + a− a sin2(θ∗)

]
>

1

sin(θ∗)

[
cos2(θ∗)

√
a2 + a− a sin2(θ∗)

]
= 0.
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Moreover,

3 sin(θ) cos(θ)√
cos2(θ) + a

+
3 sin3(θ) cos(θ)− 3 sin(θ) cos3(θ)

(cos2(θ) + a)
3
2

− 3 sin3(θ) cos3(θ)

(cos2(θ) + a)
5
2

=
3 sin(θ) cos(θ)

(cos2(θ) + a)
5
2

[
(cos2(θ) + a)2 + (sin2(θ)− cos2(θ))(cos2(θ) + a)− sin2(θ) cos2(θ)

]
=

3 sin(θ) cos(θ)

(cos2(θ) + a)
5
2

(a2 + a) > 0.

Since a > 1
8 means that cos2(θ∗) = a√

a2+a+a
> 1

4 , we have

fa(θ) >
cos2(θ∗)√

cos2(θ∗) + a
>

1

2
√

1 + 4a
>

1

4
√

1 + a
, ∀ θ ∈

(π
4
, θ∗

]
.

For θ ∈ (θ∗,
π
2 ],

fa(θ) =
− cos4(θ)− a cos2(θ) + a sin2(θ)

(cos2(θ) + a)
3
2

+
sin(θ) cos(θ)

(
4a2 + 3a sin2(θ) + 5a cos2(θ) + cos2(θ)

)
(cos2(θ) + a)

5
2

Hence,

(cos2(θ) + a)
5
2 fa(θ)

= a2 sin2(θ)− a2 cos2(θ) + 4a2 sin(θ) cos(θ)(31)

+ 5a sin(θ) cos3(θ)− 2a cos4(θ) + 2a sin3(θ) cos(θ)(32)

+ a sin3(θ) cos(θ) + a sin2(θ) cos2(θ) + sin(θ) cos5(θ)− cos6(θ)(33)

where the term in (31)

= a2 sin2(θ)− a2 cos2(θ) + 4a2 sin(θ) cos(θ)

= a2 + 2a2 cos(θ)(2 sin(θ)− cos(θ))

> a2 +
cos4(θ)

32
,

the term in (32)

= 5a sin(θ) cos3(θ)− 2a cos4(θ) + 2a sin3(θ) cos(θ)

> 3a sin(θ) cos3(θ) + 2a sin3(θ) cos(θ)

>
cos4(θ)

8
+ 2a

(
cos4(θ) + sin2(θ) cos2(θ)

)
=

cos4(θ)

8
+ 2a cos2(θ),

and the term in (33)

= a sin3(θ) cos(θ) + a sin2(θ) cos2(θ) + sin(θ) cos5(θ)− cos6(θ)

>
1

8
sin3(θ) cos(θ) +

1

8
sin2(θ) cos2(θ)

>
cos4(θ)

4
.
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So we have

(cos2(θ) + a)
5
2 fa(θ) > a2 + 2a cos2(θ) +

13

32
cos4(θ) >

13

32
(cos2(θ) + a)2,

which implies that

fa(θ) >
13

32
√

cos2(θ) + a
, ∀ θ ∈

(
θ∗,

π

2

]
. �

Appendix A. Van der Corput lemma

For readers’ convenience, we recall Van der Corput lemma and its corollary which
is used in this paper. The proof can be found in Chapter VIII of [10].

Lemma A.1. Suppose that ψ is real-valued and Ck in (a, b) for some k ≥ 2, and

(34) |ψ(k)(x)| ≥ 1, ∀ x ∈ (a, b).

For any λ ∈ R+, we have∣∣∣∣∫ b

a
eiλψ(x)dx

∣∣∣∣ ≤ (5 · 2k−1 − 2)λ−
1
k .

If the hypothesis (34) in the above lemma is replaced by

(35) “|ψ(k)(x)| ≥ c, ∀ x ∈ (a, b)”

for some c > 0 independent of x, then it is easy to derive from Lemma A.1 that∣∣∣∣∫ b

a
eiλψ(x)dx

∣∣∣∣ ≤ (5 · 2k−1 − 2)c−
1
kλ−

1
k , ∀ λ ∈ R+.

Moreover, since (35) also holds for −ψ, Lemma A.1 implies that∣∣∣∣∫ b

a
eiλψ(x)dx

∣∣∣∣ ≤ (5 · 2k−1 − 2)c−
1
k |λ|−

1
k , ∀ λ ∈ R \ {0}.

Corollary A.1. Suppose that ψ is real-valued and Ck in (a, b) for some k ≥ 2, and

that |ψ(k)(x)| ≥ c for all x ∈ (a, b). Let h be C1 in (a, b). Then∣∣∣∣∫ b

a
eiλψ(x)h(x)dx

∣∣∣∣ ≤ (5 ·2k−1−2)c−
1
k

[
|h(b)|+

∫ b

a
|h′(x)|dx

]
|λ|−

1
k , ∀ λ ∈ R\{0}.
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